• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new algorithm for reconstructing the three-dimensional flow field of the oceanic mesoscale eddy?

    2021-12-22 06:41:04ChaoYan顏超JingFeng馮徑PingLvYang楊平呂andSiXunHuang黃思訓(xùn)
    Chinese Physics B 2021年12期
    關(guān)鍵詞:楊平

    Chao Yan(顏超) Jing Feng(馮徑) Ping-Lv Yang(楊平呂) and Si-Xun Huang(黃思訓(xùn))

    1Institute of Meteorology and Oceanography,National University of Defense Technology,Changsha 410073,China

    2State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration,Hangzhou 310012,China

    3Basic Department,Nanjing Tech University,Pujiang Institute,Nanjing 211112,China

    Keywords: mesoscale eddy,numerical differentiation,Tikhonov regularization,variational optimization analysis

    1. Introduction

    Mesoscale eddy refers to the widely distributed rotating water body in the ocean with diameters ranging from tens to hundreds of kilometers in spatial scale. It is easier to detect the horizontal velocity in the eddy motion and there has been a relatively large number of statistical laws.[1,2]The vertical velocity also plays an important role in the diagnosis and forecast of mesoscale eddy motion. As the vertical velocity in the oceanic large-scale motion is very small,which is only about one percent or one thousandth of the horizontal velocity[3,4]and cannot be easily measured directly by existing observation instruments, it can be diagnosed by other factors. For incompressible fluids,the horizontal velocityu,vand the vertical velocitywsatisfy the following continuity equation:

    When the horizontal velocityu,vand upper and lower boundary conditions of the vertical velocity are known, the method of variational optimization analysis can be used to calculate the vertical velocity.[5,6]However there exist two problems:

    Problem 1 The method involves the calculation of the divergence of(u,v). Ifu,vadopt the observation data ?u,?v,then on one hand ?u,?vare of low resolution because of sparse observation points,and on the other hand observational errors of ?u,?vwill bring about large errors of??u/?x,??v/?yafter differentiating ?u,?vby the finite difference method,and finally lead to a large error of the vertical velocity viaD=??u/?x+??v/?y.

    Problem 2 The method needs vertical velocity boundary conditions to calculate the vertical velocity. In the field of Oceanography, it is difficult to precisely measure the vertical flow field at sea level.

    Based on the above considerations, a new algorithm for reconstructing the three-dimensional flow field of the oceanic mesoscale eddy based on variation is proposed in this paper.Firstly, in order to reduce the effect of noise and enhance the resolution of the horizontal flow field,we make use of numerical differentiation technique on the observation data (?u,?v).The numerical differentiation[7,8]proposed in recent decades for inverse problems in mathematical physics has been widely used in atmospheric science and various fields.[9–12]It is shown that the method of numerical differentiation, based on Tikhonov regularization, is feasible to analyze meteorological observation data and improve the recognition rate of small and medium scale weather systems. Secondly,we modify the method of variational optimization analysis by calculating the vertical velocity at sea level from the known vertical velocity at the seafloor to obtain the vertical velocity boundary conditions. Furthermore,we employ simulation experiments to test the sensitivity of the new algorithm to observational errors and vertical velocity boundary conditions,comparing with the result of finite difference method. Finally, we reconstruct the vertical flow field for the real oceanic two-dimensional horizontal flow field data.

    2. New algorithm:mathematical theory and calculation scheme

    The overall calculating procedure is depicted as follows:

    2.1. One-dimensional numerical differentiation

    It is a typical ill-posed problem to calculate partial derivatives of the observation horizontal flow field(?u,?v)at each layer in mathematics,which can be overcome by making numerical differentiation on (?u,?v). The so-called numerical differentiation is to calculate the approximate derivative of a function with function values at some discrete points,also known as the differentiation on observation data. The main problem about the numerical differentiation is that it is not suitable because a tiny observational error may lead to a large error of the numerical result. In the atmosphere and ocean research community,we often need to calculate the directional derivative in the horizontal direction for the further calculation of dispersion and vorticity.The observational error may lead to great differences between the results obtained by the difference method and the differential method respectively. In recent decades, the most important method for making the numerical differentiation is the Tikhonov regularization.

    (I)Raise the question

    Supposey=y(x),x ∈[0,1],?={0=x0

    1)|?yi ?y(xi)|≤δ,whereδis an observational error;

    2) ?y0=y(0), ?yn=y(1).

