• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Influence of the Casing Grooves on the Performance of An Axial Compressor

    2021-12-17 03:24:00NaseemAhmadGhulamIshaqueArifAzizZubairAliShahMushayyedMuhammadAliKhanQunZheng
    風(fēng)機(jī)技術(shù) 2021年5期

    Naseem Ahmad Ghulam Ishaque Arif Aziz Zubair Ali Shah Mushayyed Muhammad Ali Khan Qun Zheng

    (1.Department of Mechanical Engineering,Institute of Space Technology,Islamabad,Pakistan 2.College of Power and Energy Engineering,Harbin Engineering University,Harbin,China)

    Abstract:The stable range of the gas engine compressors is reduced due to per stage maximum loading.The performance of the engine is closely associated with stable operating conditions.The instabilities of the flow occur if some rapid changes happen in the operating conditions and it leads to a rotating stall.To avoid such conditions,the proper stall margin should be maintained for the performance of the axial flow compressor.The stall margin can be enhanced by the blade tip and casing treatment.The casing treatment is commonly used to increase the stall margin of the axial compressor.The present numerical study investigated the performance of casing grooves on NASArotor 37 by discretizing 3D RANS equations with the help of the finite volume method.One passage steady simulation is carried out for validation.The simulation results agree well with the experimental data for total pressure ratio and efficiency.The stall is predicted according to convergence criteria.The rectangular grooves model has been proposed and tested numerically.The performance of rectangular grooves and smooth wall casing is evaluated.The stall margin of the rectangular grooves model is increased by 6.37%as compared to the smooth casing.TLV is minimized with the help of the installation of grooves that reduced the vortex stagnation zone and supports to improve the stall.The stall margin of the axial compressor with casing grooves is remarkably enhanced but efficiency is slightly reduced.

    Keywords:Numerical Simulation;Casing Treatment;Stall Margin;Axial Compressor;Adiabatic Efficiency

    Nomenclature

    RANS Reynolds averaged Naiver Stokes

    CGCT circumferential grooves casing treatment

    SST shear stress transport

    LE leading edge

    TE trailing edge

    SM stall margin

    Pt total pressure ratio

    TLV tip leakage vortex

    PS pressure surface

    SS suction surface

    Tt total temperature

    γratio of specific heat

    y+non-dimensional wall distance

    TCF tip clearance flow

    0 Introduction

    The axial compressor design is significant for gas turbine such as marine engine,aerospace engine,and jet engine.Axial compressors have high performance,high reliability and flexible operation.Axial compressor is a major part of the gas turbine engine because of these reasons.Though,unavoidable surge or rotating stall always brings severe vibration and performance deterioration when the compressor is approaching stability limitation.To grasp the utmost advantages,the flow range of the compressor should be maximized.

    Numerous researchers have used several experimental and CFD techniques to investigate the stall and surge mechanism to improve the axial compressor performance.Schlechtriem and L?tzerich [1]and Yamada et al]2]investigated that stall is triggered at the leading-edge due to the breakdown of the blade tip leakage vortex (TLV).Lang et al]3]used multi passage unsteady simulations to investigate the install behavior of axial compressor.They showed that breakdown of TLV is arisen due to the interaction between detached shock wave and tip leakage at the stall.The TLV goes downstream and formed a new vortex.The blockage occurred in the blade tip region,because of these vortices.

    Tip leakage vortex is the basic factor of the axial compressor instability adjacent to the blade casing region.The passive casing treatment technique controlled TLV to improve the operational range of the compressor,but adiabatic efficiency is slightly decreased with the casing treatment.Numerous approaches have been suggested to increase the stall margin of the compressor.Bailey [4]experimentally tested the solid casing wall with different casing grooves.Aluminum removable inserts grooved configurations is used for modifications.The depth,location and number of grooves were changed for circumferential grooves.The results showed that using the casing grooves is beneficial to improve the stall margin and compressor stability.

    The analysis of casing grooves depth and width is conducted by Huang et al]5]to increase the performance and stall margin.They reported that the stall mechanism is significantly affected by tip clearance.Experimental work has been done by Houghton and Day [6]using single casing groove to modify the axial location for efficiency,stall margin and stability.They reported that the interaction of grooves in aft and forward location is changed.While in another research,a single groove with various depths and position have been numerically tested by Choi [7]to assess the axial compressor performance on geometric parameters.He revealed that the fixing of a groove close to blade LE is very efficient and increased the stall margin up to 3%,and reduced a small efficiency.

