• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical analysis,circuit realization,and application in pseudorandom number generators of a fractional-order laser chaotic system?

    2021-12-22 06:46:42ChenguangMa馬晨光SantoBanerjeeLiXiong熊麗TianmingLiu劉天明XintongHan韓昕彤andJunMou牟俊
    Chinese Physics B 2021年12期
    關(guān)鍵詞:天明晨光

    Chenguang Ma(馬晨光) Santo Banerjee Li Xiong(熊麗) Tianming Liu(劉天明)Xintong Han(韓昕彤) and Jun Mou(牟俊)

    1School of Information Science and Engineering,Dalian Polytechnic University,Dalian 116034,China

    2School of Physics and Electromechanical Engineering,Hexi University,Zhangye 734000,China

    3Department of Mathematical Sciences,Giuseppe Luigi Lagrange,Politecnico di Torino,Corso Duca degli Abruzzi 24,Torino,Italy

    Keywords: fractional-order laser chaotic system,SE complexity,intermittent chaos,NIST test,circuit realization

    1. Introduction

    Advantages of chaotic systems such as the extreme sensitivity to initial values, the inherent randomness, ergodicity make them prime candidates for scrambling and diffusion in image encryption process.[1–12]However, with development of technologies such as deep learning and artificial intelligence algorithms, predicting low-dimensional simple chaotic sequences has become a piece of cake.[13,14]This situation will lead some secret communication schemes based on this chaotic sequence fragile and easy to crack. Therefore, constructions of chaotic systems with high dimensionality and complex dynamical behaviors are favored by scholars.[15–19]

    Laser chaotic systems are widely used in the field of optical secure communication because they can quickly generate high-dimensional broadband, high-frequency, and strong nonlinear chaotic signals.[20–28]A surging number of scholars spare no effort to study laser chaotic systems. For instance, Kadhimet al.[29]constructed a new four-dimensional laser chaotic system by introducing complex variables into a Lorentz–Haken system, and designed a random sequence generator based on this system, Ranet al.[30]constructed a new master-slave laser chaotic system, analyzed its dynamical characteristics,and used this system to construct a random sequence generator. Reports on low-dimensional laser chaotic systems are not uncommon. However, there are few reports on the construction and realization of high-dimensional laser chaotic systems.

    Fractional calculus is not a novel concept, its unique memory effect makes it more suitable for describing the process-related physical phenomena, but its development has stagnated due to computational difficulties. Fortunately,fractional calculus has been applied to various fields due to the increase in computing power, such as signal processing, image detection, control systems, and financial systems.[31–35]Integer calculus,as a special case of fractional calculus,hides many properties of physical phenomena. A growing number of academicians devoted themselves to discovering special properties of fractional-order systems.[36–38]By introducing fractional calculus to a chaotic system, the bifurcation parameters of the system can be expanded, and some complex behaviors such as state transitions and bursting oscillations will appear. Therefore, fractional-order chaotic systems(FOCSs)have attracted attention of scholars.[39–48]Heet al.[49]found through numerical simulation that time-varying order will change dynamical behaviors of an FOCS. Maet al.[50]analyzed multi-stable behaviors of an incommensurate FOCS, and also analyzed the influence of order of different sub-equations in the system equation on the bifurcation behavior of the system. Wanget al.[51]analyzed the complex dynamical behaviors of an FOCS with coexisting hidden attractors and designed a circuit to verify the characteristic of the FOCS.Research and implementation of FOCSs are still in infancy,requiring further investigations by scholars.

    Based on the above discussion, strong curiosity drives us to explore dynamical characteristics of a high-dimensional fractional-order laser chaotic system(FOLCS).Therefore,we propose a new five-dimensional(5D)FOLCS,analyze the dynamical behaviors,realize it by a circuit and apply it to a pseudorandom number generator(PRNG).The rest of the paper is arranged as follows: The model of the FOLCS,its properties and numerical solution process are given in Section 2. Section 3 analyzes some dynamical behaviors of the FOLCS,including some special behaviors such as state transitions and coexistence of attractors. The circuit implementation of the system and its application in the PRNG are introduced in Sections 5 and 6,respectively.Finally,some conclusions are summarized in Section 7.

    2. Model of the new laser system and the numerical solution of its fractional-order form

    2.1. The model and its properties of the laser chaotic system

    A new Lorentz–Haken-type laser system with the hostnonlinearity is expressed as

    where(x,y,z,w,u|x,y,z,w,u ∈R)are state variables,anda,b,c,d,e,fare bifurcation parameters. Obviously,the system remains unchanged under coordinate transformation (x,y,z,w,u)→(?x,?y,?z,?w,u), that is, the system remains unchanged when rotated 180?around theuaxis. The factors that affect the divergence of the system(2)read

    It can be seen from Eq.(3)that the divergence of the laser system is not only related to parameters,but also affected by state variables. Introducing the Caputo differential definition in the laser chaotic system(2),the 5-D FOLCS can be expressed as

    whereqis a non-integer derivative.