    Constructf?(x) from the observation data ?yi(i=1,2,...,n?1),maintaining a certain similarity betweenf′?(x)andy′(x)satisfying the following two conditions:

    Here,αrepresents the regularizing parameter,f?(0)=y0and

    f?(x)can be reconstructed by calculatingaj,bj,cjanddjas follows:

    Remark 1 Since we obtain the cubic spline expression(4)of the functionf?(x)on each sub-interval,the observation field can be reconstructed and refined to any resolution.

    It is required to find exact values ofy(x) atx=0 andx=1 for the calculation off?(x),which is impossible. Therefore, it is feasible to take ?y0, ?ynasy0,yn, with errors only atx=0,x=1,and takef?(x)on[x1,xn?1],in order to guarantee sufficient accuracy.

    2.2. Reconstruct the vertical field from the horizontal flow field

    Problem Assume that the observation flow field are ?u(x,y,z) and ?v(x,y,z), while the vertical observation data is unknown. The flow field area is set to be?×[0,H] and the analyzed flow field(u,v,w)is required to satisfy

    Remark 2 For the ocean floor, it can be set asw0=0.ButwHcannot be observed generally,which is always handled aswH=?∫H0?Ddzapproximately.

    3. Simulation experiment

    In order to validate the effectiveness of the proposed algorithm, we first employ simulation experiments. Let?=[0,2π]×[0,2π]×[0,0.2π],(u,v,w)gives the real flow field Obviously?uT/?x+?vT/?y+?wT/?z=0.

    Suppose that the observation horizontal flow field (?u,?v)is generated by adding a random error to the real flow field(uT,vT),which subjects to the uniform distribution on the interval[?δ,δ]. We employ the following four simulation experiments:

    SchemeA1: Calculate the horizontal dispersion ?Dof the observation flow field by the finite difference method,and then obtain the vertical velocity by solving the equation?w/?z=??Dby the finite difference method.

    SchemeA2: Calculate the horizontal dispersion ?Dof the observation flow field by the finite difference method, obtainλby solving Eq.(6),substitute it into Eq.(5)to produce(u,v),and finally calculate the vertical velocity by Eq.(7).

    SchemeA3: Substitute the observation flow field with the reconstructed flow field,calculate the horizontal dispersion ?Dof the reconstructed flow field by the method of numerical differentiation, and then obtain the vertical velocity by solving the equation?w/?z=??Dby the finite difference method.

    SchemeB: The implementation of the new algorithm.Substitute the observation flow field with the reconstructed flow field, calculate the horizontal dispersion ?Dof the reconstructed flow field by the method of numerical differentiation,obtainλby solving Eq.(6),substitute it into Eq.(5)to produce(u,v),and finally calculate the vertical velocity by Eq.(7).

    Definition 1 The relative error between the vertical velocity and the real vertical velocity is defined as

    3.1. Scheme comparison with definite δ

    Conclusion 1 In the case of calculating derivatives with then same method,the method based on variation is superior to the traditional finite difference method for the vertical velocity calculation. Givenδ=0.05, Table 1 shows relative errors of calculation with different grid resolutions. The relative error of the schemeA2is much smaller than that of the schemeA1,and the relative error of the schemeBis much smaller than that of schemesA1,A2,A3.

    Conclusion 2 The relative error of the schemeA1and schemeA2increases with the increment of resolution, while the relative error of the schemeBand schemeA3is almost unchanged, which further verified that the numerical differentiation is not suitable, and a small disturbance value of the observation flow field may lead to a large calculation error.

    As seen from Table 1,the relative error of the schemeBis smaller than that of the schemeA2. When the grid resolution is 160×160×40, the relative error of the schemeBis 84%smaller than that of the schemeA2. The results show that for the vertical velocity calculation,the regularization method can effectively reduce the relative error compared with the method based on variation.

    Table 1. Relative error of vertical velocity at different grid resolutions with δ =0.05.

    In summary,the schemeBis the optimal scheme for calculating the vertical velocity. When the grid resolution is 160×160×40, the relative error of the schemeBis reduced by 91%compared with the traditional finite difference schemeA1,which means that the new algorithm is very effective.

    3.2. Scheme comparison with unknown δ

    Although the regularizing parameter is taken asα=δ2,the observational errorδis unknown in many practical situations. Therefore, it is necessary to test the calculation results of the schemeBaccording to the change of the presumed observational errorδ′. Suppose the true observational error isδ=0.05,and the regularizing parameter isα=δ′2.