    A single groove with changed axial position using NASA rotor 37 is investigated by Sakuma et al]8].According to their conclusion,the tip loading and TLF momentum are reduced by casing grooves.The influence of casing grooves with three different methods on the low-speed axial compressor is experimentally examined by Rolfes et al]9].He revealed that the compressor operational range is improved via casing grooves.The impact of ACG on low-speed axial compressor is reported by Hah[10]to find the compressor stall margin and efficiency.He showed that fixing the ACG improved the stall margin without any penalty of adiabatic efficiency.Multiple grooves installed in different groove axial location is numerically researched by Song et al[11].

    Ross et al]12]used several tip clearances with the grooves to increase the stall margin and performance.They concluded that the stall margin is enhanced with the grooves and further explains that SME linearly increases with the momentum flux.A numerical study is conducted on a single groove by Naseem et al]13]and revealed that stall margin and stability of the axial compressor is enhanced with casing grooves.

    The main objective the present research is to focuses and design three circumferential grooves to increase the compressor stability and performance using NASA rotor 37 to analyze RANS 3D equations numerically.The stall margin,adiabatic efficiency and total pressure ratio of the CGCT model are evaluated with smooth wall casing and experimental data to determine the impact of circumferential grooves on stall margin and adiabatic efficiency.

    1 Detail Design Condition of NASA Rotor 37

    NASA rotor 37 a high-pressure ratio axial compressor is selected for the present investigation.The ample information of the compressor design conditions is listed in Tab.1 that is taken from AGARD report [14]The compressor rotor consists of 36 blades and the rotational speed is 17188.7 rpm.The total pressure ratio of the compressor rotor is 2.106 and 88.9 % is polytrophic efficiency at the design mass flow rate of 20.19 kg/s.Mass flow rate at choked limit is 20.93 kg/s.The tip height is 0.356 mm(47%span).

    NASA rotor 37 meridional plane is represented in fig.1.Measured the flow parameters,total pressure and total temperature at inlet station 1 that are linked to mass flowrate at outlet station 2 is shown in Fig.1.The upstream distance between station 1and the blade leading edge is-41.9 mm whereas station 2 is positioned at 106.7 mm downstream from blade TE adjacent to hub consequently.

    Tab.1 Design specification of Rotor 37[14]

    Fig.1 Description of Rotor 37 on meridional plane

    2 Design and Description of CGCT

    Three rectangular CGCT for NASA rotor 37 are designed in the present study to increase the stability and performance of the compressor and it is demonstrated in Fig.2.The performance of the casing grooves model is evaluated with the normal casing.Three grooves are fixed on the compressor rotor shroud and the grooves are located from 18%58 % of the axial chord of the blade.The grooves height is five millimeters and the width of each groove comprises of 10% axial chord of the blade.There is a five percent gap between the two grooves.Basically,the CGCT technique is used to increase the performance and operating range of an axial compressor.

    Fig.2 Casing grooves profile shape

    3 Numerical Technique

    Ansys 17 [15]is used in this study by applying a 3D steady governing flow analysis.3D RANS equations are discretized using the method of finite volume.Numeca Autogrid 5[16]and CFX are used for making mesh and simulations.Casing grooves and fluid domains are generated in design modeler and ICEM CFD is used for mesh generation correspondingly.The computational domain of single passage is used in this study by adopting periodic flow condition in the rotation of circumferential direction between two blades.Structure mesh are generated in an axial compressor flow passage and it is illustrated in Fig.3.HOH topology is adopted for structure mesh.The compressor rotor blade LE and TE are generated with O form mesh and H form grids are adopted for the main flow section.H form grids are also selected for the grooves.The number of inlet grids is 17×29×40 and for the outlet block,the number of grids is 17×33×40.The number of grids for every groove block is 20×30×60.The total number of nodes used in this study are 4.45×105.The three cases used for grid dependency is shown in figure 3.The graph is made between streamwise location and pressure at mid-span.For the three cases,the number of grids is 222000,445000 and 780000.It could be notice in fig.4 that changed the number of grids from 445000 to 780000,the pattern is not changed.So,the case of 445000 is selected for the present study.This study selects shear stress transport model for numerical simulation.Bardina et al]17]and Hamza et al]18]showed that the SST turbulence model is much proper for the separation flow of adverse pressure gradient investigation.The minimum y+value is adjusted below three to seizure the wall share stress precisely.Working fluid air gas is chosen for this study.At inlet 1 atm of total pressure and 288.15 K of total temperature is selected.The blade passage interface is set periodic.At the outlet,the radial equilibrium condition is imposed.Close to stall limit,50 Pa backpressure is increased.The last stable point is considered near the stall point.GGI technique is used to connect the blade passage and grooves.The convergence criteria suggested by Huang et al]5]is used in this study.