    In order to explore stability of the equilibrium point of the FOCS, we investigate the stability of the equilibrium points of the real number field of the system (2). Let the left side of Eq. (2) be 0, the equilibrium point can be obtained asE0=(0,0,0,0,0), and substitutingE0into the Jacobian matrix of system(2),one can reach

    For simplicity, leta= 8,b= 1,c=?0.36,d=?0.01,e= 0.005,f= 38, the characteristic values at the equilibrium pointE0are 13.2825±0.2154i;?22.2825±0.1446i;?1. Obviously,E0is an unstable saddle point under these conditions. For the FOCS,its equilibrium point will be stable if the eigenvalue of the Jacobian matrixJat the equilibrium point satisfies the following equation:

    2.2. The numerical solution of the FOLCS

    Based on the ADM algorithm, the numerical solution of the FOLCS can be expressed as

    wherej= 1,2,3,4,5, and the step sizeh= 0.01 is always maintained in this study. In this paper,the first 5 items are intercepted,which can not only guarantee the calculation accuracy but also reduce the calculation time. Assuming the initial valuex0=[x01,x02,x03,x04,x05],and the related gamma functions are represented by Eq.(10),then the coefficientscijare shown as follows:

    Whena=8,b=1,c=?3.8,d=?0.3275,e=0.003,f=38,q=0.9, the initial valuex0=[?3,1,5,10,?7], the attractor projections of the system are shown in Fig.1. Under these conditions,the Lyapunov exponent(LE)of the system are 0.9058,0,?7.9739,?34.8478,?38.2401,and the Lyapunov dimensionDL=2.1136.

    Fig.1. The projections of attractor on(a)x–u plane,(b)z–u plane,and(c)w–u plane.

    3. The dynamical behaviors of the FOLCS

    3.1. Dynamical characteristics influenced by parameters and orders

    It is a very effective method to explore the dynamical behaviors of the system at different orders through the bifurcation diagram and the Lyapunov exponent spectrum. Figure 2 shows the detailed bifurcation behaviors and Lyapunov exponent (LE) values of the system with the orderqwhena=8,b=1,c=2.1,d=0.01,e=0.02,f=38, with the initial valuex0=[1,1,1,1,1]. The first three LEs’ curves are provided here to clearly capture the changes in the system state.The data shows that whenq=0.652,the maximum LE(MLE)of the system is 4.018. It can be seen from Fig. 2 that the larger the orders,the smaller the LE values,which means that the randomness of the sequence generated by the integer-order system is worse than that of the fractional order.

    Fig.2. Dynamical behaviors versus q: (a)bifurcation diagram,(b)Lyapunov exponent.

    A conspicuous advantage of this FOLCS is that it has multiple bifurcation parameters and there are multiple paths to chaos. Taking the variable parametercas a case, whena=8,b=1,d=0.01,e=0.02,f=38,q=0.9 and under the initial conditionx0=[1,1,1,1,1],the bifurcation diagram and LEs varying with parametercare shown in Fig. 3.It can be seen from Fig.3(a)that as the parametercincreases,the system enters a chaotic state from period-doubling bifurcation. Interestingly, the period-doubling bifurcation, boundary crises points and reverse period-doubling bifurcation can be seen clearly in the partially enlarged diagram in Fig. 4, and the data record thatc=?3.901,3.797 are the boundary crises points. The MLE=2.151 is located atc=3.96. The results of the MLE and SE complexity of the system varying with the parametercwith different orders are shown in Figs.5(a) and 5(b). Overall, the smaller the order, the larger the MLE and the higher the SE complexity of the system. However, as the order decreases,more periodic windows appear in the system.Whenq=0.9,the system has not only a larger chaotic range,but also a larger MLE.

    Fig.3. Dynamical behaviors versus c: (a)bifurcation diagram,(b)LEs.

    Fig.4. Partial enlarged view of bifurcation:(a)and(b)partial enlarged view of period-doubling bifurcation,(c)partial enlarged view of reverse period-doubling bifurcation.

    Fig.5. The system performance versus c: (a)the MLE,(b)the SE complexity.

    The changes of other bifurcation parameters and the corresponding first three LEs are shown in Fig.6.

    Fig.6. The impact of parameters on system status with(a)parameter a,(b)parameter b,(c)parameter d,(d)parameter e,(e)parameter f.