    Table 2 shows the relative error of vertical velocity obtained by the schemeBwith differentδ′. As can be seen from the table,even if the exact value ofδis unknown,the vertical velocity obtained by the new algorithm is still more accurate than that obtained by the finite difference method, as long asδ′is within a certain range. In some cases,such asδ′=0.010 andδ′=0.005,the relative error is smaller than that in the case ofδ′=δ=0.05. Therefore, according to the results shown in Table 2, as long asδ′is within the range of [0.01δ,2δ],the relative error of the schemeBis smaller than that of the schemeA1.

    Table 2. Relative error of the scheme B with different δ′.

    Fig.1. (a)The selected flow field and(b)the vector graph in this paper.

    3.3. Scheme comparison without boundary conditions

    The vertical velocity can be obtained by neither of the four methods when boundary conditions are unknown atz=0 andz=H. In many practical problems, it is difficult to obtain vertical velocity boundary conditions at both the top and the bottom. Therefore, it is necessary to solve the problem of missing boundary conditions when calculating the vertical velocity by the schemeA2or the schemeB. Assume that the vertical velocity atz=0 is known and the vertical velocity atz=His unknown. Then the following scheme can be taken to solve the problem.

    SchemeB1Calculate the vertical velocity atz=Hby the schemeA3and take it as the boundary condition. Then recalculate the vertical velocity by the schemeB.

    Whenδ=0.05, the vertical velocity atz=0.25πis not zero by Eq.(7).

    As can be seen from Table 3,even the boundary condition is predicted by the finite difference method of the schemeB1,the variation-based method is still superior to the pure finite difference method of the schemeA3.

    Table 3. Relative error without boundary condition with δ =0.05.

    4. Reconstruction experiment on the vertical velocity of the oceanic mesoscale eddy

    The experimental area is selected in 16.8750?N–21.8750?N,290.1250?–295.6250?W,depth of 5 m to 299.93 m below sea level (20 layers in total), as shown in Fig. 1(a).The horizontal oceanic data is sourcing from SODA(https://www2.atmos.umd.edu/ocean/) for January in 2001,SODA is the reanalysis data jointly released by the Department of Atmospheric and Oceanographic Sciences at the University of Maryland and the Department of Oceanography at TAMU,has a horizontal resolution of 0.25?×0.25?.

    Fig.2. The distribution of vertical velocity at depth of 5 m,115.87 m,222.71 m and 299.93 m by the finite difference method with δ =0.15.

    Fig.3. The distribution of vertical velocity at depth of 5 m,115.87 m,222.71 m and 299.93 m by the new algorithm with δ =0.15.

    As seen from Fig. 1(a), there exists a mesoscale eddy in the region with a diameter of 70–100 km,the vector graph of the eddy is shown in Fig.1(b),it is a cyclonic eddy,and there is a strong south-to-north ocean current flowing into this eddy in the south,while the horizontal velocity is relatively slow in other’region except for a small eddy below left.

    We use the new algorithm and the finite difference method respectively to calculate the vertical velocityw. Firstly, we take 299.93 m below sea level as the bottom layer. The vertical velocity of this layer is approximately 0 by analyzing the horizontal flow field of the layer and we can get the vertical velocity of the first layer,considered as the boundary condition,by further use of finite difference method. Based on the above boundary conditions, we take the observed data shown in Fig.1(b)as“real data”and discuss the new algorithm and the finite difference method respectively by introducing a disturbanceδ=0.15 as follows:

    Fig.4. The vertical velocity profiles.

    Fig.5. The position and the vector graph of an anticyclonic eddy.

    Fig.6. The vertical velocity profiles of the anticyclonic eddy.

    1) Calculate the vertical velocity at each layer by using the finite difference method with a small disturbanceδ=0.15.Figure 2 shows the distribution of vertical velocity at depth of 5 m,115.87 m,222.71 m and 299.93 m.

    2) Calculate the vertical velocity at each layer by using the new algorithm proposed in this paper with a small disturbanceδ=0.15. Figure 3 shows the distribution of vertical velocity at depth of 5 m,115.87 m,222.71 m and 299.93 m.

    Comparing Fig. 3 with Fig. 2, when the disturbance exists, the vertical velocity calculated by the new algorithm is more reasonable and feasible than that of the difference method. For the vertical velocity of mesoscale eddies, some parts rise,while some parts decline. The cause is related to the eddies surrounding environment, the phenomenon explained in the literature[14]is similar with our results.