    Fig.3 One passage mesh computation of rotor 37

    Fig.4 Grid sensitivity test

    4 Result and Discussion

    The validations of total pressure ratio and adiabatic efficiency is taken from the previous research,Naseem et al]19].The CFD simulations show fair agreement with the tested data for adiabatic efficiency and total pressure ratio and it is shown in Fig.5.In an axial compressor the method of casing grooves is normally used for the stability and performance enhancement.

    To enumerate the axial compressor performance and stability,the SM and adiabatic efficiency parameters are chosen in the current study and these parameters are described as follows.

    Where PR andm˙ are total pressure ratio and mass flow rate.The peak and stall subscripts pressure ratio and mass flowrate at peak and close to stall point respectively.Pt,Tt,andγrepresent total pressure,total temperature and specific heat ratio correspondingly.

    Tip flow leakage and TLV guides to stagnation zone and this moves downstream to the passage shock owing to low mass flowrate,and vortex breakdown is arisen.It develops to extreme blockage in the main flow zone resulting unsteadiness in the axial compressor.The phenomena of TLV breakdown is common in NASA Rotor 37.Stall margin,adiabatic efficiency and total pressure ratio are performance parameters of the compressor.The near stall condition for normal casing and casing grooves model are 0.911 and 0.907 respectively.The total pressure ratio of the normal casing and casing groove model close to stall limit is 2.14 and 2.16 respectively.The total pressure is slightly higher for the casing grooves model,than the normal casing.This difference is shown by several scholars Sakuma et al]8]and Huang et al[5].

    Adiabatic efficiencies of normal casing and casing grooves model are 88.31 percent and 88.08 percent and the efficiency are higher than efficiencies presented by Choi [7].The efficiency of the casing grooves model is slightly reduced than the smooth wall casing as there are three grooves installed between 18% to 58 % and there is no groove fixed at leading and trailing edge of the blade and the location of the grooves among the mentioned location is very efficient.The CGCT play important role by reducing mass flow close to stall limit as compared to normal casing and with this reason the stall margin is enhanced.Total pressure ratio and higher efficiency can be gained in the range between peak efficiency and close the points of the stall by fixing the CGCT but there is a minor decrease in the efficiency.So,the blade pressure surface separation that is shaped due to loss of pressure is reduced by momentum flux of the CGCT.This minimize the blockage in the grooves location which rises on the pressure surface of blade as depicted in Fig.6(a)and the separation is stifled with the CGCT installation Fig.6(b)and finally the Mach number is recovered at the blade suction surface around the blade.The Mach number is recovered in the grooves location in Fig.6 (b) which can be observed easily.With the help of CGCT momentum flux is formed on the pressure surface to blade suction surface and the same is reported by Choi [7].Due to suppressed separation at suction surface of the blade,it benefits to increase the axial compressor performance and operating stability.

    The adiabatic efficiency and stall margin comparison of smooth wall and CGCT model are represented in Fig.7 and 8 respectively.The adiabatic efficiency of the CGCT model is decreased slightly with the fixing of the casing grooves.The smooth casing higher efficiency is 88.31% in Fig.7,whereas the adiabatic efficiency of CGCT model is minimized by 0.23 %.So,a small difference in the efficiency of the CGCT model and smooth wall casing.

    Fig.5 Validations of rotor 37 for total pressure ratio and adiabatic efficiency[19]

    Fig.6 Mach number contours at 98 percent span(close stall limit)for(a)smooth wall and(b)CGCT model

    The grooves are fixed at the position of 18%to 58%of the blade chord and the grooves are much influential in the above-mentioned position,that is why there is a minor variance in the efficiencies of the CGCT model and smooth wall casing.

    The model has a better influence on the axial compressor stall margin as shown in Fig.8.The stall margin gained in this research work is greater than the stall margins reported by Huang et al]5].In Fig.8 the stall margin of the CGCT model is 19.52 percent while the stall margin of the smooth wall casing is 13.15 and 6.37 percent stall margin is enhanced.It is thought that the first two grooves which are fixed at 18% and 38% of the blade chord give more input to augment the stall margin whereas the third groove gives a small role to maximize the stall margin.According to the author,the CGCT model has a decent effect on the extension and improvement in the operating condition of the axial transonic compressor.

