• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111)substrate?

    2021-12-22 06:45:00Lu盧帥Peng彭坤Wang王鵬棟Chen陳愛喜Ren任偉Fang方鑫偉Wu伍瑩Li李治云Li李慧芳Cheng程飛宇Xiong熊康林Yang楊繼勇Wang王俊忠Ding丁孫安Jiang蔣燁平Wang王利Li李青Li李坊森andChi遲力峰
    Chinese Physics B 2021年12期

    S Lu(盧帥) K Peng(彭坤) P D Wang(王鵬棟) A X Chen(陳愛喜) W Ren(任偉)X W Fang(方鑫偉) Y Wu(伍瑩) Z Y Li(李治云) H F Li(李慧芳) F Y Cheng(程飛宇)K L Xiong(熊康林) J Y Yang(楊繼勇) J Z Wang(王俊忠) S A Ding(丁孫安) Y P Jiang(蔣燁平)L Wang(王利) Q Li(李青) F S Li(李坊森) and L F Chi(遲力峰)

    1Institute of Functional Nano&Soft Materials(FUNSOM),Soochow University,Suzhou 215123,China

    2Vacuum Interconnected Nanotech Workstation(Nano-X),Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences(CAS),Suzhou 215123,China

    3Key Laboratory of Polar Materials and Devices(MOE),Department of Electronic,School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China

    4School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    5School of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Hefei 230026,China

    Keywords: molecular beam epitaxy,hexagonal MnTe2,band structure

    1. Introduction

    Two-dimensional(2D)materials have attracted extensive attention since the discovery of graphene.[1]When thinned to the monolayer limit, 2D materials will exhibit unique electronic and optical properties such as superconductivity[2–4]and charge density waves (CDW).[5–7]In particular, ferromagnetic and antiferromagnetic materials would be a significant addition to the family of 2D materials due to their potential application in the next-generation spintronic devices with stable storage, faster response, and low-power dissipation.[8]The recent experimental breakthrough was the observation of quantum anomalous Hall effect (QAHE) in intrinsic magnetic topological insulator MnBi2Te4,[9]in which the magnetism originates from the magnetic Mn–Te layers[10]with the high-ordered magnetism distribution in the crystal.[11]In the MnBi2Te4system, each Mn atom is bonded with six neighboring Te atoms,which form octahedral(1T)structure MnTe2.The monolayer MnTe2was predicted as a candidate for 2D ferromagnetic material.[12]To the best of our knowledge,no experimental investigation about the epitaxial growth of monolayer hexagonal MnTe2has been reported.

    Manganese telluride (MnTe) has been demonstrated as a promising thermoelectric material.[13]NiAs-type MnTe(hexagonal MnTe, H-MnTe) bulk is a diluted magnetic material,exhibiting antiferromagnetic property with a N′eel temperature (TN) of 310 K.[14]And it is a p-type semiconductor with a small bandgap of 1.37–1.52 eV.[15]The lattice constant isa=b=4.158 ?A,c=6.726 ?A[16]and the magnetic order of H-MnTe has been determined to be in-plane ferromagnetic layers stacking antiferromagnetically along thecaxis.[17,18]Room temperature ferromagnetism was observed in thick MnTe film prepared by molecular beam epitaxy(MBE)technique.[19]There is no experimental report about the twodimensional limit of MnTe, where a Mn atom layer sandwiched between two Te layers. Recently, the DFT calculations suggest that when thinned the H-MnTe to the monolayer limit, MnTe2can stabilize as 1T-structure and is an intrinsic ferromagnetic metal.[12]There is a pyrite cubic structured three-dimensional MnTe2, which was reported to be a p-type semiconductor,[20]quite different from hexagonal MnTe, focusing on its potential thermoelectric applications.[21]Therefore, the experimental realization of the monolayer MnTe2is important and promising for 2D magnetism.

    Here we report an epitaxial growth of high-quality hexagonal monolayer MnTe2on Si(111)-(7×7)substrate by means of MBE. The structure and component were characterized by combiningin-situscanning tunneling microscopy (STM),reflection high-energy electron diffraction (RHEED), lowenergy electron diffraction (LEED), angle-resolved photoemission spectroscopy(ARPES),and x-ray photoelectron spectroscopy (XPS). STM and RHEED measurements show an MnTe2monolayer with a lattice of~4.1 ?A and the height of~5 ?A on Si(111)substrates. A large bandgap of~2.78 eV is observed with semiconducting properties in the MnTe2monolayer. Three hole-type bands with parabolic-type dispersion are observed by the ARPES measurements and the valenceband maximum (VBM) locates atΓpoint. Our work clearly shows the successful growth of a two-dimensional semiconducting MnTe2monolayer.

