• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical analysis,circuit realization,and application in pseudorandom number generators of a fractional-order laser chaotic system?

    2021-12-22 06:46:42ChenguangMa馬晨光SantoBanerjeeLiXiong熊麗TianmingLiu劉天明XintongHan韓昕彤andJunMou牟俊
    Chinese Physics B 2021年12期
    關(guān)鍵詞:天明晨光

    Chenguang Ma(馬晨光) Santo Banerjee Li Xiong(熊麗) Tianming Liu(劉天明)Xintong Han(韓昕彤) and Jun Mou(牟俊)

    1School of Information Science and Engineering,Dalian Polytechnic University,Dalian 116034,China

    2School of Physics and Electromechanical Engineering,Hexi University,Zhangye 734000,China

    3Department of Mathematical Sciences,Giuseppe Luigi Lagrange,Politecnico di Torino,Corso Duca degli Abruzzi 24,Torino,Italy

    Keywords: fractional-order laser chaotic system,SE complexity,intermittent chaos,NIST test,circuit realization

    1. Introduction

    Advantages of chaotic systems such as the extreme sensitivity to initial values, the inherent randomness, ergodicity make them prime candidates for scrambling and diffusion in image encryption process.[1–12]However, with development of technologies such as deep learning and artificial intelligence algorithms, predicting low-dimensional simple chaotic sequences has become a piece of cake.[13,14]This situation will lead some secret communication schemes based on this chaotic sequence fragile and easy to crack. Therefore, constructions of chaotic systems with high dimensionality and complex dynamical behaviors are favored by scholars.[15–19]

    Laser chaotic systems are widely used in the field of optical secure communication because they can quickly generate high-dimensional broadband, high-frequency, and strong nonlinear chaotic signals.[20–28]A surging number of scholars spare no effort to study laser chaotic systems. For instance, Kadhimet al.[29]constructed a new four-dimensional laser chaotic system by introducing complex variables into a Lorentz–Haken system, and designed a random sequence generator based on this system, Ranet al.[30]constructed a new master-slave laser chaotic system, analyzed its dynamical characteristics,and used this system to construct a random sequence generator. Reports on low-dimensional laser chaotic systems are not uncommon. However, there are few reports on the construction and realization of high-dimensional laser chaotic systems.

    Fractional calculus is not a novel concept, its unique memory effect makes it more suitable for describing the process-related physical phenomena, but its development has stagnated due to computational difficulties. Fortunately,fractional calculus has been applied to various fields due to the increase in computing power, such as signal processing, image detection, control systems, and financial systems.[31–35]Integer calculus,as a special case of fractional calculus,hides many properties of physical phenomena. A growing number of academicians devoted themselves to discovering special properties of fractional-order systems.[36–38]By introducing fractional calculus to a chaotic system, the bifurcation parameters of the system can be expanded, and some complex behaviors such as state transitions and bursting oscillations will appear. Therefore, fractional-order chaotic systems(FOCSs)have attracted attention of scholars.[39–48]Heet al.[49]found through numerical simulation that time-varying order will change dynamical behaviors of an FOCS. Maet al.[50]analyzed multi-stable behaviors of an incommensurate FOCS, and also analyzed the influence of order of different sub-equations in the system equation on the bifurcation behavior of the system. Wanget al.[51]analyzed the complex dynamical behaviors of an FOCS with coexisting hidden attractors and designed a circuit to verify the characteristic of the FOCS.Research and implementation of FOCSs are still in infancy,requiring further investigations by scholars.

    Based on the above discussion, strong curiosity drives us to explore dynamical characteristics of a high-dimensional fractional-order laser chaotic system(FOLCS).Therefore,we propose a new five-dimensional(5D)FOLCS,analyze the dynamical behaviors,realize it by a circuit and apply it to a pseudorandom number generator(PRNG).The rest of the paper is arranged as follows: The model of the FOLCS,its properties and numerical solution process are given in Section 2. Section 3 analyzes some dynamical behaviors of the FOLCS,including some special behaviors such as state transitions and coexistence of attractors. The circuit implementation of the system and its application in the PRNG are introduced in Sections 5 and 6,respectively.Finally,some conclusions are summarized in Section 7.

    2. Model of the new laser system and the numerical solution of its fractional-order form

    2.1. The model and its properties of the laser chaotic system

    A new Lorentz–Haken-type laser system with the hostnonlinearity is expressed as

    where(x,y,z,w,u|x,y,z,w,u ∈R)are state variables,anda,b,c,d,e,fare bifurcation parameters. Obviously,the system remains unchanged under coordinate transformation (x,y,z,w,u)→(?x,?y,?z,?w,u), that is, the system remains unchanged when rotated 180?around theuaxis. The factors that affect the divergence of the system(2)read

    It can be seen from Eq.(3)that the divergence of the laser system is not only related to parameters,but also affected by state variables. Introducing the Caputo differential definition in the laser chaotic system(2),the 5-D FOLCS can be expressed as

    whereqis a non-integer derivative.

