• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator

    2022-02-24 09:37:42LuYang楊璐ChenghaoLiu劉程浩YalongWang王亞龍PengchengZhu朱鵬程YaoWang王瑤andYuanDeng鄧元
    Chinese Physics B 2022年2期
    關(guān)鍵詞:亞龍王瑤鵬程

    Lu Yang(楊璐), Chenghao Liu(劉程浩), Yalong Wang(王亞龍), Pengcheng Zhu(朱鵬程),Yao Wang(王瑤),3,?, and Yuan Deng(鄧元)

    1School of Materials Science and Engineering,Beihang University,Beijing 100191,China

    2Hangzhou Innovation Institute,Beihang University,Hangzhou 310052,China

    3Research Institute for Frontier Science,Beihang University,Beijing 100191,China

    4School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility and low thermal conductivity,thus hold great prospect in applications as a flexible power generator from dissipated heat.Nevertheless,the weak electrical transport behaviors of organic TE materials have severely impeded their development.Moreover, compared with p-type organic TE materials,stable and high-performance n-type counterparts are more difficult to obtain.Here,we developed a n-type polyaniline-based hybrid with core-shell heterostructured Bi2S3@Bi nanorods as fillers,showing a Seebeck coefficient ?159.4 μV/K at room temperature.Further, a couple of n/p legs from the PANI-based hybrids were integrated into an elastomer substrate forming a stretchable thermoelectric generator(TEG),whose function to output stable voltages responding to temperature differences has been demonstrated.The in situ output performance of the TEG under stretching could withstand up to 75% elongation,and stability test showed little degradation over a one-month period in the air.This study provides a promising strategy to develop stable and high thermopower organic TEGs harvesting heat from environment as long-term power supply.

    Keywords: polyaniline-based hybrids,thermoelectric properties,n-type,stretchable electronics

    1.Introduction

    Rapid development of flexible electronics brings a new era of technologically immersive world,and an everincreasing need for portable,distributed and long-term power source has thus been raised.Thermoelectric(TE)materials can realize direct energy conversion between thermal energy and electricity,thus provide a promising solution to harvest heat energy from environment for power generation.The performances of TE materials are evaluated via figure of meritZT=σS2/κ,where σ is electrical conductivity,S is Seebeck coefficient,and κ is thermal conductivity.Organic thermoelectric materials, such as conducting polymers,[1—4]organic semiconductors,[5,6]organic/inorganic hybrids[7—11]have emerged recently as successful candidates.Despite their relatively low electrical transport properties compared with the inorganic counterparts,they have significant advantages in easy processing and low cost;moreover, recent progress has shown a catching up trend in both materials properties and device performances.[12—15]

    Nevertheless, the scarcity of high-performance of n-type flexible TE materials is still a big challenge due to the lessefficient hopping transport mechanism and low electron affinity caused chemical instability, which has significantly impeded the development of flexible thermoelectric generators(TEGs) assembled from matched p/n pairs of TE legs.Several studies show that the organic/inorganic hybrids are of particular potential to realize high-performance n-type TE materials.For instance, via incorporating n-type inorganic fillers into polymer matrix, Wanet al.reported a high power factor (PF= σS2) of 0.45 mW/m·K2andZTof 0.28 at 373 K for a hybrid superlattice of alternating inorganic TiS2monolayers and organic cations.[6]Caiet al.designed n-type Ag2Se/Ag/CuAgSe thermoelectric composite film supported by a porous nylon membrane presenting an ultrahigh power factor of 2231.5μW/m·K2at 300 K.[13]In practice,when flexible TEGs applied as wearable electronics,these devices generally suffer nonuniform strain, thus mechanical compliance and stability are highly required.The TEGs assembled from organic TE materials are generally flexible,yet their stretchability has been addressed to less extent.