    2. Experimental methods

    Epitaxial growth of monolayer MnTe2on the Si(111)was carried out in a combined ultrahigh vacuum (UHV) system with a base pressure better than 3×10?10mbar. Prior to the film growth,the clean Si(111)-(7×7)substrates were obtained by multi-cycle flashing to~1320 K.High purity Mn(99.98%)and Te (99.9999%) were co-evaporated from standard Knudsen cells(K-cell). The growth rate of the MnTe2film was estimated to be 0.05 ML/min,mainly determined by the flux of the Mn source. RHEED was used to monitor the crystallinity and surface morphology during the growth. The surface morphology and electronic structure were further characterized byin-situSTM at room temperature using a tungsten tip. The differential dI/dVspectra were acquired by standard lock-in techniques (f=973 Hz,T=300 K). All the STM images were treated by using the WSxM software.[22]

    By transferring via the UHV tubes (base pressure better than 2×10?10mbar) in Nano-X, the band structure and surface component of the monolayer MnTe2can be measuredinsituby ARPES and XPS,respectively. Monochromatized He-Iαlight source (21.21 eV) was used in the ARPES measurement with a VG DA30L analyzer. The energy resolution and angular resolution were better than 30 meV and 0.1?,respectively. XPS measurements were carried out by using a PHI 5000 Versaprobe II system equipped with a monochromatic AlKα(1486.6 eV)x-ray source. The core level and valance band structure spectra were calibrated against C–C 1s(binding energy is around 284.8 eV).

    3. Results and discussion

    Mn–Te compounds in bulk and thick films normally crystallize into NiAs-type MnTe with Mn:Te~1 : 1. To stabilize monolayer MnTe2with Te termination, we introduced the molecular beam epitaxy method with the help of substrate and Te-rich atmosphere. Prior to the film growth, the Si(111)substrates were first degassed at 820 K for more than 10 h, followed by multi-cycle flashing at~1320 K for 10 s each time. The sample temperature was monitored by an infrared pyrometer. After such procedure, atomically clean Si(111)-(7×7) surfaces can be obtained, confirmed by the sharp RHEED spots in Fig. 1(a). During the film growth,the Si(111) substrate was kept at 573 K. The flux ratio of Te/Mn was about 10:1. The RHEED pattern in Fig. 1(b)shows sharp streaky lines from a thin film and bright spots from the Si(111) substrate (aSi(111)~3.85 ?A), demonstrating epitaxial growth with an atomically flat surface. The lattice constant of the monolayer MnTe2can be estimated to be~4.1 ?A, just slightly smaller than the lattice constant of bulk H-MnTe (a=4.158 ?A), quite different from the value obtained in DFT calculations.[12]The hexagonal LEED pattern in Fig.1(c)rules out the possibility of pyrite cubic structured MnTe2. No surface reconstruction was found. The fact of only one set of hexagonal LEED pattern indicates monolayer MnTe2with a single orientation, despite the high mismatch (~8%) between the monolayer MnTe2and the substrate. Spots of the Si(111)substrate could not be observed after the surface was completely covered with monolayer MnTe2(see Fig.S1 in the supplementary material for details).

    The STM image in Fig.1(d)shows the surface morphology of sub-monolayer MnTe2grown on Si(111). Similar to the monolayer WTe2[23]and WSe2,[24]distributed MnTe2islands were observed when the sub-monolayer was grown. All the islands exhibit the same height of~500 pm, according to the line profile in Fig. 1(e). In the bulk of hexagonal MnTe, the thickness of the Mn–Te layer alongcdirection is~1.68 ?A.Given the height of the monolayer islands,the film could be Te–Mn–Te or Mn–Te–Mn–Te. To further confirm the structure and surface compounds,in-situXPS measurements were needed, as shown below. Figure 1(f) shows the typical dI/dVspectrum of the monolayer MnTe2. We can observe a big bandgap across the Fermi level. The VBM locates at?1.20 eV and the conduction-band minimum locates at 1.58 eV,indicating a bandgap size of~2.78 eV.Such value is larger than the one in bulk H-MnTe(1.37 eV–1.52 eV).[15]But it is quite different from the predicted metallic property in DFT calculation.[12,32]Maybe it is due to the varied lattice constants. A small lattice constant of 3.8 ?A was obtained in the DFT calculation.[12]