    In order to explore stability of the equilibrium point of the FOCS, we investigate the stability of the equilibrium points of the real number field of the system (2). Let the left side of Eq. (2) be 0, the equilibrium point can be obtained asE0=(0,0,0,0,0), and substitutingE0into the Jacobian matrix of system(2),one can reach

    For simplicity, leta= 8,b= 1,c=?0.36,d=?0.01,e= 0.005,f= 38, the characteristic values at the equilibrium pointE0are 13.2825±0.2154i;?22.2825±0.1446i;?1. Obviously,E0is an unstable saddle point under these conditions. For the FOCS,its equilibrium point will be stable if the eigenvalue of the Jacobian matrixJat the equilibrium point satisfies the following equation:

    2.2. The numerical solution of the FOLCS

    Based on the ADM algorithm, the numerical solution of the FOLCS can be expressed as

    wherej= 1,2,3,4,5, and the step sizeh= 0.01 is always maintained in this study. In this paper,the first 5 items are intercepted,which can not only guarantee the calculation accuracy but also reduce the calculation time. Assuming the initial valuex0=[x01,x02,x03,x04,x05],and the related gamma functions are represented by Eq.(10),then the coefficientscijare shown as follows:

    Whena=8,b=1,c=?3.8,d=?0.3275,e=0.003,f=38,q=0.9, the initial valuex0=[?3,1,5,10,?7], the attractor projections of the system are shown in Fig.1. Under these conditions,the Lyapunov exponent(LE)of the system are 0.9058,0,?7.9739,?34.8478,?38.2401,and the Lyapunov dimensionDL=2.1136.

    Fig.1. The projections of attractor on(a)x–u plane,(b)z–u plane,and(c)w–u plane.

    3. The dynamical behaviors of the FOLCS

    3.1. Dynamical characteristics influenced by parameters and orders

    It is a very effective method to explore the dynamical behaviors of the system at different orders through the bifurcation diagram and the Lyapunov exponent spectrum. Figure 2 shows the detailed bifurcation behaviors and Lyapunov exponent (LE) values of the system with the orderqwhena=8,b=1,c=2.1,d=0.01,e=0.02,f=38, with the initial valuex0=[1,1,1,1,1]. The first three LEs’ curves are provided here to clearly capture the changes in the system state.The data shows that whenq=0.652,the maximum LE(MLE)of the system is 4.018. It can be seen from Fig. 2 that the larger the orders,the smaller the LE values,which means that the randomness of the sequence generated by the integer-order system is worse than that of the fractional order.

    Fig.2. Dynamical behaviors versus q: (a)bifurcation diagram,(b)Lyapunov exponent.

    A conspicuous advantage of this FOLCS is that it has multiple bifurcation parameters and there are multiple paths to chaos. Taking the variable parametercas a case, whena=8,b=1,d=0.01,e=0.02,f=38,q=0.9 and under the initial conditionx0=[1,1,1,1,1],the bifurcation diagram and LEs varying with parametercare shown in Fig. 3.It can be seen from Fig.3(a)that as the parametercincreases,the system enters a chaotic state from period-doubling bifurcation. Interestingly, the period-doubling bifurcation, boundary crises points and reverse period-doubling bifurcation can be seen clearly in the partially enlarged diagram in Fig. 4, and the data record thatc=?3.901,3.797 are the boundary crises points. The MLE=2.151 is located atc=3.96. The results of the MLE and SE complexity of the system varying with the parametercwith different orders are shown in Figs.5(a) and 5(b). Overall, the smaller the order, the larger the MLE and the higher the SE complexity of the system. However, as the order decreases,more periodic windows appear in the system.Whenq=0.9,the system has not only a larger chaotic range,but also a larger MLE.

    Fig.3. Dynamical behaviors versus c: (a)bifurcation diagram,(b)LEs.

    Fig.4. Partial enlarged view of bifurcation:(a)and(b)partial enlarged view of period-doubling bifurcation,(c)partial enlarged view of reverse period-doubling bifurcation.

    Fig.5. The system performance versus c: (a)the MLE,(b)the SE complexity.

    The changes of other bifurcation parameters and the corresponding first three LEs are shown in Fig.6.

    Fig.6. The impact of parameters on system status with(a)parameter a,(b)parameter b,(c)parameter d,(d)parameter e,(e)parameter f.