    The vertical velocity profiles of the flow field obtained by the two methods are shown in Fig. 4 (for display purposes,we multiply the value of the vertical velocity by 1000). The two figures on the top are profiles of vertical velocity obtained by the new algorithm, from longitude and latitude direction respectively. The two profiles at the bottom of Fig. 4 are obtained at the same longitude and latitude by the finite difference method. It can be seen from the profiles at the same position that the new algorithm is obviously better than the finite difference method.

    Since the mesoscale eddy include cyclone and anticyclonic eddy, we have used the new algorithm to construct the three-dimensional flow field of cyclone eddy,similarly,we select an anticyclonic eddy and use the new algorithm to construct its three-dimensional flow field. As shown in Fig.5,the eddy located in the Cape of good hope,is an anticyclonic eddy.The horizontal oceanic data is also sourcing from SODA.

    Based on the new algorithm,we calculate the vertical velocity of this anticyclonic eddy. The profiles of the vertical velocity are shown in Fig.6. It can be seen from the two profiles that there is a strong upwelling and a downwelling in this anticyclonic eddy,which is in line with the motion law of the fluid in the eddy.

    5. Conclusion and perspectives

    In this paper, a new algorithm for calculating the vertical velocity of the incompressible flow field based on variation is proposed. The partial derivative is calculated by using the one-dimensional numerical differentiation method based on Tikhonov regularization. Comparing with the traditional finite difference method, we can draw the following conclusions:

    1) In the case of calculating derivatives with the same method,the method based on variation is superior to the traditional finite difference method for the vertical velocity calculation.

    2) When the observational error exists in the horizontal flow field, the one-dimensional numerical differentiation method can effectively reduce the relative error of the vertical velocity.

    3)In the case of an unknown observational error,the vertical velocity calculated by the new algorithm is still more accurate than that of the finite difference method if the ratio of the guess value to exact value is between 0.1 and 2.

    4) The missing upper and lower boundary conditions of vertical velocity can be obtained approximately by the onedimensional numerical differentiation method and finite difference method. The relative error of vertical velocity recalculated by variation is also well controlled.

    In summary, the vertical velocity calculation algorithm proposed in this paper is obviously better than the traditional finite difference method. This method can be widely used in the calculation of the vertical velocity in the ocean, meteorology and fluid experiment observations. Furthermore, by combining this method with the study of ocean dynamics and using the long-term data from SODA, the evolution of the three-dimensional structure of mesoscale eddies can be deeply studied.

    Acknowledgments

    The horizontal oceanic data used in this study are released by the SODA, which can be accessed in https://www2.atmos.umd.edu/ocean/. Inspired by the discussion with Wang Liang,the code of the proposed algorithm has been better optimized.