    Fig.7 Comparison of adiabatic efficiency of a smooth wall and CGCT model

    Fig.8 Comparison of the stall margin of a smooth wall and CGCT model

    Entropy contours of the smooth casing and CGCT model at 98 % span (close stall limit) are illustrated in Fig.9.It can be seen in Fig.9 that the CGCT model has a higher entropy value at the tip of the blade.The CGCT model displays small values of entropy in downstream region,with the fixing of grooves except the smooth casing and this agree pretty well with the research work reported by Choi et al]7].This decreasing of entropy creation illustrates the improvement of the TLV structure.The value of entropy in the downstream region is further lesser because there is no groove to fixed blockage of the TLV.With fixing of casing grooves,the efficiency is recovered in the low flow mass zone owing to the smaller value of the entropy instigation.

    Fig.9 Contours of entropy at 98%close stall condition

    The static pressure contours are illustrated in Fig.10 close to stall limit at 98 percent span for smooth wall casing and CGCT model.Fig.10(a)demonstrates that there is a notable contiguous pressure gradient at the PS adjacent to the LE of the blade.This feature is more severe in the TE of the blade and the this is also the central region of the TLV.The contours of static pressure close to the blade LE at Fig.10(b)are less increased in the CGCT model due to the fixing of circumferential grooves and the grooves suppress the TLV which helps to increase the stability of the compressor.The casing grooves are installed between eighteen to fifty-eight percent so no high pressure is observed there.Slowly the pressure gradient is melted and the reduced the local pressure in the groove's position.The low static pressure transfers to the blade SS close to the blade tip.TLV and main flow combined due to leakage flow,and create more blockage close to the blade tip at trailing edge.

    Fig.10 Contours of static pressure for(a)smooth wall and(b)model 1 at 98%span

    5 Conclusions

    The effect of circumferential grooves on the stall margin and adiabatic efficiency using 3D RANS is numerically studied in the present research study.Findings of the current research work are following.

    1)The vortex stagnation zone is generated due to the interaction between a shock wave and TLV caused unsteadiness in the axial compressor.There is a significant impact of blade pressure surface separation on the inception of the stall in an axial compressor.

    2)With the help of casing grooves,the vortex stagnation zone is reduced.The tip gap flow is reduced by fixing the circumferential grooves,which reduced the vortex stagnation zone and enhance the performance of the compressor.

    3)It is observed that the first two grooves produced significant enhancement to the stall margin,whereas,the last groove has a little effect on the stall margin.

    4)The efficiency of 88.08 percent and stall margin of 19.52 percent are achieved by fixing the grooves on the axial compressor.

    5)The maximum adiabatic efficiency is slightly decreased with the installation of circumferential grooves.Due to corner separation entropy is produced and combine with reverse TLF causing a decrease in the efficiency of axial compressor.