    3.2. Coexistence of attractors

    Under three different initial conditions,the chaotic attractors coexist with two different sinks whena=10,b=0.9,c=0.8,d=?0.01,e=0.088,f=29,q=0.9,as shown in Fig.7. In Fig.7,the trajectories,with initial values of

    are represent by red, blue and green, respectively. It can be seen from the time domain diagram that both red and blue trajectories degenerate from the chaotic state to a sink,but the degeneration time and the final state position are different. However, the green trajectory always maintains the chaotic state.In addition,the MLEx2>0 all the times,but the MLEx0<0 aftert=8675 s and the MLEx1<0 aftert=3050 s. The above discussion shows that small differences in initial values will lead to different final states of the system.

    Figure 8 shows that the system has two coexisting weak chaotic attractors. Under the conditionsa= 8,b= 1,c=?1.68,d=?0.01,e=?0.005,f=38,q=0.7, red is for the initial valuex0=[10,0,3,1,?2], and blue is for the initial valuex1=[3.26,?3.58,3.6,?4.8,36.16]. From the timedomain waveform and the evolution of LE over time,it can be seen that both the relatively weak chaotic attractors are transferred from the same strong chaotic attractor. However, the conversion times are different.

    Fig.8. Coexistence of two chaotic attractors: (a)strong chaotic state, (b)two different weakly chaotic state, (c) the y waveform with different initial values,(d)the first two LEs changing with time under different initial values.

    The other types of coexisting attractors are shown in Fig.9,and its corresponding parameters and the initial conditions are listed in Table 1.

    Fig.9. Other types of coexisting attractors. (a)period-chaotic;(b)chaotic-chaotic;(c)period-period.

    Table 1. The parameters,initial values,colors and coexisting type corresponding to Fig.9.

    3.3. State transition and intermittent oscillation(breather)

    Whena=8,b=1,c=?0.36,d=?0.01,e=?0.003,f=38,q=0.9, the state of the system will shift with time,as shown in Fig. 10. Under these sets of parameters, the final periodic attractor is degenerated from the chaotic attractor, but the degradation time is 800 s for the initial valuex0=[3.26,?3.58,3.6,?4.8,36.19], and 5100 s for the initial valuex1=[1,1,1,1,1].Correspondingly,we have the MLEx0,x1=0 after 800 s and 5100 s,respectively.

    Whena=8,b=1,c=3.797,d=?0.01,e=?0.005,f=38,q=0.9,the time-domain waveform,LEs,and attractor that change with time are shown in Fig. 11. One can see from the time-domain waveform that the periodic oscillation of system state variables will be interrupted by random finite burst oscillations,and when the burst oscillation ends,the periodic oscillation will restart again.The trend of LEs changing with time can also prove that the system alternates between short-term chaos and periodic oscillation.

    Fig.10. Chaotic states degenerates to periodic state: (a)transient state,(b)final state,(c)the waveform of the y with x0,(d)the MLE with x0,(e)the waveform of the y with x1,(f)the MLE with x1.

    Fig. 11. Intermittent oscillation between the burst and periodic: (a) time-domain waveform, (b) the LEs changing with time, (c) the burst oscillation,(d)the periodic oscillation,(e)the burst oscillation attractor,(f)the periodic oscillation attractor.

    3.4. Attraction basin and complexity analyzes

    Using the attraction basin can easily find the parameters space of the system in a chaotic state, which is very effective in secure communication based on chaotic systems. Figure 12 detects the state distribution of the laser system on different parameter planes. In the figure,black represents the divergent state, red means stable point, yellow indicates periodic and blue means chaos.This means that the parameters corresponding to the blue area should be selected in chaotic cryptography.

    In order to further find out the chaotic regions with high complexity, the spectral entropy complexity algorithm which can reflect the energy distribution of any signal in the frequency domain is considered here to measure the structural complexity of the FOCS,as shown in Fig.13. The more balanced the energy distribution,the higher the complexity of the sequence structure,so the larger the SE value. The color levels are mapped to the level of system complexity. The initial value is setting asx0=[1,1,1,1,1]and the parameters’conditions,maximum SE values and the corresponding coordinates are given in Table 2. One can see from a longitudinal point of view of Fig. 13(a) that, asqdecreases, the complexity of the system becomes larger. However,whenqis less than a certain value,the complexity of the system becomes smaller,and the system even diverges (white area). The maximum SE under this condition is 0.7703 witha=8.4,q=0.65. A larger SE value indicates that the fractional-order system can generate chaotic sequences with higher complexity.

    Fig.12. The attraction basin with different parameters’planes: (a)a–q plane,(b)a–b plane,(c)a–c plane,(d)a–d plane,(e)a–e plane,(f)a–f plane.

    Fig.13. SE complexity diagram of different parameters planes: (a)a–q plane,(b)a–b plane,(c)a–c plane,(d)a–d plane,(e)a–e plane,(f)a–f plane.