    猜你喜歡
    楊平
    打井
    金山(2023年10期)2023-10-21 08:00:02
    限制性液體復(fù)蘇對骨盆骨折伴失血性休克的早期療效觀察
    凍黏土界面層單調(diào)剪切數(shù)值模擬及實驗對比分析
    森林工程(2022年2期)2022-04-19 21:14:16
    Revenge Rocks
    漢語世界(2021年4期)2021-08-27 05:47:58
    作品賞析
    風(fēng)景圖
    減字木蘭花·紙業(yè)致敬改革開放四十年
    造紙信息(2019年4期)2019-09-10 07:22:44
    小夫妻的新節(jié)心結(jié)
    心理與健康(2019年2期)2019-06-11 10:59:40
    吹牛的代價
    磨刀匠
    西部(2015年3期)2015-11-18 10:35:49
    五月开心婷婷网| 人人妻人人澡人人看| 一个人看视频在线观看www免费| 少妇的逼水好多| 成年女人在线观看亚洲视频| 国产乱人偷精品视频| 久久久久久人妻| 乱人伦中国视频| 亚洲美女搞黄在线观看| 亚洲欧美中文字幕日韩二区| 午夜激情av网站| 国产黄色视频一区二区在线观看| 亚洲国产精品成人久久小说| 亚洲av免费高清在线观看| 亚洲高清免费不卡视频| 午夜老司机福利剧场| 亚洲精品国产av成人精品| 一区二区三区乱码不卡18| 在现免费观看毛片| 丝袜美足系列| 免费观看的影片在线观看| 一本大道久久a久久精品| 老司机影院成人| 精品人妻熟女av久视频| a 毛片基地| 精品人妻熟女av久视频| 建设人人有责人人尽责人人享有的| 日韩一区二区三区影片| 熟女人妻精品中文字幕| 少妇熟女欧美另类| 婷婷色av中文字幕| 中文字幕制服av| 在线亚洲精品国产二区图片欧美 | 国产深夜福利视频在线观看| 一边摸一边做爽爽视频免费| 国产精品一二三区在线看| 91精品国产九色| 久热久热在线精品观看| 麻豆精品久久久久久蜜桃| 久久精品久久久久久久性| 性色av一级| 三上悠亚av全集在线观看| av黄色大香蕉| 午夜影院在线不卡| 欧美老熟妇乱子伦牲交| 亚洲精品美女久久av网站| .国产精品久久| 久久女婷五月综合色啪小说| 欧美精品人与动牲交sv欧美| 久久久午夜欧美精品| 日韩制服骚丝袜av| 国产精品三级大全| 人人澡人人妻人| 久久青草综合色| 91精品伊人久久大香线蕉| 丰满迷人的少妇在线观看| 国产成人免费无遮挡视频| 黄片播放在线免费| 99久久综合免费| 99九九在线精品视频| 天美传媒精品一区二区| 亚洲色图综合在线观看| 国产av国产精品国产| 精品少妇内射三级| 国产在视频线精品| 国产av国产精品国产| 国产免费一区二区三区四区乱码| 国模一区二区三区四区视频| 夜夜骑夜夜射夜夜干| 插阴视频在线观看视频| 免费观看的影片在线观看| 日本欧美国产在线视频| 精品一区二区三区视频在线| a 毛片基地| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久久免| 精品99又大又爽又粗少妇毛片| 精品一区二区三卡| 中国美白少妇内射xxxbb| 亚洲av二区三区四区| 夜夜看夜夜爽夜夜摸| 91国产中文字幕| 18禁裸乳无遮挡动漫免费视频| 在线观看三级黄色| 91久久精品国产一区二区三区| 午夜福利视频精品| 婷婷色综合www| 成人无遮挡网站| 日本爱情动作片www.在线观看| 女人精品久久久久毛片| 久久久久视频综合| 综合色丁香网| 久久午夜福利片| 国产精品嫩草影院av在线观看| 婷婷色综合www| 999精品在线视频| av线在线观看网站| 99久久精品一区二区三区| 波野结衣二区三区在线| 国产免费福利视频在线观看| 日韩av不卡免费在线播放| 美女主播在线视频| 桃花免费在线播放| 多毛熟女@视频| 综合色丁香网| 色婷婷久久久亚洲欧美| 51国产日韩欧美| 91精品国产九色| 日日啪夜夜爽| 十八禁网站网址无遮挡| 国产免费现黄频在线看| 肉色欧美久久久久久久蜜桃| 国产精品无大码| 黑人高潮一二区| 卡戴珊不雅视频在线播放| 欧美xxxx性猛交bbbb| 亚洲国产精品国产精品| 亚洲精品一二三| 亚洲久久久国产精品| 99视频精品全部免费 在线| 久久久久久久久久久久大奶| 欧美日韩精品成人综合77777| 夫妻午夜视频| 人妻人人澡人人爽人人| 日本黄色片子视频| 在线观看一区二区三区激情| 久久久久久久久久成人| 制服丝袜香蕉在线| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲国产日韩| 久久久精品94久久精品| av卡一久久| 精品人妻熟女av久视频| 新久久久久国产一级毛片| 亚洲精品一二三| 亚洲第一区二区三区不卡| 91国产中文字幕| 亚洲国产欧美在线一区| 日日爽夜夜爽网站| 