    Fig.1. Growth of monolayer MnTe2 film on the Si(111)substrate. (a)RHEED pattern of the flashed Si(111)substrate,showing typical(7×7)reconstruction spots. (b)RHEED pattern of the sub-monolayer MnTe2. White lines mark the pattern of film, while the yellow dotted circles indicate the Si(111)substrate. (c)LEED pattern image of the monolayer MnTe2,clearly showing a hexagonal structure. (d)Large-scale STM image of 0.5 ML MnTe2, showing the surface morphology (200 nm×200 nm). Scanning condition: Vs =2.0 V, It =20 pA. (e) Line profile of the black arrow AB in panel (d), showing all the monolayer MnTe2 islands have with the same height of ~500 pm. (f) Typical dI/dV spectrum on the monolayer MnTe2,showing the semiconducting gap size of ~2.78 eV.Blue curve is the logarithmic plot.

    No oxidation signal from the monolayer MnTe2can be observed in the survey XPS spectrum(see Fig.S2 in the supplementary material)after the growth and transferring process.Figures 2(a)–2(c)show the XPS spectra of Mn 3s,Mn 2p,and Te 3d core-levels,respectively. In Fig.2(a),the Mn 3s spectra can be deconvoluted into two peaks due to the coupling of the nonionized 3s electron with 3d valence-band electrons in Mn,with the binding energies of 83.43 eV and 88.13 eV, respectively. The energy difference (?E3s) is~4.7 eV, indicating that the valence state of Mn is mainly +4 in the monolayer film.[25]Due to the complexity of Mn 2p spectrum with the splitting of 11.5 eV,we have performed a detailed deconvolution analysis in Fig.2(b). Peak 1 of 640.6 eV corresponds to the low charge state of Mnq+(0

    According to the peak and the relative sensitivity factor,we can calculate the chemical composition, the atom ratio of([Mn]:[Te])~1:2.6. Judging from the valence state of +4 and atom ratio of 1:2.6,we can conclude that the grown monolayer is MnTe2,as shown in Fig.2(f).The larger Te ratio in the samples should be ascribed to the Te passivation layer between MnTe2and Si(111) substrate, which offers an atomically flat template for the film growth by saturating the dangling bonds on the Si(111) substrate.[29]The Te passivation layer may be helpful for the growth of monolayer MnTe2with a large mismatch to Si(111)substrate. Such a Te-rich-atmosphere growth method has been widely used in the growth of Bi2Te3film on Si(111) substrate.[30]Figure S2(b) shows the cut-off edge of UPS spectra with the sample biased to?5 V. The work function (~4.76 eV) of monolayer MnTe2can be calculated by using the formulaφ=hν ?SECO?5, in which the secondary electron cut-off (SECO) is obtained from a linear extrapolation, as shown in the inset of Fig. 2(d). The valence band maximum of~1.32 eV can also be extracted in Fig.2(e)by linear extrapolation,which agrees well with our STS measurement in Fig. 1(f). Figure S2(c) gives the band structure of monolayer MnTe, extracted from XPS and STS measurements. Thus, we can draw the constructed band diagram of the monolayer MnTe2on Si(111). Figure 2(f) shows the top and side views of the monolayer 1T-MnTe2respectively. The octahedral 1T structure is consistent with the previous DFT calculation results.[12]

    Fig.2. XPS measurements of the monolayer MnTe2 on Si(111). (a)–(c)The core-level spectra of Mn 3s,Mn 2p,and Te 3d. The spaced double peaks (~4.7 eV) in Mn 3s suggest that the valence state of Mn is +4. The core-level spectrum of Mn 2p3/2 can be deconvoluted into four peaks. (d)UPS measurement of monolayer MnTe2,showing the work function of ~4.76 eV.(e)Valence-band maximum of MnTe2 film. (f)Top and side view model of monolayer MnTe2. The blue and yellow balls represent Mn and Te atoms,respectively.

    Fig. 3. Electronic band structure of the monolayer 1T-MnTe2 on Si(111) substrate. (a) The Brillouin zone of monolayer MnTe2. (b) The momentum space mapping at the energy of ?1.0 eV,near the VBM.(c)The momentum space mapping at the energy of ?2.0 eV.(d)The band structure measured along Γ–M direction.