    Table 2. Parameters of the SE complexity diagram(Fig.13).

    4. The circuit realization of the FOLCS

    Here,TMS320F28335 is used as the core processor to realize the 5-D FOLCS.The experimental system can be seen in Fig.14.

    Set the same parameters and initial value as in Fig.1,and the DSP output sequence randomly intercepted on the oscilloscope is shown in Fig.15.

    Fig.14. The circuit test bench.

    Fig.15. The output sequences by DSP:(a)x–u sequence,(b)z–u sequence,(c)w–u sequence.

    Compared Fig.15 with Fig.1,it can be seen that the DSP simulation results match well with the computer simulations.This indicates that the chaotic oscillation of the system can be realized on the DSP platform,which provides a guarantee for the application of the FOLCS.

    5. PRNG based on the FOLCS

    Pseudo-random numbers based on chaotic sequences play a vital role in image encryption, information hiding, digital authentication and other cryptographic fields. The seed of the PRNG can be the initial value and bifurcation parameters of the chaotic system. The output chaotic sequencexican be represented by a certain number of binary numbers,but there may be correlation between these numbers. Therefore, some of them can be selected to generated random sequence to reduce the correlation. Combining the parameters range given by the attractor basin and SE complexity chaotic diagram analyzed in Subsection 3.4,the chaotic region with high complexity should be selected as the seed of the PRNG.It is important to note that the divergence state of the black region,the stable point of the red area and the period state of the yellow area cannot be used as the seed of the PRNG. Algorithm 1 is the generation algorithm of this chaos-based pseudo-random sequence generator.

    Algorithm 1. The the PRNG based on the FOLCS Input: the parameters of the system.(2)For i=1 to 5 do Get data Pi: intercept a section of the chaotic sequence xi;Transform Pi to 32-bit binary;Extract the last 8 bits of the 32-bit binary;end for Output: Five the PRNG based on xi.

    Table 3. The NIST test results.

    There are many existing detection methods for random sequences, among which NIST test is the most widely used statistical detection method. The NIST-800-22 kit will evaluate the sequence from 16 different aspects and obtain apvalue. It is generally believed that when the obtainedpvalue is greater than 0.01, it is a random sequence with 99%confidence. Set the initial valuex0=[?3,1,5,10,?7],parameters(a,b,c,d,e,f,q)=(8,1,?3.8,?0.3275,0.003,38,0.9) are selected as the seed of the PRNG. Five PRNGs will be obtained according Algorithm 1, and each the PRNG contains 1000000 binary bits.The test results of NIST-800-22 are listed in Table 3.

    6. Conclusion

    By introducing the Caputo differential operator, this paper constructs a new 5-D FOLCS.The dynamical characteristics of this system are analyzed by numerical solution. Compared to the corresponding integer-order system, the dynamical characteristics of the system in the fractional-order form are more complex,which is reflected in the fact that the maximum LE value of the system decreases with the increase of the order. The simulation results show that when the orderq=0.9, as the parametercchanges, the system not only has a larger LE value and SE complexity, but also has a larger parameter space making the system in a chaotic state. In addition, the laser system exhibits rich multi-stable behaviors, including the coexistence of chaotic attractors and two sinks,the coexistence of two symmetric chaotic attractors,and the coexistence of chaotic attractors and limit cycles.Meanwhile,there are two types of oscillation transitions in this system. One is that chaotic oscillations degenerate into periodic oscillations.The other is the endless alternate appearance of chaotic oscillation and periodic oscillation. The parameters corresponding to the high-complexity sequence that the system can generate are found through the SE complexity diagram. For example,when fixedb=1,c=2.1,d=0.01,e=0.01,f=38, the maximum SE=0.7703 whena=8.4,q=0.65. In addition,the simulation results of the digital circuit proposed in this article are consistent with the computer numerical simulation results,that is,the chaotic oscillation of the system is verified on the circuit.Finally,the PRNG based on the FOLCS has passed the NIST-800-22 test. In short, the theoretical and numerical simulation have proved that the FOLCS has rich chaotic characteristics. In the future, we will explore applications of this system in the field of image encryption.