    3.2. Coexistence of attractors

    Under three different initial conditions,the chaotic attractors coexist with two different sinks whena=10,b=0.9,c=0.8,d=?0.01,e=0.088,f=29,q=0.9,as shown in Fig.7. In Fig.7,the trajectories,with initial values of

    are represent by red, blue and green, respectively. It can be seen from the time domain diagram that both red and blue trajectories degenerate from the chaotic state to a sink,but the degeneration time and the final state position are different. However, the green trajectory always maintains the chaotic state.In addition,the MLEx2>0 all the times,but the MLEx0<0 aftert=8675 s and the MLEx1<0 aftert=3050 s. The above discussion shows that small differences in initial values will lead to different final states of the system.

    Figure 8 shows that the system has two coexisting weak chaotic attractors. Under the conditionsa= 8,b= 1,c=?1.68,d=?0.01,e=?0.005,f=38,q=0.7, red is for the initial valuex0=[10,0,3,1,?2], and blue is for the initial valuex1=[3.26,?3.58,3.6,?4.8,36.16]. From the timedomain waveform and the evolution of LE over time,it can be seen that both the relatively weak chaotic attractors are transferred from the same strong chaotic attractor. However, the conversion times are different.

    Fig.8. Coexistence of two chaotic attractors: (a)strong chaotic state, (b)two different weakly chaotic state, (c) the y waveform with different initial values,(d)the first two LEs changing with time under different initial values.

    The other types of coexisting attractors are shown in Fig.9,and its corresponding parameters and the initial conditions are listed in Table 1.

    Fig.9. Other types of coexisting attractors. (a)period-chaotic;(b)chaotic-chaotic;(c)period-period.

    Table 1. The parameters,initial values,colors and coexisting type corresponding to Fig.9.

    3.3. State transition and intermittent oscillation(breather)

    Whena=8,b=1,c=?0.36,d=?0.01,e=?0.003,f=38,q=0.9, the state of the system will shift with time,as shown in Fig. 10. Under these sets of parameters, the final periodic attractor is degenerated from the chaotic attractor, but the degradation time is 800 s for the initial valuex0=[3.26,?3.58,3.6,?4.8,36.19], and 5100 s for the initial valuex1=[1,1,1,1,1].Correspondingly,we have the MLEx0,x1=0 after 800 s and 5100 s,respectively.

    Whena=8,b=1,c=3.797,d=?0.01,e=?0.005,f=38,q=0.9,the time-domain waveform,LEs,and attractor that change with time are shown in Fig. 11. One can see from the time-domain waveform that the periodic oscillation of system state variables will be interrupted by random finite burst oscillations,and when the burst oscillation ends,the periodic oscillation will restart again.The trend of LEs changing with time can also prove that the system alternates between short-term chaos and periodic oscillation.

    Fig.10. Chaotic states degenerates to periodic state: (a)transient state,(b)final state,(c)the waveform of the y with x0,(d)the MLE with x0,(e)the waveform of the y with x1,(f)the MLE with x1.

    Fig. 11. Intermittent oscillation between the burst and periodic: (a) time-domain waveform, (b) the LEs changing with time, (c) the burst oscillation,(d)the periodic oscillation,(e)the burst oscillation attractor,(f)the periodic oscillation attractor.

    3.4. Attraction basin and complexity analyzes

    Using the attraction basin can easily find the parameters space of the system in a chaotic state, which is very effective in secure communication based on chaotic systems. Figure 12 detects the state distribution of the laser system on different parameter planes. In the figure,black represents the divergent state, red means stable point, yellow indicates periodic and blue means chaos.This means that the parameters corresponding to the blue area should be selected in chaotic cryptography.

    In order to further find out the chaotic regions with high complexity, the spectral entropy complexity algorithm which can reflect the energy distribution of any signal in the frequency domain is considered here to measure the structural complexity of the FOCS,as shown in Fig.13. The more balanced the energy distribution,the higher the complexity of the sequence structure,so the larger the SE value. The color levels are mapped to the level of system complexity. The initial value is setting asx0=[1,1,1,1,1]and the parameters’conditions,maximum SE values and the corresponding coordinates are given in Table 2. One can see from a longitudinal point of view of Fig. 13(a) that, asqdecreases, the complexity of the system becomes larger. However,whenqis less than a certain value,the complexity of the system becomes smaller,and the system even diverges (white area). The maximum SE under this condition is 0.7703 witha=8.4,q=0.65. A larger SE value indicates that the fractional-order system can generate chaotic sequences with higher complexity.

    Fig.12. The attraction basin with different parameters’planes: (a)a–q plane,(b)a–b plane,(c)a–c plane,(d)a–d plane,(e)a–e plane,(f)a–f plane.

    Fig.13. SE complexity diagram of different parameters planes: (a)a–q plane,(b)a–b plane,(c)a–c plane,(d)a–d plane,(e)a–e plane,(f)a–f plane.

    Table 2. Parameters of the SE complexity diagram(Fig.13).

    4. The circuit realization of the FOLCS

    Here,TMS320F28335 is used as the core processor to realize the 5-D FOLCS.The experimental system can be seen in Fig.14.