    To further explore the electronic structure of monolayer MnTe2/Si(111) heterostructures, we performed ARPES measurement at room temperature. To the best of our knowledge,ARPES observations on bulk or thin film MnTe materials have been rarely reported. Figure 3(a) shows the Brillouin zone of the hexagonal MnTe2monolayer. The momentum space mapping at?1.0 eV in Fig. 3(b) shows only hole pockets atΓpoint with VBM at~?0.85 eV,consistent with the gaped structure obtained from the STS and XPS measurements. We notice that in bulk MnTe the VBM is also predicted atΓpoint theoretically.[31]The mapping at?2.0 eV in Fig. 3(c)shows a typical hexagonal structure with hole pockets. Figure 3(d)shows the band structure of monolayer MnTe2along theΓ–Mdirection. Three hole-type bands with parabolictype dispersion and“M”-shape dispersion at a deeper level are observed. Overall band shapes are similar to those of bulk MnTe[31]or 1T-MnTe2monolayer.[12,32]Here we find that the low two parabolic bands seem to overlap together. The energy difference between the upper parabolic bands and the lower ones is about 0.75 eV. The observed band structure is quite different from that of the Si(111)substrate,as shown in Fig. S3. Clean Si(111)-(7×7) substrate shows nearly linear dispersion along theΓ–Mdirection. The surface states of S1,S2, and S3 can be identified at 0.20 eV, 0.90 eV, and 1.8 eV below the Fermi level, respectively.[33]After the growth of monolayer MnTe2, no surface state and other band structures from Si(111) surface can be observed. According to previous DFT calculations,[12,32]monolayer MnTe2was predicted to be metallic. Our observations suggest monolayer hexagonal MnTe2exhibits semiconducting properties with considerable bandgap(~2.78 eV)at room temperature, larger than that of bulk MnTe (1.37 eV–1.52 eV).[15]One possibility is the varied lattice constant. As predicted,[32]the lattice strain can open a bandgap in MnTe2monolayer. However, the predicted bandgap is much smaller than the one in our experiment,which deserves further detailed calculations.

    We would like to discuss more about the formation of hexagonal MnTe2monolayer. In previous MBE growth,thick MnTe film crystallized into NiAs-type phase on the Si(111)[19]and InP(111),[34]while the preparation of a monolayer thin film failed. As shown in Fig. S4, if further increasing the coverage, several islands with the height of~330 pm were observed on the monolayer MnTe2,beside the second MnTe2layer with the height of~670 pm. It demonstrates the competition between the formation of bulk MnTe and van der Waals layered MnTe2. The interaction with the substrate can stabilize the monolayer MnTe2. The successful grown monolayer MnTe2is an important step to investigate the intrinsic 2D ferromagnetic properties due to its in-plane ferromagnetic order with single-layer Mn atoms.

    4. Conclusion

    In summary,we have successfully synthesized the hexagonal monolayer MnTe2film on Si(111)substrate by means of MBE. By combingin-situSTM, LEED, XPS, and ARPES,we have demonstrated atomically flat hexagonal monolayer MnTe2film with a large bandgap of~2.78 eV.The core-level spectrum of Mn 3s suggests the valence state of Mn is mainly+4. The atomic ratio of([Te]:[Mn])~2.6:1 not only verifies the component of MnTe2,but also implies the existence of Te passivation layer on Si(111)surface,which facilitates the epitaxial growth of MnTe2with large lattice mismatch. ARPES results show that the VBM is atΓpoint with an energy of?0.85 eV. Clear three bands with parabolic-type dispersion can be observed, agreeing well with the band shapes of bulk MnTe[31]or 1T-MnTe2monolayer. Our work offers an opportunity to investigate the electronic and magnetism properties of MnTe materials with thickness down to two-dimensional limit as MnTe2.