    猜你喜歡
    天明晨光
    牛來了
    綿陽師范學(xué)院學(xué)報(bào)(2023年9期)2023-10-08 14:16:54
    小山羊掉進(jìn)坑里了
    春雨
    晨光
    美圖鑒賞
    晨光改造大多數(shù)
    不設(shè)套路,只為初心
    晨光
    讀者(2016年3期)2016-01-13 16:50:34
    晨光
    海燕(2015年2期)2015-10-12 10:11:38
    久久久久久人妻| 青春草亚洲视频在线观看| 午夜福利高清视频| 我的老师免费观看完整版| 成人高潮视频无遮挡免费网站| 国产男人的电影天堂91| 99视频精品全部免费 在线| 少妇高潮的动态图| 国产伦理片在线播放av一区| 国产午夜精品一二区理论片| 国产精品人妻久久久久久| 久久婷婷青草| 国产免费又黄又爽又色| av在线app专区| 中文字幕免费在线视频6| 久久久久久人妻| 亚洲av综合色区一区| 婷婷色av中文字幕| 亚洲不卡免费看| 国产精品久久久久久精品古装| 日韩亚洲欧美综合| 日韩免费高清中文字幕av| 欧美成人一区二区免费高清观看| 国语对白做爰xxxⅹ性视频网站| 夜夜骑夜夜射夜夜干| 国产免费一区二区三区四区乱码| 国精品久久久久久国模美| av国产精品久久久久影院| 国产精品一区二区在线不卡| 国产男人的电影天堂91| 一本—道久久a久久精品蜜桃钙片| 一本色道久久久久久精品综合| 我的女老师完整版在线观看| 国内揄拍国产精品人妻在线| 美女主播在线视频| 草草在线视频免费看| 亚洲美女视频黄频| av国产免费在线观看| 观看av在线不卡| 亚洲美女视频黄频| 少妇人妻久久综合中文| 草草在线视频免费看| 国内揄拍国产精品人妻在线| 色婷婷av一区二区三区视频| 日本wwww免费看| 精品一区二区免费观看| 免费久久久久久久精品成人欧美视频 | 国产国拍精品亚洲av在线观看| 国产精品一及| 美女国产视频在线观看| 我的女老师完整版在线观看| 亚洲综合色惰| 亚洲一级一片aⅴ在线观看| av免费在线看不卡| 精品国产乱码久久久久久小说| 亚洲精品,欧美精品| 久久99精品国语久久久| 亚洲成人中文字幕在线播放| 日韩三级伦理在线观看| 成人18禁高潮啪啪吃奶动态图 | 成年av动漫网址| 丝瓜视频免费看黄片| 久久久久久久亚洲中文字幕| 久久久久久久亚洲中文字幕| 观看免费一级毛片| 精品久久久噜噜| 欧美97在线视频| 秋霞伦理黄片| 亚洲性久久影院| 五月开心婷婷网| 国产在线视频一区二区| 亚洲最大成人中文| 国产精品麻豆人妻色哟哟久久| 久久久a久久爽久久v久久| 男人添女人高潮全过程视频| 秋霞伦理黄片| 国产一区二区三区综合在线观看 | 国产高清不卡午夜福利| 亚洲色图av天堂| 欧美日韩一区二区视频在线观看视频在线| 制服丝袜香蕉在线| 亚洲激情五月婷婷啪啪| 一区二区三区精品91| 视频区图区小说| 一级毛片 在线播放| 啦啦啦在线观看免费高清www| 又粗又硬又长又爽又黄的视频| 欧美另类一区| 免费大片18禁| av卡一久久| 午夜福利影视在线免费观看| 国产在视频线精品| 简卡轻食公司| a级毛色黄片| 蜜桃久久精品国产亚洲av| 在线观看人妻少妇| 国产精品不卡视频一区二区| av视频免费观看在线观看| 99国产精品免费福利视频| 久久久久国产网址| 精品国产露脸久久av麻豆| 在线观看一区二区三区| av免费在线看不卡| 一边亲一边摸免费视频| 国产综合精华液| 亚洲国产色片| 亚洲精品456在线播放app| 99热这里只有精品一区| 日韩视频在线欧美| 免费看不卡的av| 人人妻人人看人人澡| 久久女婷五月综合色啪小说| 成年美女黄网站色视频大全免费 | 国产淫片久久久久久久久| 建设人人有责人人尽责人人享有的 | 国产美女午夜福利| 如何舔出高潮| 在线观看一区二区三区激情| 麻豆成人av视频| 五月开心婷婷网| 久久久亚洲精品成人影院| 日本与韩国留学比较| 久久久成人免费电影| 国产成人精品婷婷| 搡老乐熟女国产| 国产免费一区二区三区四区乱码| 中文乱码字字幕精品一区二区三区| 亚洲欧美一区二区三区国产| 蜜桃久久精品国产亚洲av| 亚洲人成网站在线观看播放| 女性生殖器流出的白浆| av网站免费在线观看视频| 亚洲精品日韩av片在线观看| 色哟哟·www| 欧美xxxx黑人xx丫x性爽| 国产中年淑女户外野战色| 女的被弄到高潮叫床怎么办| 男女无遮挡免费网站观看| 国产在线视频一区二区| 成人毛片60女人毛片免费| 男人舔奶头视频| 久久99热这里只有精品18| 一级二级三级毛片免费看| 日本一二三区视频观看| 色视频www国产| tube8黄色片| 91精品一卡2卡3卡4卡| 在线天堂最新版资源| 只有这里有精品99| 国产精品人妻久久久影院| 偷拍熟女少妇极品色| 久久久色成人| 