    Set the same parameters and initial value as in Fig.1,and the DSP output sequence randomly intercepted on the oscilloscope is shown in Fig.15.

    Fig.14. The circuit test bench.

    Fig.15. The output sequences by DSP:(a)x–u sequence,(b)z–u sequence,(c)w–u sequence.

    Compared Fig.15 with Fig.1,it can be seen that the DSP simulation results match well with the computer simulations.This indicates that the chaotic oscillation of the system can be realized on the DSP platform,which provides a guarantee for the application of the FOLCS.

    5. PRNG based on the FOLCS

    Pseudo-random numbers based on chaotic sequences play a vital role in image encryption, information hiding, digital authentication and other cryptographic fields. The seed of the PRNG can be the initial value and bifurcation parameters of the chaotic system. The output chaotic sequencexican be represented by a certain number of binary numbers,but there may be correlation between these numbers. Therefore, some of them can be selected to generated random sequence to reduce the correlation. Combining the parameters range given by the attractor basin and SE complexity chaotic diagram analyzed in Subsection 3.4,the chaotic region with high complexity should be selected as the seed of the PRNG.It is important to note that the divergence state of the black region,the stable point of the red area and the period state of the yellow area cannot be used as the seed of the PRNG. Algorithm 1 is the generation algorithm of this chaos-based pseudo-random sequence generator.

    Algorithm 1. The the PRNG based on the FOLCS Input: the parameters of the system.(2)For i=1 to 5 do Get data Pi: intercept a section of the chaotic sequence xi;Transform Pi to 32-bit binary;Extract the last 8 bits of the 32-bit binary;end for Output: Five the PRNG based on xi.

    Table 3. The NIST test results.

    There are many existing detection methods for random sequences, among which NIST test is the most widely used statistical detection method. The NIST-800-22 kit will evaluate the sequence from 16 different aspects and obtain apvalue. It is generally believed that when the obtainedpvalue is greater than 0.01, it is a random sequence with 99%confidence. Set the initial valuex0=[?3,1,5,10,?7],parameters(a,b,c,d,e,f,q)=(8,1,?3.8,?0.3275,0.003,38,0.9) are selected as the seed of the PRNG. Five PRNGs will be obtained according Algorithm 1, and each the PRNG contains 1000000 binary bits.The test results of NIST-800-22 are listed in Table 3.

    6. Conclusion

    By introducing the Caputo differential operator, this paper constructs a new 5-D FOLCS.The dynamical characteristics of this system are analyzed by numerical solution. Compared to the corresponding integer-order system, the dynamical characteristics of the system in the fractional-order form are more complex,which is reflected in the fact that the maximum LE value of the system decreases with the increase of the order. The simulation results show that when the orderq=0.9, as the parametercchanges, the system not only has a larger LE value and SE complexity, but also has a larger parameter space making the system in a chaotic state. In addition, the laser system exhibits rich multi-stable behaviors, including the coexistence of chaotic attractors and two sinks,the coexistence of two symmetric chaotic attractors,and the coexistence of chaotic attractors and limit cycles.Meanwhile,there are two types of oscillation transitions in this system. One is that chaotic oscillations degenerate into periodic oscillations.The other is the endless alternate appearance of chaotic oscillation and periodic oscillation. The parameters corresponding to the high-complexity sequence that the system can generate are found through the SE complexity diagram. For example,when fixedb=1,c=2.1,d=0.01,e=0.01,f=38, the maximum SE=0.7703 whena=8.4,q=0.65. In addition,the simulation results of the digital circuit proposed in this article are consistent with the computer numerical simulation results,that is,the chaotic oscillation of the system is verified on the circuit.Finally,the PRNG based on the FOLCS has passed the NIST-800-22 test. In short, the theoretical and numerical simulation have proved that the FOLCS has rich chaotic characteristics. In the future, we will explore applications of this system in the field of image encryption.