    日韩欧美一区视频在线观看| 18+在线观看网站| 免费观看的影片在线观看| 好男人视频免费观看在线| 国产成人av激情在线播放 | 国产亚洲最大av| 亚洲av.av天堂| 久久久久久伊人网av| 久久久久精品久久久久真实原创| 国产精品无大码| freevideosex欧美| 日本黄大片高清| 成人亚洲精品一区在线观看| 一个人看视频在线观看www免费| 考比视频在线观看| 精品人妻在线不人妻| 欧美变态另类bdsm刘玥| 国产一区有黄有色的免费视频| 自线自在国产av| 婷婷成人精品国产| 国产亚洲一区二区精品| 久久精品国产亚洲网站| 久久精品国产亚洲网站| 日本黄色片子视频| 国产 精品1| 国产成人aa在线观看| 老司机影院成人| 日韩亚洲欧美综合| a 毛片基地| 亚洲国产精品成人久久小说| 精品一区二区三区视频在线| 丝袜脚勾引网站| 亚洲国产最新在线播放| 久久国产亚洲av麻豆专区| 纵有疾风起免费观看全集完整版| 久久久久久久亚洲中文字幕| 久久久国产欧美日韩av| 午夜影院在线不卡| 少妇精品久久久久久久| 一个人免费看片子| 国产日韩欧美在线精品| 亚洲精品一区蜜桃| 91成人精品电影| 亚洲国产毛片av蜜桃av| 欧美一级a爱片免费观看看| 亚洲第一av免费看| 亚洲丝袜综合中文字幕| 国产成人精品一,二区| 青春草视频在线免费观看| 久久这里有精品视频免费| 午夜视频国产福利| 两个人免费观看高清视频| 亚洲无线观看免费| 黄色一级大片看看| 波野结衣二区三区在线| 99国产综合亚洲精品| 国产有黄有色有爽视频| 夜夜看夜夜爽夜夜摸| 日韩av不卡免费在线播放| 免费高清在线观看视频在线观看| 亚洲精品日韩在线中文字幕| 日产精品乱码卡一卡2卡三| 亚洲精品日韩av片在线观看| 99热国产这里只有精品6| 国产精品国产三级国产av玫瑰| 亚洲综合色网址| 激情五月婷婷亚洲| 久久青草综合色| 大香蕉97超碰在线| 最近的中文字幕免费完整| 如何舔出高潮| 涩涩av久久男人的天堂| 大又大粗又爽又黄少妇毛片口| 少妇的逼水好多| 国产成人freesex在线| 色94色欧美一区二区| 全区人妻精品视频| 久久久亚洲精品成人影院| 欧美日韩视频精品一区| 国产一区二区在线观看av| 国产一区亚洲一区在线观看| 夫妻午夜视频| 午夜免费鲁丝| 亚洲欧美清纯卡通| 日韩 亚洲 欧美在线| 狂野欧美白嫩少妇大欣赏| 飞空精品影院首页| 国产高清三级在线| 久热这里只有精品99| 高清视频免费观看一区二区| 国产成人精品在线电影| 永久网站在线| 亚洲精品久久久久久婷婷小说| 26uuu在线亚洲综合色| 在线观看三级黄色| 免费久久久久久久精品成人欧美视频 | 天堂俺去俺来也www色官网| 国产精品久久久久久精品古装| 纯流量卡能插随身wifi吗| 国产淫语在线视频| 国产一区二区三区综合在线观看 | 男女免费视频国产| 大香蕉久久成人网| 国产成人91sexporn| 国产高清国产精品国产三级| 日日爽夜夜爽网站| 国产精品熟女久久久久浪| 99热全是精品| 久久久久久人妻| 免费人成在线观看视频色| 国产又色又爽无遮挡免| 五月开心婷婷网| 夜夜看夜夜爽夜夜摸| 亚洲精品久久久久久婷婷小说| 少妇人妻久久综合中文| 黑人高潮一二区| xxxhd国产人妻xxx| 久久国内精品自在自线图片| 午夜激情av网站| 美女视频免费永久观看网站| 亚洲欧美色中文字幕在线| 伦精品一区二区三区| 免费观看av网站的网址| 国产永久视频网站| 婷婷色综合大香蕉| 少妇的逼好多水| 久久 成人 亚洲| 水蜜桃什么品种好| 免费黄网站久久成人精品| 精品人妻在线不人妻| 色94色欧美一区二区| 亚洲激情五月婷婷啪啪| 亚洲av成人精品一二三区| 少妇的逼好多水| 精品卡一卡二卡四卡免费| 欧美xxxx性猛交bbbb| 乱人伦中国视频| 蜜桃在线观看..| 日本免费在线观看一区| 插逼视频在线观看| 亚洲欧美一区二区三区黑人 | 乱人伦中国视频| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜| 伊人亚洲综合成人网| 九九久久精品国产亚洲av麻豆| 伦理电影免费视频| 能在线免费看毛片的网站| 啦啦啦啦在线视频资源| 日本91视频免费播放| 亚洲国产精品999| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频| 国产在线视频一区二区| 亚洲精品aⅴ在线观看| 久久久久精品久久久久真实原创| 男女边吃奶边做爰视频| 91精品伊人久久大香线蕉| 熟女人妻精品中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 在线精品无人区一区二区三| 大话2 男鬼变身卡| 