在线亚洲精品国产二区图片欧美 | 久久久久人妻精品一区果冻| 18禁裸乳无遮挡免费网站照片| 啦啦啦啦在线视频资源| 老师上课跳d突然被开到最大视频| 国产午夜精品一二区理论片| 欧美区成人在线视频| 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| 国产综合精华液| 女性被躁到高潮视频| 免费黄网站久久成人精品| 亚洲精华国产精华液的使用体验| 国产精品久久久久久久电影| 欧美bdsm另类| 夫妻午夜视频| 精品久久久久久久末码| 久久精品久久久久久久性| 成人一区二区视频在线观看| 九九在线视频观看精品| 亚洲av中文av极速乱| 国产精品一及| 一二三四中文在线观看免费高清| 最近2019中文字幕mv第一页| 99热这里只有精品一区| 日韩在线高清观看一区二区三区| 永久网站在线| 九九久久精品国产亚洲av麻豆| 国产精品爽爽va在线观看网站| 日韩免费高清中文字幕av| 日本黄色片子视频| 涩涩av久久男人的天堂| 亚洲性久久影院| 亚洲一区二区三区欧美精品| 亚洲综合色惰| 国产精品女同一区二区软件| 久久久色成人| 久久精品国产鲁丝片午夜精品| 伦精品一区二区三区| 边亲边吃奶的免费视频| 亚洲伊人久久精品综合| 最近中文字幕高清免费大全6| 日韩亚洲欧美综合| 精品亚洲成a人片在线观看 | 我要看日韩黄色一级片| 国产精品久久久久成人av| 久久久久久久大尺度免费视频| 男女无遮挡免费网站观看| 久久国产精品大桥未久av | 美女主播在线视频| 亚洲欧洲日产国产| 91精品国产国语对白视频| 婷婷色av中文字幕| 97超碰精品成人国产| 99视频精品全部免费 在线| 成人国产麻豆网| 亚洲av电影在线观看一区二区三区| 伦精品一区二区三区| www.av在线官网国产| 久久精品人妻少妇| 一级片'在线观看视频| 日韩免费高清中文字幕av| 熟妇人妻不卡中文字幕| 麻豆成人av视频| 这个男人来自地球电影免费观看 | 日本爱情动作片www.在线观看| 水蜜桃什么品种好| 亚洲国产毛片av蜜桃av| 少妇高潮的动态图| 深夜a级毛片| 深爱激情五月婷婷| 亚洲国产精品成人久久小说| 精品亚洲成国产av| 岛国毛片在线播放| 只有这里有精品99| 国产高清国产精品国产三级 | 夜夜看夜夜爽夜夜摸| 国产精品秋霞免费鲁丝片| 91在线精品国自产拍蜜月| 亚洲精品第二区| 美女中出高潮动态图| 成年美女黄网站色视频大全免费 | 久久久精品免费免费高清| 精品熟女少妇av免费看| 日韩制服骚丝袜av| 久久综合国产亚洲精品| 99热6这里只有精品| 男人添女人高潮全过程视频| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| 欧美少妇被猛烈插入视频| av不卡在线播放| 高清毛片免费看| 亚洲欧美日韩东京热| 国产午夜精品久久久久久一区二区三区| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 欧美精品一区二区大全| 在线观看三级黄色| 一级毛片我不卡| 精品亚洲成a人片在线观看 | 久久久精品94久久精品| 国产精品嫩草影院av在线观看| 九九爱精品视频在线观看| 岛国毛片在线播放| 国产一区二区在线观看日韩| 日韩成人av中文字幕在线观看| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 亚洲精品日韩在线中文字幕| 国产亚洲91精品色在线| 99久国产av精品国产电影| 久久久久久久久久久丰满| 99国产精品免费福利视频| 亚洲熟女精品中文字幕| 一级毛片电影观看| 国产精品一二三区在线看| 国产精品不卡视频一区二区| h日本视频在线播放| 99热国产这里只有精品6| 人人妻人人添人人爽欧美一区卜 | 国产成人a区在线观看| 欧美三级亚洲精品| 777米奇影视久久| 热99国产精品久久久久久7| 在线观看人妻少妇| 岛国毛片在线播放| 亚洲av中文av极速乱| 精品一区在线观看国产| av女优亚洲男人天堂| 日韩电影二区| 亚洲第一区二区三区不卡| 在线观看免费日韩欧美大片 | 网址你懂的国产日韩在线| 欧美精品一区二区免费开放| 免费大片18禁| 超碰97精品在线观看| 人妻制服诱惑在线中文字幕| 欧美日韩精品成人综合77777| 一级二级三级毛片免费看| 一级黄片播放器| 91精品一卡2卡3卡4卡| 一区在线观看完整版| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 亚洲成人一二三区av| 新久久久久国产一级毛片| 伦精品一区二区三区| 亚洲欧美日韩无卡精品| 久久99热这里只频精品6学生| 久热久热在线精品观看| 成人高潮视频无遮挡免费网站| 欧美日韩在线观看h| 最近中文字幕高清免费大全6| 极品教师在线视频| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 