    欧美激情久久久久久爽电影| 久久久久久久久久久丰满 | 最近最新中文字幕大全电影3| 91狼人影院| 国产白丝娇喘喷水9色精品| 日韩中文字幕欧美一区二区| 国产免费av片在线观看野外av| or卡值多少钱| 人妻少妇偷人精品九色| 啦啦啦观看免费观看视频高清| 韩国av一区二区三区四区| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 成人综合一区亚洲| 99久久久亚洲精品蜜臀av| 99久久中文字幕三级久久日本| 精品免费久久久久久久清纯| 内地一区二区视频在线| av天堂中文字幕网| 久久精品国产清高在天天线| 男人的好看免费观看在线视频| 蜜桃久久精品国产亚洲av| 老司机深夜福利视频在线观看| 男女啪啪激烈高潮av片| or卡值多少钱| 一级av片app| 亚洲成av人片在线播放无| 国产精品综合久久久久久久免费| 亚洲av美国av| 国产精品嫩草影院av在线观看 | 久久热精品热| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 色吧在线观看| 日韩亚洲欧美综合| 免费一级毛片在线播放高清视频| 91午夜精品亚洲一区二区三区 | 国产精品乱码一区二三区的特点| 少妇被粗大猛烈的视频| 欧美黑人巨大hd| 99久国产av精品| 亚洲性久久影院| 日韩欧美国产一区二区入口| 俄罗斯特黄特色一大片| 91精品国产九色| 国产午夜精品论理片| 亚洲精品一区av在线观看| 久久久久久久午夜电影| 很黄的视频免费| 小蜜桃在线观看免费完整版高清| 日本与韩国留学比较| 露出奶头的视频| 日韩 亚洲 欧美在线| 国产探花在线观看一区二区| 精品人妻偷拍中文字幕| 亚洲性夜色夜夜综合| x7x7x7水蜜桃| 日本熟妇午夜| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 久久久久久久久久成人| www日本黄色视频网| 精品免费久久久久久久清纯| 尤物成人国产欧美一区二区三区| 午夜福利在线观看免费完整高清在 | 可以在线观看毛片的网站| 我的老师免费观看完整版| 日本精品一区二区三区蜜桃| 毛片女人毛片| 午夜视频国产福利| 精品人妻视频免费看| 观看美女的网站| 欧美中文日本在线观看视频| 亚洲欧美日韩东京热| 成人三级黄色视频| 夜夜爽天天搞| 最近最新中文字幕大全电影3| 日本-黄色视频高清免费观看| 亚洲一级一片aⅴ在线观看| 国产成人影院久久av| 又黄又爽又刺激的免费视频.| 在线天堂最新版资源| 国产精品久久久久久精品电影| 欧美xxxx黑人xx丫x性爽| 黄色丝袜av网址大全| 精品久久久久久久久久久久久| 校园人妻丝袜中文字幕| 91狼人影院| 真实男女啪啪啪动态图| 欧美不卡视频在线免费观看| 久久久午夜欧美精品| 婷婷精品国产亚洲av在线| 热99在线观看视频| 国产伦人伦偷精品视频| 免费看美女性在线毛片视频| 精品午夜福利在线看| 波多野结衣高清作品| 99热只有精品国产| 国产主播在线观看一区二区| 床上黄色一级片| 亚洲av一区综合| 久久国内精品自在自线图片| 久久精品国产99精品国产亚洲性色| 国产 一区 欧美 日韩| 久久久久久久久中文| 国产老妇女一区| 亚洲精品一区av在线观看| 国产私拍福利视频在线观看| 黄色视频,在线免费观看| 成年人黄色毛片网站| av黄色大香蕉| 在线播放无遮挡| 2021天堂中文幕一二区在线观| 欧美性猛交╳xxx乱大交人| 啦啦啦啦在线视频资源| 欧美日韩综合久久久久久 | www.www免费av| 亚洲avbb在线观看| 女同久久另类99精品国产91| 九九热线精品视视频播放| 国产日本99.免费观看| 成人永久免费在线观看视频| 久久久久久伊人网av| 99久久精品国产国产毛片| 免费一级毛片在线播放高清视频| 久久精品国产自在天天线| 性色avwww在线观看| 成年女人毛片免费观看观看9| 午夜精品久久久久久毛片777| 1000部很黄的大片| 亚洲 国产 在线| 久久99热这里只有精品18| 国产一区二区激情短视频| 成人午夜高清在线视频| 色视频www国产| 麻豆一二三区av精品| 日本-黄色视频高清免费观看| 午夜免费成人在线视频| 色综合亚洲欧美另类图片| 久久精品国产亚洲av香蕉五月| 亚洲精品国产成人久久av| 日韩欧美精品免费久久| 三级毛片av免费| 午夜精品一区二区三区免费看| 在线观看66精品国产| av.