亚洲欧美中文字幕日韩二区| 熟妇人妻不卡中文字幕| 国产乱人偷精品视频| 国产色婷婷99| 国产白丝娇喘喷水9色精品| 亚洲欧美一区二区三区黑人 | 丝袜脚勾引网站| 熟妇人妻不卡中文字幕| 中国美白少妇内射xxxbb| 欧美xxⅹ黑人| av免费观看日本| 一级a做视频免费观看| 欧美日韩国产mv在线观看视频| 韩国高清视频一区二区三区| 在线观看免费视频网站a站| 黄色一级大片看看| 亚洲精品aⅴ在线观看| 亚洲欧洲国产日韩| √禁漫天堂资源中文www| 午夜福利视频精品| 一边摸一边做爽爽视频免费| 欧美精品高潮呻吟av久久| 不卡视频在线观看欧美| 我的老师免费观看完整版| 婷婷色综合大香蕉| 国产欧美另类精品又又久久亚洲欧美| 国产高清有码在线观看视频| 最近手机中文字幕大全| 18禁动态无遮挡网站| 日日啪夜夜爽| 丝袜喷水一区| 亚洲性久久影院| 满18在线观看网站| 汤姆久久久久久久影院中文字幕| 极品人妻少妇av视频| 亚洲国产精品一区三区| 国语对白做爰xxxⅹ性视频网站| 天堂俺去俺来也www色官网| 在线观看人妻少妇| 久久国产精品男人的天堂亚洲 | 欧美人与善性xxx| 全区人妻精品视频| 国产一区二区三区av在线| 国产男人的电影天堂91| 久久综合国产亚洲精品| 热99国产精品久久久久久7| 亚洲av综合色区一区| 一级毛片aaaaaa免费看小| 久久国产精品大桥未久av| freevideosex欧美| 99热网站在线观看| 欧美性感艳星| 亚洲婷婷狠狠爱综合网| 欧美3d第一页| 亚洲精品一区蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最新的欧美精品一区二区| 日韩不卡一区二区三区视频在线| 精品久久蜜臀av无| 国精品久久久久久国模美| 亚洲精品成人av观看孕妇| 亚洲第一av免费看| 黄色一级大片看看| 男女边摸边吃奶| 精品久久蜜臀av无| 一区二区三区乱码不卡18| 高清毛片免费看| 国产探花极品一区二区| 国产有黄有色有爽视频| 观看av在线不卡| av一本久久久久| 水蜜桃什么品种好| 亚洲精品乱码久久久v下载方式| 国产成人精品一,二区| 免费大片黄手机在线观看| 日韩一本色道免费dvd| 我的女老师完整版在线观看| 毛片一级片免费看久久久久| 狂野欧美激情性bbbbbb| 亚洲精品国产av蜜桃| 久久久久久久久久久丰满| 午夜免费观看性视频| av.在线天堂| 国产精品成人在线| 在线观看国产h片| 性色avwww在线观看| 欧美成人精品欧美一级黄| 国产精品不卡视频一区二区| 我的老师免费观看完整版| 桃花免费在线播放| 男男h啪啪无遮挡| 晚上一个人看的免费电影| 国产午夜精品一二区理论片| 岛国毛片在线播放| 男人操女人黄网站| 在线观看国产h片| 日韩 亚洲 欧美在线| 精品视频人人做人人爽| 国产免费一级a男人的天堂| 精品午夜福利在线看| 一本大道久久a久久精品| 亚洲美女搞黄在线观看| 精品人妻熟女毛片av久久网站| 婷婷色麻豆天堂久久| 亚洲欧洲日产国产| 在现免费观看毛片| 国产一区有黄有色的免费视频| 99精国产麻豆久久婷婷| 日韩伦理黄色片| 一区二区三区四区激情视频| 国产精品久久久久久久久免| 97超碰精品成人国产| 视频在线观看一区二区三区| 九色成人免费人妻av| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 丰满饥渴人妻一区二区三| 免费看不卡的av| 狠狠婷婷综合久久久久久88av| 亚洲一级一片aⅴ在线观看| 午夜福利影视在线免费观看| 成年av动漫网址| 久久精品人人爽人人爽视色| 日韩伦理黄色片| 亚洲精品av麻豆狂野| 亚洲av不卡在线观看| 色5月婷婷丁香| 在线观看免费日韩欧美大片 | 又黄又爽又刺激的免费视频.| 国产免费现黄频在线看| 亚洲av成人精品一二三区| 国模一区二区三区四区视频| 亚洲精品一区蜜桃| 亚洲av二区三区四区| av免费在线看不卡| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 少妇高潮的动态图| 国产精品国产三级国产av玫瑰| 最近手机中文字幕大全| av线在线观看网站| 亚洲成人av在线免费| 99热网站在线观看| 中文字幕精品免费在线观看视频 | 美女中出高潮动态图| av在线观看视频网站免费| 你懂的网址亚洲精品在线观看| 亚洲国产av影院在线观看| 91精品伊人久久大香线蕉| 久久久久久久久久久丰满| 国产欧美亚洲国产| 国产一区二区在线观看av| 婷婷色综合www| 中文字幕久久专区| 我的老师免费观看完整版| √禁漫天堂资源中文www| 人妻系列 视频| 黄色欧美视频在线观看| 高清黄色对白视频在线免费看| 精品午夜福利在线看| 成年人午夜在线观看视频| 在线播放无遮挡| av福利片在线| 国产黄片视频在线免费观看| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 