亚洲精品久久午夜乱码| 久久久久久久国产电影| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 欧美成人一区二区免费高清观看| 国产 一区 欧美 日韩| 欧美日韩一区二区视频在线观看视频在线| 国产精品av视频在线免费观看| 欧美成人一区二区免费高清观看| 极品少妇高潮喷水抽搐| 精品熟女少妇av免费看| 男女边吃奶边做爰视频| 日本黄色片子视频| 在线播放无遮挡| av国产免费在线观看| 一二三四中文在线观看免费高清| 老熟女久久久| 美女脱内裤让男人舔精品视频| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 亚洲四区av| 亚洲精品第二区| 嫩草影院入口| 看非洲黑人一级黄片| 亚洲精品第二区| 国产精品99久久久久久久久| 综合色丁香网| 丝袜脚勾引网站| 亚洲精品乱码久久久v下载方式| 九草在线视频观看| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 午夜福利网站1000一区二区三区| a级毛片免费高清观看在线播放| 天堂俺去俺来也www色官网| 一个人看的www免费观看视频| 日韩三级伦理在线观看| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 亚洲美女视频黄频| 春色校园在线视频观看| 国产淫语在线视频| 亚洲欧美精品专区久久| 久久人人爽av亚洲精品天堂 | 久久久午夜欧美精品| 色视频在线一区二区三区| 新久久久久国产一级毛片| 男的添女的下面高潮视频| 亚洲av电影在线观看一区二区三区| 欧美3d第一页| 亚洲中文av在线| 777米奇影视久久| 熟女人妻精品中文字幕| 中国美白少妇内射xxxbb| 免费播放大片免费观看视频在线观看| 婷婷色综合www| 在线观看免费视频网站a站| 美女主播在线视频| 欧美日韩国产mv在线观看视频 | 亚洲自偷自拍三级| 三级国产精品片| 不卡视频在线观看欧美| 大码成人一级视频| 亚洲精品成人av观看孕妇| 少妇高潮的动态图| 十分钟在线观看高清视频www | 偷拍熟女少妇极品色| 嘟嘟电影网在线观看| 久久久久久久久久人人人人人人| 午夜激情久久久久久久| 久久精品久久久久久久性| 亚洲成人av在线免费| 中国国产av一级| 欧美成人午夜免费资源| 欧美精品一区二区大全| 亚洲色图综合在线观看| 精品久久久噜噜| 观看av在线不卡| 丝袜脚勾引网站| 国产在线免费精品| 欧美精品国产亚洲| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 少妇猛男粗大的猛烈进出视频| 国产淫语在线视频| 男女边摸边吃奶| 久久99热这里只频精品6学生| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| av一本久久久久| 久久精品国产a三级三级三级| 国产永久视频网站| 啦啦啦中文免费视频观看日本| 在线观看一区二区三区激情| 国产精品福利在线免费观看| 午夜福利影视在线免费观看| 国产精品国产av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产人妻一区二区三区在| 国产成人freesex在线| 少妇的逼好多水| 18禁动态无遮挡网站| 日本黄大片高清| 国产黄片视频在线免费观看| 免费黄频网站在线观看国产| 2022亚洲国产成人精品| 18禁裸乳无遮挡免费网站照片| 蜜桃在线观看..| 亚洲国产精品专区欧美| 亚洲国产色片| 精品酒店卫生间| 91久久精品国产一区二区三区| 国产欧美日韩一区二区三区在线 | 国产中年淑女户外野战色| 亚洲成色77777| 噜噜噜噜噜久久久久久91| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频 | 精品久久国产蜜桃| 亚洲精品乱码久久久v下载方式| 国内少妇人妻偷人精品xxx网站| 91精品国产国语对白视频| 久久婷婷青草| 久久久成人免费电影| 99热6这里只有精品| 欧美日韩综合久久久久久| 成人影院久久| 精品亚洲成a人片在线观看 | 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 国产精品一区二区在线不卡| 六月丁香七月| 国产中年淑女户外野战色| 欧美激情极品国产一区二区三区 | 免费播放大片免费观看视频在线观看| 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 亚洲国产av新网站| 韩国av在线不卡| av福利片在线观看| a级毛片免费高清观看在线播放| 亚洲人成网站在线播| 成人毛片60女人毛片免费| 