    猜你喜歡
    天明晨光
    牛來了
    綿陽師范學(xué)院學(xué)報(bào)(2023年9期)2023-10-08 14:16:54
    小山羊掉進(jìn)坑里了
    春雨
    晨光
    美圖鑒賞
    晨光改造大多數(shù)
    不設(shè)套路,只為初心
    晨光
    讀者(2016年3期)2016-01-13 16:50:34
    晨光
    海燕(2015年2期)2015-10-12 10:11:38
    色老头精品视频在线观看| 99国产极品粉嫩在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 午夜日韩欧美国产| 精品国内亚洲2022精品成人 | 日韩欧美国产一区二区入口| 亚洲熟女毛片儿| 亚洲精品中文字幕在线视频| 久久国产精品影院| 男人爽女人下面视频在线观看| 精品高清国产在线一区| 高潮久久久久久久久久久不卡| 色视频在线一区二区三区| 国产高清国产精品国产三级| 国产激情久久老熟女| 大码成人一级视频| 久久午夜综合久久蜜桃| 午夜久久久在线观看| 老司机午夜福利在线观看视频 | 国产一区二区三区综合在线观看| 日本精品一区二区三区蜜桃| 另类亚洲欧美激情| 国产精品香港三级国产av潘金莲| 男女无遮挡免费网站观看| 欧美在线黄色| 午夜免费观看性视频| 久久久精品免费免费高清| 天天影视国产精品| 天天影视国产精品| 国产精品久久久av美女十八| av在线老鸭窝| 午夜福利视频在线观看免费| av线在线观看网站| 波多野结衣av一区二区av| tube8黄色片| videos熟女内射| 美女午夜性视频免费| 久久狼人影院| 日韩电影二区| 另类亚洲欧美激情| 精品少妇黑人巨大在线播放| 99国产精品免费福利视频| 亚洲精品美女久久久久99蜜臀| 19禁男女啪啪无遮挡网站| 国产一区二区激情短视频 | 国产男女内射视频| 欧美另类一区| 国产成人av激情在线播放| 色视频在线一区二区三区| 亚洲精品av麻豆狂野| 精品高清国产在线一区| 高清av免费在线| 正在播放国产对白刺激| 国产日韩一区二区三区精品不卡| 熟女少妇亚洲综合色aaa.| 一本—道久久a久久精品蜜桃钙片| av又黄又爽大尺度在线免费看| 男女高潮啪啪啪动态图| 久久久久久久精品精品| 91精品国产国语对白视频| 咕卡用的链子| 精品福利观看| 秋霞在线观看毛片| 女人被躁到高潮嗷嗷叫费观| 女人高潮潮喷娇喘18禁视频| 国产精品香港三级国产av潘金莲| 国产精品二区激情视频| 久久中文字幕一级| 亚洲精华国产精华精| a在线观看视频网站| 在线观看免费日韩欧美大片| 免费在线观看黄色视频的| 成人三级做爰电影| 久久ye,这里只有精品| 久久青草综合色| netflix在线观看网站| 亚洲精品国产av成人精品| 亚洲专区国产一区二区| 伊人久久大香线蕉亚洲五| 涩涩av久久男人的天堂| 亚洲成人免费av在线播放| 人人妻人人澡人人爽人人夜夜| 91精品三级在线观看| 成人亚洲精品一区在线观看| 亚洲一码二码三码区别大吗| 波多野结衣一区麻豆| 亚洲免费av在线视频| 免费av中文字幕在线| 一级毛片女人18水好多| 欧美大码av| 大片免费播放器 马上看| a级毛片黄视频| 欧美 日韩 精品 国产| 涩涩av久久男人的天堂| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久久毛片微露脸 | 免费不卡黄色视频| 男女国产视频网站| 91精品国产国语对白视频| 国产精品熟女久久久久浪| 性色av一级| 人人妻,人人澡人人爽秒播| 国产av一区二区精品久久| 五月开心婷婷网| 免费观看av网站的网址| 嫁个100分男人电影在线观看| 精品一区二区三区四区五区乱码| 国产精品欧美亚洲77777| 精品国产乱子伦一区二区三区 | 女性生殖器流出的白浆| 亚洲黑人精品在线| 两性夫妻黄色片| 成人国产av品久久久| 国产一区二区在线观看av| 国产亚洲午夜精品一区二区久久| 丁香六月欧美| 国产精品99久久99久久久不卡| 12—13女人毛片做爰片一| 在线观看免费视频网站a站| 99re6热这里在线精品视频| 天堂中文最新版在线下载| 免费观看a级毛片全部| 亚洲av男天堂| 男女国产视频网站| 欧美日韩国产mv在线观看视频| 黄网站色视频无遮挡免费观看| 女人高潮潮喷娇喘18禁视频| 考比视频在线观看| 国内毛片毛片毛片毛片毛片| 国产精品久久久久久人妻精品电影 | 欧美精品亚洲一区二区| 精品亚洲乱码少妇综合久久| 人人妻人人爽人人添夜夜欢视频| 国产av精品麻豆| 又大又爽又粗| 国产区一区二久久| 久久国产精品人妻蜜桃| 五月天丁香电影| 亚洲 国产 在线| 久久久欧美国产精品| 国产免费现黄频在线看| 欧美日韩精品网址| 香蕉丝袜av| 