在线亚洲精品国产二区图片欧美 | 2018国产大陆天天弄谢| 插阴视频在线观看视频| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 国国产精品蜜臀av免费| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 日本wwww免费看| 一本一本综合久久| 国产一区有黄有色的免费视频| 欧美精品一区二区大全| 成人影院久久| 国产一级毛片在线| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 国产精品久久久久久av不卡| 精品人妻一区二区三区麻豆| 精品熟女少妇av免费看| 午夜激情久久久久久久| 99热6这里只有精品| 欧美97在线视频| 91国产中文字幕| 亚洲婷婷狠狠爱综合网| 日本欧美视频一区| 亚洲av中文av极速乱| 高清不卡的av网站| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 日本爱情动作片www.在线观看| 久久精品国产a三级三级三级| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 日本黄色日本黄色录像| 日韩不卡一区二区三区视频在线| 精品国产国语对白av| 日韩电影二区| 亚洲av国产av综合av卡| 亚洲,一卡二卡三卡| 精品亚洲成国产av| 久久免费观看电影| 久久人人爽av亚洲精品天堂| 三上悠亚av全集在线观看| 人体艺术视频欧美日本| 国产片内射在线| 热re99久久精品国产66热6| 少妇高潮的动态图| 精品午夜福利在线看| 亚洲欧美日韩另类电影网站| 91精品三级在线观看| 久久精品国产自在天天线| 插阴视频在线观看视频| av视频免费观看在线观看| 国产精品秋霞免费鲁丝片| 久久 成人 亚洲| 日韩视频在线欧美| 国产精品偷伦视频观看了| 卡戴珊不雅视频在线播放| 日本91视频免费播放| a级毛片在线看网站| 18禁在线播放成人免费| 亚洲图色成人| 寂寞人妻少妇视频99o| 国产亚洲最大av| 免费黄网站久久成人精品| 久久国产精品大桥未久av| 国产精品免费大片| 国产亚洲一区二区精品| 国产精品一区二区在线观看99| 日韩中文字幕视频在线看片| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 国产精品一区www在线观看| 国产伦理片在线播放av一区| 日本vs欧美在线观看视频| 曰老女人黄片| www.av在线官网国产| 大片电影免费在线观看免费| 欧美亚洲日本最大视频资源| 亚洲第一区二区三区不卡| 人人澡人人妻人| 欧美一级a爱片免费观看看| 大香蕉久久成人网| 高清不卡的av网站| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区视频9| 国产精品久久久久成人av| 成年女人在线观看亚洲视频| 国产极品粉嫩免费观看在线 | 黄色怎么调成土黄色| 午夜精品国产一区二区电影| 夜夜看夜夜爽夜夜摸| 欧美性感艳星| 少妇精品久久久久久久| 男女边摸边吃奶| 国产精品久久久久久av不卡| 日韩欧美一区视频在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲第一区二区三区不卡| 男女国产视频网站| 女的被弄到高潮叫床怎么办| 人妻夜夜爽99麻豆av| 久久青草综合色| av专区在线播放| 少妇人妻久久综合中文| 亚洲国产色片| 女性生殖器流出的白浆| 午夜久久久在线观看| 九九爱精品视频在线观看| 制服丝袜香蕉在线| 成人漫画全彩无遮挡| 高清毛片免费看| 18在线观看网站| 国模一区二区三区四区视频| 国产精品人妻久久久久久| 女人精品久久久久毛片| 在线观看www视频免费| 精品熟女少妇av免费看| 久久综合国产亚洲精品| 日本欧美视频一区| 3wmmmm亚洲av在线观看| 人妻少妇偷人精品九色| 亚洲经典国产精华液单| 久久影院123| 亚洲欧美色中文字幕在线| 亚洲美女视频黄频| 秋霞在线观看毛片| 精品国产露脸久久av麻豆| 免费久久久久久久精品成人欧美视频 | 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 尾随美女入室| 久久久国产一区二区| 高清毛片免费看| 日本与韩国留学比较| 日韩亚洲欧美综合| 九草在线视频观看| 男女高潮啪啪啪动态图| 韩国av在线不卡| 亚洲在久久综合| 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| 免费不卡的大黄色大毛片视频在线观看| 美女视频免费永久观看网站| 伊人亚洲综合成人网| 日韩欧美精品免费久久| 精品人妻熟女毛片av久久网站| 亚洲欧洲精品一区二区精品久久久 | 