在线天堂| ponron亚洲| 亚洲av成人av| 99国产精品一区二区蜜桃av| 国产亚洲欧美98| 啦啦啦观看免费观看视频高清| 黄色一级大片看看| 国产男靠女视频免费网站| 深夜精品福利| 亚洲五月天丁香| 三级毛片av免费| 可以在线观看毛片的网站| h日本视频在线播放| 精品久久久久久久久亚洲 | 免费在线观看成人毛片| 最近最新中文字幕大全电影3| av天堂中文字幕网| 老熟妇仑乱视频hdxx| 午夜a级毛片| 国产一区二区激情短视频| 亚洲aⅴ乱码一区二区在线播放| videossex国产| 在线免费观看不下载黄p国产 | 欧美最新免费一区二区三区| 亚洲精品成人久久久久久| or卡值多少钱| 午夜福利视频1000在线观看| 成人亚洲精品av一区二区| 大又大粗又爽又黄少妇毛片口| av在线亚洲专区| 我的老师免费观看完整版| 国产精品一区二区三区四区久久| 最近最新免费中文字幕在线| 国内精品久久久久久久电影| 国产欧美日韩精品一区二区| 黄色日韩在线| 五月伊人婷婷丁香| 免费观看人在逋| 亚洲欧美激情综合另类| 真人做人爱边吃奶动态| 国产一区二区三区视频了| 亚洲国产精品sss在线观看| 欧美一区二区亚洲| 国产亚洲欧美98| av在线亚洲专区| 午夜影院日韩av| 在线观看美女被高潮喷水网站| 无人区码免费观看不卡| 中文字幕av在线有码专区| 国产精品综合久久久久久久免费| 哪里可以看免费的av片| 在现免费观看毛片| 国产精品一区二区免费欧美| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 成人无遮挡网站| 国内久久婷婷六月综合欲色啪| 婷婷亚洲欧美| 男女下面进入的视频免费午夜| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 少妇的逼水好多| 欧美又色又爽又黄视频| 九九热线精品视视频播放| 国产中年淑女户外野战色| 真人做人爱边吃奶动态| 欧美又色又爽又黄视频| 欧美一区二区亚洲| 亚洲欧美精品综合久久99| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品sss在线观看| 两个人视频免费观看高清| 婷婷丁香在线五月| 亚洲经典国产精华液单| 我的女老师完整版在线观看| 久久九九热精品免费| 黄色欧美视频在线观看| av在线蜜桃| 欧美精品国产亚洲| 久久午夜亚洲精品久久| 日韩一区二区视频免费看| 久久精品人妻少妇| 偷拍熟女少妇极品色| 久久精品国产鲁丝片午夜精品 | 俄罗斯特黄特色一大片| 国产中年淑女户外野战色| 国产亚洲精品av在线| xxxwww97欧美| 韩国av一区二区三区四区| 2021天堂中文幕一二区在线观| a级毛片免费高清观看在线播放| 一级黄片播放器| 日日摸夜夜添夜夜添av毛片 | 日日夜夜操网爽| 久久热精品热| 免费大片18禁| 女的被弄到高潮叫床怎么办 | 成人无遮挡网站| 国内精品久久久久精免费| 97碰自拍视频| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 亚洲人成网站在线播放欧美日韩| 天堂√8在线中文| 在线看三级毛片| 成人高潮视频无遮挡免费网站| 久久精品夜夜夜夜夜久久蜜豆| videossex国产| 淫妇啪啪啪对白视频| 国产爱豆传媒在线观看| 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 免费无遮挡裸体视频| 日日撸夜夜添| 真人一进一出gif抽搐免费| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| а√天堂www在线а√下载| 日韩欧美在线二视频| 亚洲中文字幕一区二区三区有码在线看| 国产国拍精品亚洲av在线观看| 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 久久久久久伊人网av| 别揉我奶头~嗯~啊~动态视频| 韩国av一区二区三区四区| 男女下面进入的视频免费午夜| 99riav亚洲国产免费| 麻豆一二三区av精品| 18禁黄网站禁片免费观看直播| 最后的刺客免费高清国语| 亚洲图色成人| 久久精品国产亚洲av涩爱 | 九九爱精品视频在线观看| 网址你懂的国产日韩在线| 久久婷婷人人爽人人干人人爱| 毛片女人毛片| 亚洲成人免费电影在线观看| 亚洲国产精品成人综合色| 亚洲精华国产精华液的使用体验 | 日韩精品有码人妻一区| 国产69精品久久久久777片| 熟女电影av网| 日韩强制内射视频| 日本撒尿小便嘘嘘汇集6| 亚洲成av人片在线播放无| av中文乱码字幕在线| 久久久久久大精品| 色视频www国产| 国产精品国产高清国产av| 国产精品,欧美在线| 久99久视频精品免费| 女同久久另类99精品国产91| 中国美女看黄片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av一区综合| 色综合婷婷激情| 国产国拍精品亚洲av在线观看| 中文在线观看免费www的网站| 国产不卡一卡二| 亚洲人成伊人成综合网2020| 