精品福利永久在线观看| 最黄视频免费看| 色婷婷久久久亚洲欧美| 老司机在亚洲福利影院| 每晚都被弄得嗷嗷叫到高潮| 搡老岳熟女国产| 日韩精品免费视频一区二区三区| 女人久久www免费人成看片| 亚洲人成电影观看| 成人国语在线视频| 日本av手机在线免费观看| 午夜激情av网站| 成人国产一区最新在线观看| 丁香六月欧美| 久久精品成人免费网站| 99热国产这里只有精品6| 亚洲欧洲日产国产| 啦啦啦在线免费观看视频4| 9热在线视频观看99| 久久久久久人人人人人| 国产精品国产av在线观看| 久久久国产精品麻豆| 午夜福利乱码中文字幕| 亚洲avbb在线观看| 精品亚洲成a人片在线观看| 最近最新免费中文字幕在线| 亚洲欧洲日产国产| 91成年电影在线观看| 日本五十路高清| 久久狼人影院| 欧美xxⅹ黑人| 亚洲国产av影院在线观看| 色视频在线一区二区三区| 欧美成人午夜精品| 精品亚洲成国产av| 国产在线免费精品| 亚洲美女黄色视频免费看| 欧美大码av| 国产日韩欧美视频二区| 美女午夜性视频免费| 大陆偷拍与自拍| 国产欧美日韩综合在线一区二区| 久久影院123| 欧美日韩精品网址| 搡老岳熟女国产| 午夜福利免费观看在线| 99精品久久久久人妻精品| 黄色怎么调成土黄色| 午夜两性在线视频| 亚洲精品久久成人aⅴ小说| 欧美xxⅹ黑人| 国产成人欧美在线观看 | 国产免费现黄频在线看| 欧美日韩视频精品一区| 久久久久久久久免费视频了| 日韩中文字幕欧美一区二区| 飞空精品影院首页| 国产伦理片在线播放av一区| av网站免费在线观看视频| 免费观看a级毛片全部| 国产精品一区二区在线不卡| 午夜激情av网站| 国产淫语在线视频| 宅男免费午夜| 免费女性裸体啪啪无遮挡网站| 亚洲国产av新网站| 免费在线观看日本一区| 99国产精品99久久久久| 久久久久国产精品人妻一区二区| 国产欧美日韩一区二区三区在线| 欧美激情 高清一区二区三区| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 又紧又爽又黄一区二区| 欧美 日韩 精品 国产| 国产精品久久久人人做人人爽| 久久99一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 一本久久精品| 丝瓜视频免费看黄片| 波多野结衣av一区二区av| 精品人妻在线不人妻| 男女免费视频国产| 各种免费的搞黄视频| 一区二区三区乱码不卡18| 十八禁高潮呻吟视频| 视频区欧美日本亚洲| 国产国语露脸激情在线看| 中文字幕av电影在线播放| 12—13女人毛片做爰片一| 在线天堂中文资源库| 成年人黄色毛片网站| 青青草视频在线视频观看| 啦啦啦中文免费视频观看日本| 一区二区三区激情视频| 男女无遮挡免费网站观看| 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 手机成人av网站| 老熟女久久久| 亚洲成人手机| 亚洲 欧美一区二区三区| 青青草视频在线视频观看| 精品国产超薄肉色丝袜足j| 日韩视频在线欧美| 久久免费观看电影| 黄片播放在线免费| 天天躁夜夜躁狠狠躁躁| 国产免费现黄频在线看| bbb黄色大片| 91精品伊人久久大香线蕉| 男人舔女人的私密视频| 亚洲精品国产精品久久久不卡| 如日韩欧美国产精品一区二区三区| 黑人欧美特级aaaaaa片| 亚洲午夜精品一区,二区,三区| 丝袜喷水一区| 精品国产乱码久久久久久男人| 日韩中文字幕视频在线看片| 我要看黄色一级片免费的| 天天影视国产精品| 性高湖久久久久久久久免费观看| 国产欧美日韩一区二区精品| 色视频在线一区二区三区| 亚洲精品在线美女| 亚洲国产精品999| 黄片大片在线免费观看| 青春草亚洲视频在线观看| 侵犯人妻中文字幕一二三四区| 欧美黑人精品巨大| 午夜福利在线观看吧| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久成人av| 天天躁狠狠躁夜夜躁狠狠躁| 国产男女超爽视频在线观看| 最新在线观看一区二区三区| 亚洲成人手机| 丝瓜视频免费看黄片| 亚洲性夜色夜夜综合| 色婷婷av一区二区三区视频| 亚洲av片天天在线观看| 老司机午夜福利在线观看视频 | 久久精品久久久久久噜噜老黄| 中国国产av一级| 精品福利观看| 国产精品国产三级国产专区5o| 免费日韩欧美在线观看| 我要看黄色一级片免费的| av天堂在线播放| 天天添夜夜摸| av福利片在线| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 少妇裸体淫交视频免费看高清 | 国产精品一区二区精品视频观看| 十八禁高潮呻吟视频| 天堂中文最新版在线下载| 国产男女内射视频| 999精品在线视频| 91成年电影在线观看| 