国产高清有码在线观看视频| av黄色大香蕉| 欧美精品一区二区大全| 久久6这里有精品| 久久久精品免费免费高清| 一区在线观看完整版| 亚洲av免费高清在线观看| 亚洲久久久国产精品| 18禁裸乳无遮挡动漫免费视频| 99热6这里只有精品| 国产男女超爽视频在线观看| 亚洲内射少妇av| 九九爱精品视频在线观看| 久久热精品热| 久久97久久精品| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 久久久色成人| 国产欧美亚洲国产| 夫妻午夜视频| 久久精品国产亚洲av天美| 大话2 男鬼变身卡| 啦啦啦视频在线资源免费观看| a级一级毛片免费在线观看| 亚洲欧美成人综合另类久久久| 国产淫片久久久久久久久| 亚洲中文av在线| 激情五月婷婷亚洲| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 国产黄片视频在线免费观看| 欧美97在线视频| 看非洲黑人一级黄片| 秋霞在线观看毛片| 国产黄片美女视频| 久久久精品94久久精品| 国产日韩欧美亚洲二区| 日本与韩国留学比较| 午夜福利影视在线免费观看| 亚洲在久久综合| 伦理电影免费视频| 国产高清三级在线| 精华霜和精华液先用哪个| 亚洲欧美日韩另类电影网站 | 亚洲国产欧美人成| 欧美一级a爱片免费观看看| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 国产精品成人在线| 日韩 亚洲 欧美在线| 永久网站在线| 亚洲欧美清纯卡通| 亚洲av二区三区四区| 国精品久久久久久国模美| 国产一区二区三区综合在线观看 | 国模一区二区三区四区视频| h日本视频在线播放| 大片免费播放器 马上看| 国产探花极品一区二区| 国产精品精品国产色婷婷| 国产精品人妻久久久久久| 国产亚洲午夜精品一区二区久久| av在线老鸭窝| 色吧在线观看| av在线app专区| 3wmmmm亚洲av在线观看| 美女高潮的动态| 中文欧美无线码| 国产精品一二三区在线看| 亚洲av中文av极速乱| 午夜激情福利司机影院| 在线看a的网站| 日本欧美国产在线视频| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 日韩在线高清观看一区二区三区| 免费av中文字幕在线| 国产成人精品一,二区| 亚州av有码| 久久精品国产a三级三级三级| 哪个播放器可以免费观看大片| 啦啦啦啦在线视频资源| 这个男人来自地球电影免费观看 | 久久久久久久亚洲中文字幕| 十分钟在线观看高清视频www | 国产 精品1| 日本黄大片高清| 精品一区二区三区视频在线| 成人毛片60女人毛片免费| 国内精品宾馆在线| 一级毛片黄色毛片免费观看视频| 最后的刺客免费高清国语| 国产男女超爽视频在线观看| 亚洲国产最新在线播放| 成人亚洲欧美一区二区av| 嫩草影院入口| 人体艺术视频欧美日本| 亚洲va在线va天堂va国产| 国产熟女欧美一区二区| 18禁裸乳无遮挡免费网站照片| 熟女电影av网| 99久久精品国产国产毛片| 国产免费福利视频在线观看| 麻豆成人午夜福利视频| 国产永久视频网站| 久久人人爽人人片av| 一区二区三区精品91| 超碰97精品在线观看| 日本与韩国留学比较| 国产精品久久久久久精品古装| 欧美日韩在线观看h| 欧美 日韩 精品 国产| 99热国产这里只有精品6| 18禁动态无遮挡网站| 成人国产麻豆网| 久久精品久久久久久久性| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久久免| av免费观看日本| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 亚洲精品乱码久久久v下载方式| av免费观看日本| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区视频9| 新久久久久国产一级毛片| 一边亲一边摸免费视频| 少妇的逼水好多| 免费大片18禁| 国产欧美亚洲国产| 精品久久久久久久末码| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久精品电影小说 | 精品人妻偷拍中文字幕| 少妇 在线观看| 91aial.com中文字幕在线观看| 久久久久久久国产电影| 99热网站在线观看| 一个人免费看片子| 久久人人爽人人爽人人片va| 亚洲av中文字字幕乱码综合| 国产精品欧美亚洲77777| 欧美日本视频| 欧美一区二区亚洲| 少妇高潮的动态图| 欧美成人一区二区免费高清观看| 欧美日韩一区二区视频在线观看视频在线| 免费观看的影片在线观看| 在线观看av片永久免费下载| 午夜激情福利司机影院| 亚洲天堂av无毛| 久久久久久久久久久丰满| 亚洲精品色激情综合| 赤兔流量卡办理| 黄色怎么调成土黄色|