亚洲欧美成人综合另类久久久| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产毛片av蜜桃av| 九草在线视频观看| 街头女战士在线观看网站| 精品午夜福利在线看| 午夜福利视频精品| 久久久精品区二区三区| 一级毛片aaaaaa免费看小| 久久久久国产网址| 日本-黄色视频高清免费观看| 三级国产精品欧美在线观看| 精品久久久久久久久亚洲| 亚洲av福利一区| 91精品国产国语对白视频| 18禁在线无遮挡免费观看视频| 秋霞在线观看毛片| 涩涩av久久男人的天堂| 亚洲久久久国产精品| 男的添女的下面高潮视频| 亚洲国产av影院在线观看| 人人妻人人添人人爽欧美一区卜| 国产亚洲精品久久久com| 纯流量卡能插随身wifi吗| h视频一区二区三区| videosex国产| 欧美日韩成人在线一区二区| 女人精品久久久久毛片| 久久午夜综合久久蜜桃| 色婷婷久久久亚洲欧美| 久久久久久久国产电影| 亚洲精品一二三| 制服丝袜香蕉在线| 国产熟女午夜一区二区三区 | 在线观看人妻少妇| 麻豆成人av视频| 亚洲人成77777在线视频| 欧美日韩精品成人综合77777| 日韩中文字幕视频在线看片| 午夜免费鲁丝| 亚洲人与动物交配视频| 国产日韩欧美在线精品| 久久久久国产网址| 2022亚洲国产成人精品| 大码成人一级视频| 国精品久久久久久国模美| 精品人妻熟女av久视频| 久久久a久久爽久久v久久| 人妻制服诱惑在线中文字幕| 久久免费观看电影| 成人国产av品久久久| 久久久久国产网址| 超色免费av| xxx大片免费视频| 丰满少妇做爰视频| 成年av动漫网址| 国产成人一区二区在线| 欧美xxⅹ黑人| 美女主播在线视频| 欧美少妇被猛烈插入视频| 最近手机中文字幕大全| 超碰97精品在线观看| 99久久精品一区二区三区| 日本免费在线观看一区| 国产熟女午夜一区二区三区 | 青春草视频在线免费观看| 久久鲁丝午夜福利片| 男的添女的下面高潮视频| 亚洲国产av影院在线观看| 久久99热这里只频精品6学生| 韩国高清视频一区二区三区| 美女中出高潮动态图| 最近中文字幕2019免费版| 国产精品偷伦视频观看了| 亚洲综合色网址| 91精品伊人久久大香线蕉| 亚洲av综合色区一区| 亚洲精华国产精华液的使用体验| 22中文网久久字幕| 国产精品人妻久久久影院| 男男h啪啪无遮挡| 中文字幕制服av| 精品酒店卫生间| 一区在线观看完整版| 91在线精品国自产拍蜜月| 美女视频免费永久观看网站| videosex国产| 免费观看av网站的网址| 亚洲国产av新网站| 国产精品一区二区在线不卡| 热99国产精品久久久久久7| tube8黄色片| 老司机影院毛片| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 超碰97精品在线观看| 午夜免费观看性视频| 久久99一区二区三区| 美女国产视频在线观看| 午夜福利视频精品| 黑人巨大精品欧美一区二区蜜桃 | 久久久久久久久久久免费av| 亚洲天堂av无毛| 丰满迷人的少妇在线观看| 国产精品99久久99久久久不卡 | 欧美最新免费一区二区三区| 少妇丰满av| 黄色毛片三级朝国网站| 亚洲国产成人一精品久久久| 亚洲久久久国产精品| 国产精品无大码| xxxhd国产人妻xxx| 天堂俺去俺来也www色官网| 人人妻人人爽人人添夜夜欢视频| 超色免费av| 免费大片18禁| 日韩一区二区三区影片| 午夜免费男女啪啪视频观看| 欧美精品一区二区大全| 爱豆传媒免费全集在线观看| 春色校园在线视频观看| 亚洲图色成人| 国产精品一区二区在线观看99| 免费播放大片免费观看视频在线观看| 精品少妇内射三级| 亚洲精品一区蜜桃| 你懂的网址亚洲精品在线观看| 国产成人91sexporn| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 你懂的网址亚洲精品在线观看| 成人国语在线视频| 99久久精品国产国产毛片| 国产成人精品一,二区| 纵有疾风起免费观看全集完整版| 国产精品欧美亚洲77777| 久久人人爽人人片av| 两个人免费观看高清视频| a级毛片在线看网站| √禁漫天堂资源中文www| 99热全是精品| 九草在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频 | 99久久精品一区二区三区| 亚洲国产精品一区二区三区在线| 久久人人爽人人爽人人片va| 男人爽女人下面视频在线观看| 久久久a久久爽久久v久久| 日本-黄色视频高清免费观看| 日韩av免费高清视频| 免费黄色在线免费观看| 中国美白少妇内射xxxbb| 欧美日韩精品成人综合77777| 国产综合精华液| 国产精品久久久久久精品古装| 久久精品人人爽人人爽视色| 国产免费福利视频在线观看| 