十分钟在线观看高清视频www| 欧美精品啪啪一区二区三区 | 一个人免费在线观看的高清视频 | 啦啦啦视频在线资源免费观看| 久久久久久免费高清国产稀缺| 欧美黑人欧美精品刺激| 亚洲伊人久久精品综合| 人妻人人澡人人爽人人| tube8黄色片| 欧美在线一区亚洲| 夫妻午夜视频| 国产亚洲av高清不卡| 宅男免费午夜| 男人操女人黄网站| 午夜福利,免费看| 亚洲人成电影观看| 一级毛片女人18水好多| 黄色 视频免费看| 免费高清在线观看日韩| 在线av久久热| a 毛片基地| 欧美黑人精品巨大| 青草久久国产| 国产免费视频播放在线视频| 国产亚洲精品第一综合不卡| 亚洲欧美一区二区三区黑人| 午夜激情久久久久久久| 亚洲精品在线美女| 人人妻人人澡人人爽人人夜夜| 一级片'在线观看视频| 国产精品1区2区在线观看. | 亚洲精品中文字幕一二三四区 | 伦理电影免费视频| 欧美日韩黄片免| 亚洲av日韩精品久久久久久密| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 久热这里只有精品99| 国产精品成人在线| 亚洲色图综合在线观看| 亚洲伊人色综图| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 乱人伦中国视频| 肉色欧美久久久久久久蜜桃| 欧美精品av麻豆av| 欧美 日韩 精品 国产| 日韩视频一区二区在线观看| 免费不卡黄色视频| 国产精品1区2区在线观看. | 久9热在线精品视频| 精品久久久精品久久久| 另类亚洲欧美激情| 香蕉国产在线看| 一本久久精品| 啦啦啦免费观看视频1| 亚洲精品久久久久久婷婷小说| 少妇猛男粗大的猛烈进出视频| 日本欧美视频一区| 一区二区三区精品91| 国产成人精品久久二区二区免费| 国产精品影院久久| 男女下面插进去视频免费观看| 久久综合国产亚洲精品| videos熟女内射| 肉色欧美久久久久久久蜜桃| 丰满人妻熟妇乱又伦精品不卡| 午夜精品国产一区二区电影| 1024视频免费在线观看| 亚洲国产中文字幕在线视频| 老司机靠b影院| 男女下面插进去视频免费观看| 国产99久久九九免费精品| 久久亚洲精品不卡| 亚洲熟女精品中文字幕| 天天躁日日躁夜夜躁夜夜| 一本一本久久a久久精品综合妖精| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品电影小说| 亚洲男人天堂网一区| 免费不卡黄色视频| 国产亚洲av高清不卡| 免费观看av网站的网址| 国产精品一区二区免费欧美 | 久久九九热精品免费| 丰满少妇做爰视频| 久久久欧美国产精品| 日本wwww免费看| 国产精品1区2区在线观看. | 操美女的视频在线观看| 丰满饥渴人妻一区二区三| 国内毛片毛片毛片毛片毛片| 欧美久久黑人一区二区| 男女午夜视频在线观看| 久久精品国产亚洲av高清一级| 精品国产乱子伦一区二区三区 | 91国产中文字幕| 久久精品亚洲熟妇少妇任你| 久久亚洲国产成人精品v| 99热网站在线观看| 亚洲欧美激情在线| 久久中文字幕一级| 91老司机精品| 日韩视频在线欧美| 日韩有码中文字幕| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 一区在线观看完整版| 在线观看舔阴道视频| 女人高潮潮喷娇喘18禁视频| 如日韩欧美国产精品一区二区三区| 欧美人与性动交α欧美软件| 亚洲精品一二三| 十分钟在线观看高清视频www| 啦啦啦啦在线视频资源| 国产av精品麻豆| 免费在线观看日本一区| 欧美在线黄色| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 女性生殖器流出的白浆| 国产人伦9x9x在线观看| 男女午夜视频在线观看| 高清黄色对白视频在线免费看| 黄色a级毛片大全视频| 少妇精品久久久久久久| 亚洲人成电影免费在线| www日本在线高清视频| 欧美激情极品国产一区二区三区| 多毛熟女@视频| 丁香六月天网| 欧美日韩视频精品一区| 曰老女人黄片| 一二三四社区在线视频社区8| 日韩中文字幕视频在线看片| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 亚洲国产av新网站| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| av片东京热男人的天堂| 欧美 日韩 精品 国产| 美女大奶头黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 咕卡用的链子| 中文字幕人妻丝袜一区二区| 国产激情久久老熟女| 国产一区有黄有色的免费视频| 国产视频一区二区在线看| 黄片小视频在线播放| 久久久久国产一级毛片高清牌| 飞空精品影院首页| 国产成人影院久久av| 