国产精品一区二区性色av| 亚洲精华国产精华精| 亚洲性久久影院| 丰满乱子伦码专区| 日日夜夜操网爽| 99久久中文字幕三级久久日本| 老司机午夜福利在线观看视频| 国产爱豆传媒在线观看| 可以在线观看的亚洲视频| 国产一级毛片七仙女欲春2| 色精品久久人妻99蜜桃| 精品福利观看| 少妇猛男粗大的猛烈进出视频 | 欧美潮喷喷水| 成年女人永久免费观看视频| 成人一区二区视频在线观看| 国产亚洲91精品色在线| 联通29元200g的流量卡| 99在线人妻在线中文字幕| 老师上课跳d突然被开到最大视频| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| 人人妻人人澡欧美一区二区| 美女高潮的动态| 久久久午夜欧美精品| 国产美女午夜福利| 精品人妻偷拍中文字幕| 午夜激情福利司机影院| 国产三级中文精品| 无人区码免费观看不卡| 99国产极品粉嫩在线观看| 国产真实乱freesex| 色哟哟哟哟哟哟| 成年人黄色毛片网站| 国产精品久久久久久久电影| 久久亚洲真实| 国产老妇女一区| 午夜福利在线观看吧| 婷婷精品国产亚洲av| av视频在线观看入口| 免费看光身美女| 少妇裸体淫交视频免费看高清| 在线国产一区二区在线| 极品教师在线免费播放| 国产精品不卡视频一区二区| 露出奶头的视频| 午夜免费男女啪啪视频观看 | 无人区码免费观看不卡| 国产乱人视频| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 成人av在线播放网站| 国内精品美女久久久久久| 久久国内精品自在自线图片| 麻豆久久精品国产亚洲av| 男插女下体视频免费在线播放| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 日本-黄色视频高清免费观看| 国产亚洲av嫩草精品影院| 99视频精品全部免费 在线| 在线观看午夜福利视频| 久久香蕉精品热| 亚洲va在线va天堂va国产| 日本成人三级电影网站| 午夜免费激情av| 小说图片视频综合网站| 日本欧美国产在线视频| 麻豆成人av在线观看| 美女xxoo啪啪120秒动态图| 免费在线观看日本一区| 午夜福利成人在线免费观看| 精品福利观看| 日本精品一区二区三区蜜桃| 亚洲成a人片在线一区二区| 一级黄色大片毛片| a级毛片免费高清观看在线播放| 久久精品国产鲁丝片午夜精品 | 亚洲三级黄色毛片| 久久精品国产亚洲av香蕉五月| 日韩亚洲欧美综合| 波野结衣二区三区在线| 亚洲狠狠婷婷综合久久图片| 又爽又黄a免费视频| 91午夜精品亚洲一区二区三区 | 国产精品不卡视频一区二区| 男女做爰动态图高潮gif福利片| 国产欧美日韩一区二区精品| 国产精品野战在线观看| 一a级毛片在线观看| 国产欧美日韩一区二区精品| 欧美高清成人免费视频www| 一a级毛片在线观看| 在线免费观看不下载黄p国产 | 午夜免费激情av| 欧美绝顶高潮抽搐喷水| 色哟哟·www| 欧美国产日韩亚洲一区| 日日啪夜夜撸| 在现免费观看毛片| 精品福利观看| 一级毛片久久久久久久久女| 中文字幕久久专区| 一区福利在线观看| x7x7x7水蜜桃| av在线蜜桃| 国模一区二区三区四区视频| 中文资源天堂在线| 五月玫瑰六月丁香| 亚洲国产精品久久男人天堂| 最好的美女福利视频网| 国产亚洲精品久久久com| 国产毛片a区久久久久| 久久久久久久午夜电影| 久久久久久久亚洲中文字幕| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区 | 日本a在线网址| 中文字幕高清在线视频| 免费电影在线观看免费观看| 亚洲avbb在线观看| 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av| 国产在线男女| 亚洲av.av天堂| 亚洲精品456在线播放app | 国产精品人妻久久久影院| 三级毛片av免费| 国内精品美女久久久久久| 亚洲精品影视一区二区三区av| 欧美日韩国产亚洲二区| 久久久久久久久久黄片| 亚洲人成网站在线播| 国产三级中文精品| 狠狠狠狠99中文字幕| 国产在线男女| 久久久久久久久大av| 成年女人毛片免费观看观看9| 午夜福利高清视频| 午夜免费激情av| 国产精品国产高清国产av| 我要搜黄色片| 少妇的逼水好多| 天堂动漫精品| 国产aⅴ精品一区二区三区波| 久久精品久久久久久噜噜老黄 | 啦啦啦韩国在线观看视频| 亚洲美女视频黄频| 91精品国产九色| 国产男靠女视频免费网站| 麻豆国产av国片精品| 国产视频一区二区在线看| 久久久久久久精品吃奶| 日韩在线高清观看一区二区三区 | 在线看三级毛片| 一区二区三区高清视频在线| 嫁个100分男人电影在线观看| 老熟妇乱子伦视频在线观看| 18禁在线播放成人免费| 日韩欧美在线乱码| 成人特级av手机在线观看| 观看免费一级毛片| 国内揄拍国产精品人妻在线| 99久国产av精品| 国产一区二区三区av在线 | 国产精品,欧美在线| 国内久久婷婷六月综合欲色啪| www日本黄色视频网| 久久久国产成人精品二区| 日韩精品青青久久久久久| 真人一进一出gif抽搐免费| av.