9色porny在线观看| 日本欧美视频一区| 水蜜桃什么品种好| 美女视频免费永久观看网站| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 99国产精品免费福利视频| 欧美少妇被猛烈插入视频| 国产高清三级在线| 国产一区二区在线观看日韩| 国产亚洲一区二区精品| 久久99一区二区三区| 人妻人人澡人人爽人人| 人妻制服诱惑在线中文字幕| 搡老乐熟女国产| 亚洲av成人精品一区久久| 亚洲国产av新网站| 久久久精品区二区三区| 久久热精品热| 一本一本综合久久| 免费高清在线观看日韩| 黄片播放在线免费| 少妇被粗大的猛进出69影院 | 91久久精品电影网| 精品国产国语对白av| 免费大片黄手机在线观看| 成人18禁高潮啪啪吃奶动态图 | 日韩av在线免费看完整版不卡| 亚洲国产色片| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 国产精品一二三区在线看| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 丝袜美足系列| 黄色配什么色好看| 亚洲情色 制服丝袜| 日韩电影二区| 成人国语在线视频| 成年av动漫网址| 婷婷色综合大香蕉| 丰满饥渴人妻一区二区三| 边亲边吃奶的免费视频| 亚洲综合精品二区| 亚洲成色77777| 亚洲欧美日韩卡通动漫| 亚洲在久久综合| 国产日韩一区二区三区精品不卡 | 国产精品久久久久久久电影| 国产免费视频播放在线视频| 日日摸夜夜添夜夜添av毛片| 一级a做视频免费观看| 精品久久久噜噜| 中国三级夫妇交换| 国产乱人偷精品视频| 少妇人妻 视频| 国产69精品久久久久777片| 汤姆久久久久久久影院中文字幕| 九色亚洲精品在线播放| 亚洲第一区二区三区不卡| 精品久久久精品久久久| 黄色一级大片看看| 有码 亚洲区| 蜜桃久久精品国产亚洲av| 亚洲成人av在线免费| 色吧在线观看| 女性被躁到高潮视频| 日韩欧美一区视频在线观看| 欧美精品一区二区大全| √禁漫天堂资源中文www| 中文字幕久久专区| 日本vs欧美在线观看视频| 亚洲人成网站在线播| 伊人亚洲综合成人网| 亚洲成人手机| 国产伦理片在线播放av一区| 国产成人免费观看mmmm| 在线免费观看不下载黄p国产| 免费观看在线日韩| 亚洲综合精品二区| 国产高清不卡午夜福利| 精品国产国语对白av| 免费av不卡在线播放| 大片免费播放器 马上看| 久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 九草在线视频观看| 国精品久久久久久国模美| 欧美日本中文国产一区发布| 日韩成人av中文字幕在线观看| 久久久久久久久久成人| 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频| 99九九线精品视频在线观看视频| av视频免费观看在线观看| 精品一区在线观看国产| av专区在线播放| 国产亚洲午夜精品一区二区久久| 秋霞伦理黄片| 一级毛片电影观看| 两个人免费观看高清视频| 多毛熟女@视频| kizo精华| 丰满迷人的少妇在线观看| 日日摸夜夜添夜夜添av毛片| 18禁在线播放成人免费| 国产精品99久久久久久久久| 综合色丁香网| 伊人久久精品亚洲午夜| 日日爽夜夜爽网站| 久久久久久久久久久免费av| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃| 一本一本综合久久| 寂寞人妻少妇视频99o| 人妻少妇偷人精品九色| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 国产精品偷伦视频观看了| 嘟嘟电影网在线观看| 日本午夜av视频| 熟妇人妻不卡中文字幕| 一级毛片 在线播放| 欧美97在线视频| 国国产精品蜜臀av免费| 欧美老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 欧美激情国产日韩精品一区| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 一区二区三区免费毛片| 永久网站在线| 精品人妻熟女av久视频| 婷婷色麻豆天堂久久| 妹子高潮喷水视频| 国产一区二区三区av在线| 亚洲美女搞黄在线观看| 美女国产视频在线观看| 天天影视国产精品| 97在线视频观看| 国产伦理片在线播放av一区| av在线播放精品| 大陆偷拍与自拍| 亚洲成人手机| 精品熟女少妇av免费看| 欧美精品亚洲一区二区| 婷婷色麻豆天堂久久| 美女视频免费永久观看网站| 久久久久精品久久久久真实原创| av线在线观看网站| 欧美精品国产亚洲| 免费看不卡的av| 国产黄片视频在线免费观看| 亚洲成色77777| a级毛片黄视频| 欧美亚洲 丝袜 人妻 在线| 国产一级毛片在线|