国产在视频线精品| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 涩涩av久久男人的天堂| 午夜精品久久久久久毛片777| 亚洲精品一卡2卡三卡4卡5卡 | 午夜精品久久久久久毛片777| 国产精品久久久久久精品电影小说| 人妻一区二区av| 久久久久精品国产欧美久久久 | 久久人妻熟女aⅴ| 制服人妻中文乱码| 在线观看免费视频网站a站| 热99re8久久精品国产| 12—13女人毛片做爰片一| 男女边摸边吃奶| 91精品伊人久久大香线蕉| www.999成人在线观看| 正在播放国产对白刺激| 青春草视频在线免费观看| 日本wwww免费看| 黄色 视频免费看| 久9热在线精品视频| 亚洲精品成人av观看孕妇| 国产福利在线免费观看视频| 高潮久久久久久久久久久不卡| 考比视频在线观看| 2018国产大陆天天弄谢| 91成人精品电影| 国产国语露脸激情在线看| 国产一级毛片在线| 中国美女看黄片| 色老头精品视频在线观看| 丝袜美腿诱惑在线| 免费一级毛片在线播放高清视频 | 亚洲av片天天在线观看| 岛国毛片在线播放| 窝窝影院91人妻| 久久av网站| 欧美日韩亚洲国产一区二区在线观看 | 精品高清国产在线一区| www.999成人在线观看| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 国产成人欧美在线观看 | 热99re8久久精品国产| 亚洲精品中文字幕在线视频| 男女边摸边吃奶| 9热在线视频观看99| 69av精品久久久久久 | 一区二区三区乱码不卡18| 亚洲av电影在线进入| 一级毛片精品| 欧美黑人欧美精品刺激| 久久午夜综合久久蜜桃| 国产精品香港三级国产av潘金莲| 老司机午夜福利在线观看视频 | 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 在线观看舔阴道视频| 美女高潮到喷水免费观看| 高潮久久久久久久久久久不卡| 宅男免费午夜| 亚洲情色 制服丝袜| 欧美黄色片欧美黄色片| 黑人欧美特级aaaaaa片| 欧美激情 高清一区二区三区| www.熟女人妻精品国产| 久热这里只有精品99| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产欧美日韩av| av福利片在线| 麻豆乱淫一区二区| 大型av网站在线播放| 欧美国产精品va在线观看不卡| 欧美xxⅹ黑人| 国产成+人综合+亚洲专区| 俄罗斯特黄特色一大片| 丰满少妇做爰视频| 黑丝袜美女国产一区| 女人爽到高潮嗷嗷叫在线视频| 亚洲av美国av| 黄色a级毛片大全视频| 一本一本久久a久久精品综合妖精| 国产片内射在线| 国产av一区二区精品久久| 午夜成年电影在线免费观看| 人妻 亚洲 视频| √禁漫天堂资源中文www| 国产欧美日韩一区二区三 | 成年人午夜在线观看视频| 香蕉丝袜av| 欧美中文综合在线视频| 久久中文看片网| 伦理电影免费视频| 欧美黑人精品巨大| 高清在线国产一区| 欧美老熟妇乱子伦牲交| 国产精品一区二区免费欧美 | 亚洲国产av影院在线观看| 丝瓜视频免费看黄片| 最新在线观看一区二区三区| 国产成人系列免费观看| 成人国语在线视频| 国产在线观看jvid| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| 欧美中文综合在线视频| 99国产精品一区二区三区| 男女下面插进去视频免费观看| 97人妻天天添夜夜摸| 1024视频免费在线观看| 午夜两性在线视频| 亚洲五月婷婷丁香| 国产成人欧美| 久久精品久久久久久噜噜老黄| 999久久久国产精品视频| 精品国产一区二区久久| 日韩中文字幕欧美一区二区| 男女免费视频国产| 亚洲欧美一区二区三区久久| 亚洲男人天堂网一区| 777米奇影视久久| 亚洲av成人不卡在线观看播放网 | 亚洲伊人色综图| 亚洲成国产人片在线观看| 日本欧美视频一区| 一级毛片电影观看| 欧美黑人欧美精品刺激| 久久影院123| 国产在线视频一区二区| 亚洲精品av麻豆狂野| 黄色视频,在线免费观看| 欧美国产精品va在线观看不卡| 亚洲精华国产精华精| 在线观看www视频免费| 亚洲色图 男人天堂 中文字幕| 狠狠精品人妻久久久久久综合| 欧美成狂野欧美在线观看| 一区二区三区激情视频| 亚洲av欧美aⅴ国产| 亚洲欧美日韩另类电影网站| 日本av免费视频播放| 成人国产一区最新在线观看| 操美女的视频在线观看| 欧美性长视频在线观看| 精品国产一区二区久久| 精品国产超薄肉色丝袜足j| 免费在线观看黄色视频的| 久久久国产欧美日韩av| 多毛熟女@视频| 日本黄色日本黄色录像| 色播在线永久视频| 交换朋友夫妻互换小说| 亚洲精品中文字幕在线视频| 99热网站在线观看| 国产主播在线观看一区二区|