在线天堂| videossex国产| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 国产精品亚洲美女久久久| 我要看日韩黄色一级片| 小蜜桃在线观看免费完整版高清| 床上黄色一级片| 欧美一级a爱片免费观看看| 美女高潮喷水抽搐中文字幕| 九九爱精品视频在线观看| 热99在线观看视频| 亚洲久久久久久中文字幕| 国产一区二区在线观看日韩| 91精品国产九色| 亚洲精品日韩av片在线观看| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 亚洲 国产 在线| 热99re8久久精品国产| 在线观看av片永久免费下载| 好男人在线观看高清免费视频| 国产一级毛片七仙女欲春2| 国产亚洲精品久久久com| 免费观看在线日韩| 毛片女人毛片| 身体一侧抽搐| 午夜精品在线福利| 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 一本一本综合久久| 999久久久精品免费观看国产| www.www免费av| 国产亚洲精品久久久久久毛片| 99riav亚洲国产免费| 中文亚洲av片在线观看爽| videossex国产| 亚洲人成网站在线播放欧美日韩| www.www免费av| 一区二区三区激情视频| 久久九九热精品免费| 身体一侧抽搐| 国产精品一区www在线观看 | 国产精品一区www在线观看 | 热99re8久久精品国产| 99国产极品粉嫩在线观看| 非洲黑人性xxxx精品又粗又长| 久久久午夜欧美精品| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 干丝袜人妻中文字幕| 中文资源天堂在线| 欧美一区二区国产精品久久精品| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 小蜜桃在线观看免费完整版高清| 听说在线观看完整版免费高清| 少妇的逼水好多| a级毛片免费高清观看在线播放| 成人精品一区二区免费| 九九热线精品视视频播放| 欧美日本视频| 久久久精品欧美日韩精品| 亚洲国产日韩欧美精品在线观看| 露出奶头的视频| 亚洲成av人片在线播放无| 我要搜黄色片| 国内精品一区二区在线观看| 男女视频在线观看网站免费| 国产精品亚洲一级av第二区| 毛片女人毛片| 在线观看av片永久免费下载| 久久精品国产亚洲网站| 深夜a级毛片| 亚洲avbb在线观看| 免费av毛片视频| 国产 一区 欧美 日韩| 国产欧美日韩精品亚洲av| 成人一区二区视频在线观看| 国产一区二区三区在线臀色熟女| 不卡视频在线观看欧美| 搡老妇女老女人老熟妇| 伦精品一区二区三区| 国产黄色小视频在线观看| 亚洲色图av天堂| 性色avwww在线观看| 精品一区二区三区人妻视频| 狂野欧美白嫩少妇大欣赏| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 18禁黄网站禁片免费观看直播| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 精品久久久久久久久久免费视频| 国产一区二区在线av高清观看| 国产精品人妻久久久久久| 综合色av麻豆| 日韩,欧美,国产一区二区三区 | 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 天堂网av新在线| 91久久精品国产一区二区三区| 搡老熟女国产l中国老女人| 亚洲欧美日韩卡通动漫| 国产精品亚洲一级av第二区| 99在线视频只有这里精品首页| 亚洲第一区二区三区不卡| 日韩 亚洲 欧美在线| 国产真实伦视频高清在线观看 | 九九久久精品国产亚洲av麻豆| 淫妇啪啪啪对白视频| 露出奶头的视频| 黄色配什么色好看| 久久久久九九精品影院| 一区二区三区高清视频在线| 成年免费大片在线观看| www日本黄色视频网| 观看免费一级毛片| 色综合站精品国产| 又黄又爽又免费观看的视频| 国产成人影院久久av| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 草草在线视频免费看| 大又大粗又爽又黄少妇毛片口| 18禁在线播放成人免费| .国产精品久久| 国产精品嫩草影院av在线观看 | 两个人视频免费观看高清| 日韩中文字幕欧美一区二区| 乱系列少妇在线播放|