亚洲国产av新网站| av卡一久久| 高清毛片免费看| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 亚洲国产最新在线播放| 欧美精品高潮呻吟av久久| 日本免费在线观看一区| 日韩中文字幕视频在线看片| 欧美日韩av久久| av视频免费观看在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产成人91sexporn| av国产久精品久网站免费入址| 亚洲图色成人| 国产av码专区亚洲av| 桃花免费在线播放| 99九九在线精品视频| 天天影视国产精品| 亚洲精品视频女| 久久精品久久精品一区二区三区| 18禁观看日本| av.在线天堂| 97在线视频观看| 国产亚洲一区二区精品| 91精品一卡2卡3卡4卡| 日本av免费视频播放| 一二三四中文在线观看免费高清| 内地一区二区视频在线| 免费大片黄手机在线观看| 国产一区二区在线观看日韩| 久久韩国三级中文字幕| 国产一区有黄有色的免费视频| 一级毛片黄色毛片免费观看视频| 午夜激情久久久久久久| 国产片特级美女逼逼视频| 成年女人在线观看亚洲视频| 亚洲精品视频女| 人人妻人人添人人爽欧美一区卜| 嘟嘟电影网在线观看| 国产白丝娇喘喷水9色精品| 日本wwww免费看| av电影中文网址| 秋霞伦理黄片| 日本与韩国留学比较| 好男人视频免费观看在线| 精品一品国产午夜福利视频| 国产黄频视频在线观看| 国产免费视频播放在线视频| 老女人水多毛片| 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 国产在线一区二区三区精| 国产免费福利视频在线观看| 成人影院久久| 大片免费播放器 马上看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲久久久国产精品| 一本色道久久久久久精品综合| 久久精品久久久久久久性| 欧美三级亚洲精品| 丰满迷人的少妇在线观看| 高清在线视频一区二区三区| 美女大奶头黄色视频| xxxhd国产人妻xxx| 久久久a久久爽久久v久久| 交换朋友夫妻互换小说| 免费观看无遮挡的男女| 亚洲第一av免费看| 黄片无遮挡物在线观看| 久久国产亚洲av麻豆专区| h视频一区二区三区| 国产精品秋霞免费鲁丝片| 熟女人妻精品中文字幕| 色94色欧美一区二区| 国产亚洲欧美精品永久| 久久精品夜色国产| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 成人二区视频| 高清午夜精品一区二区三区| 人人澡人人妻人| 国产一区有黄有色的免费视频| 91aial.com中文字幕在线观看| 亚洲av免费高清在线观看| 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 日韩制服骚丝袜av| 亚洲欧美日韩另类电影网站| 五月开心婷婷网| 日韩中文字幕视频在线看片| 婷婷色av中文字幕| 亚洲av日韩在线播放| 免费观看无遮挡的男女| 精品视频人人做人人爽| 日本午夜av视频| 国产精品久久久久久精品电影小说| 日韩熟女老妇一区二区性免费视频| 五月玫瑰六月丁香| 建设人人有责人人尽责人人享有的| 看十八女毛片水多多多| 97在线视频观看| 亚洲图色成人| 国产精品成人在线| 日本欧美国产在线视频| 国产在线免费精品| 久久久精品94久久精品| 国产色爽女视频免费观看| 亚洲色图 男人天堂 中文字幕 | 高清av免费在线| 国产欧美日韩一区二区三区在线 | 我要看黄色一级片免费的| 亚洲精品美女久久av网站| 亚洲欧洲精品一区二区精品久久久 | 人成视频在线观看免费观看| 国产高清有码在线观看视频| 男女无遮挡免费网站观看| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 亚洲精品日韩在线中文字幕| av免费在线看不卡| 国产无遮挡羞羞视频在线观看| 成年美女黄网站色视频大全免费 | 欧美老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 国产爽快片一区二区三区| 亚洲激情五月婷婷啪啪| 最近手机中文字幕大全| 人妻制服诱惑在线中文字幕| 久久人人爽人人爽人人片va| 在线亚洲精品国产二区图片欧美 | a级毛片黄视频| 欧美人与善性xxx| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| av网站免费在线观看视频| av国产久精品久网站免费入址| 高清视频免费观看一区二区| 多毛熟女@视频| 新久久久久国产一级毛片| 国产精品国产三级专区第一集| 99九九在线精品视频| 免费看光身美女| 黑人猛操日本美女一级片| 久久久久久久亚洲中文字幕| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的| 满18在线观看网站| 久久 成人 亚洲| 99re6热这里在线精品视频| 久久久国产一区二区| 99久久人妻综合| 亚洲精品,欧美精品| 91久久精品国产一区二区成人| 美女中出高潮动态图| 国产极品粉嫩免费观看在线 | 日本黄色日本黄色录像| 黑人猛操日本美女一级片| 精品一区二区三卡| 亚洲国产av影院在线观看| 亚洲精品456在线播放app| 亚洲一区二区三区欧美精品| 热99国产精品久久久久久7| 成人亚洲欧美一区二区av| 国产黄片视频在线免费观看| 免费看不卡的av| 国产精品免费大片| 丝袜喷水一区| 日本vs欧美在线观看视频| 久久久久久久大尺度免费视频| 街头女战士在线观看网站| 久久精品国产亚洲网站| 两个人的视频大全免费| 亚洲欧美清纯卡通| 久久久国产精品麻豆| 国产黄片视频在线免费观看| 国产精品不卡视频一区二区| 亚洲欧洲日产国产| 日韩视频在线欧美| 黑人高潮一二区| 国产亚洲精品第一综合不卡 | 国产成人精品婷婷| 免费黄频网站在线观看国产| 国产一区二区在线观看av| 亚洲精品乱码久久久v下载方式| 如日韩欧美国产精品一区二区三区 | 中文乱码字字幕精品一区二区三区| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 亚洲精品美女久久av网站| 亚洲国产精品一区三区| 少妇被粗大的猛进出69影院 | 人成视频在线观看免费观看| av不卡在线播放| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 少妇高潮的动态图| 最近中文字幕高清免费大全6| 午夜福利,免费看| 国产高清国产精品国产三级| 两个人免费观看高清视频| 免费av中文字幕在线| 一级毛片aaaaaa免费看小| 大片电影免费在线观看免费| 日本91视频免费播放| 国产成人免费观看mmmm| 91成人精品电影| 成人国语在线视频| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| 亚洲欧洲国产日韩| 亚洲图色成人| 日日撸夜夜添| 乱码一卡2卡4卡精品| 中国三级夫妇交换| 91精品国产九色| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 久久久久久久大尺度免费视频| 久久精品人人爽人人爽视色| 免费高清在线观看视频在线观看| www.色视频.com| 中国三级夫妇交换| 日日爽夜夜爽网站| 国产免费视频播放在线视频| 在线精品无人区一区二区三| 搡老乐熟女国产| 亚洲无线观看免费| 青春草亚洲视频在线观看| 亚洲,欧美,日韩| 在线观看美女被高潮喷水网站| 国产成人一区二区在线| 久久久久久久精品精品| 精品人妻熟女毛片av久久网站| 青青草视频在线视频观看| 国产精品99久久久久久久久| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看 | 中文字幕av电影在线播放| 人妻制服诱惑在线中文字幕| 在线观看免费高清a一片| 成人亚洲欧美一区二区av| 一本久久精品| 欧美xxⅹ黑人| 在线 av 中文字幕| av网站免费在线观看视频| 免费黄色在线免费观看| 欧美日韩成人在线一区二区| 欧美成人精品欧美一级黄| 国产精品秋霞免费鲁丝片| 亚洲国产毛片av蜜桃av| 国产男女内射视频| 久久婷婷青草| 中文字幕最新亚洲高清| 欧美日本中文国产一区发布| 一二三四中文在线观看免费高清| 人妻制服诱惑在线中文字幕| 国产精品久久久久久av不卡| 美女脱内裤让男人舔精品视频| 国产精品久久久久成人av| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说| 国产永久视频网站| 麻豆乱淫一区二区| 国产黄频视频在线观看| 中文字幕制服av| 日韩精品有码人妻一区| 精品亚洲成国产av| 少妇的逼好多水| 日韩在线高清观看一区二区三区| 国产综合精华液| 免费高清在线观看日韩| 婷婷色综合www| 美女大奶头黄色视频| 亚洲五月色婷婷综合| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办| 国产成人91sexporn| 老女人水多毛片| 午夜久久久在线观看| 色5月婷婷丁香| 亚洲精品av麻豆狂野| 人体艺术视频欧美日本| 男人爽女人下面视频在线观看| 男女啪啪激烈高潮av片| 亚洲av综合色区一区| 亚洲欧洲国产日韩| 久久久久久久亚洲中文字幕| 2018国产大陆天天弄谢| 亚洲精华国产精华液的使用体验| xxxhd国产人妻xxx| 国产免费现黄频在线看|