    Based on our previous studies, a heat treatment strategy is effective in transforming p-type polyaniline (PANI)-based hybrids into n-type, where after high temperature treatment,the concentration of the major hole carrier from p-type PANI quickly falls, and the electrons from n-type Bi2S3gradually dominate the hybrid film.[16]Due to intrinsically weak electrical transport behaviors of Bi2S3,[17]the power factor of the n-type Bi2S3/PANI is still magnitude lower than that of PANI-based p-type hybrids.Herein, core-shell heterostructured Bi2S3@Bi nanorods were constructed to increase the electrical conductivity of fillers via introducing a high conductivity Bi coating layer.The same heat treatment strategy has been employed to transform p-type PANI-based hybrids into stable n-type at room temperature.Further,a stretchable TEG has been integrated from n-type Bi2S3@Bi/PANI and p-type Te-MWCNT/PANI hybrids with elastomer substrate, and the function as power generator has been demonstrated.

    2.Experimental details

    2.1.Materials

    Bismuth chloride (BiCl3) and hydrazine hydrate (N2H4)were supplied by Shanghai Macklin Biochemical Co., Ltd.,China.Sodium sulfide nonahydrate (Na2S·9H2O) with purity higher than 98.0% was purchased from Xilong Chemical Reagent Co.Ltd., China.All the raw chemicals, including ethylene glycol, C6H7N, HCl, (NH)2S2O8, LiCl, NaOH, mcresol,and camphorsulfonic acid were used as received without further purification.

    2.2.Fabrication of Bi2S3@Bi nanorods

    The synthesis of Bi2S3@Bi core-shell structure is based on anin situreduction reaction that Bi element could be reduced from Bi2S3by a strong reductant in alkaline solution.Thus,the surface of Bi2S3nanorod would transform to Bi via controlling the reaction time.Here,the following reaction was employed:[18]

    Here 5.7 g BiCl3was added to 24 ml distilled water with stirring, and then 6 ml HCl (36 wt%) was added dropwise until the white precipitate(BiOCl)was dissolved completely.10.5 g Na2S·9H2O was dissolved in 15 ml deionized water completely.The solutions were then mixed and stirred for 30 min.Next, the mixed solution was transferred to a teflonlined autoclave and maintained at 180°C for 12 h.After the reaction, the product was washed with deionized water and alcohol and dried in an oven at 353 K to obtain clean Bi2S3nanorods.Afterwards, 1 g NaOH was added to 100 ml distilled water with stirring,and 10 ml of N2H4dropped at a constant speed was added.1 g Bi2S3nanorods were added into the solution and stirred for 30 min forming a brown-black suspension.After ultrasonic dispersing the suspension for 20 min,it was transferred to a teflon-lined autoclave and was maintained at 180°C for 1 h,2 h and 3 h,respectively.After the reaction,the product was washed with deionized water and alcohol and dried in an oven at 80°C.

    2.3.Fabrication of Bi2S3@Bi/PANI hybrid films

    The processing has been carried out according to our previous study on PANI-based hybrid films[19]and n-type Bi2S3/PANI.[16]The procedures are illustrated in Scheme 1.The as-prepared Bi2S3@Bi nanorods with different weight fractions from 50 wt% to 90 wt% were first ultrasonically dispersed in m-cresol,and then mixed with PANI solution ultrasonically.The obtained Bi2S3@Bi/PANI solution was cast on glass substrates and dried at 60°C to form a dense film.After the films were completely dried,they were rapidly heat treated at 210°C in vacuum for 10 min,followed by cooling to room temperature.

    Scheme 1.Schematic illustration on the processing procedures of n-type Bi2S3@Bi/PANI hybrid films.

    2.4.Integration of n/p polyaniline-based hybrids to stretchable TEG

    The p-type TE material used here is TeMWCNT/PANI hybrid film with Te nanorod around 60 wt% and MWCNT around 10 wt%,with TE parameters ofS=40±3μV/K,σ =196 S/cm based on our previous work.[20]The PANI-based hybrid films were first hot-pressed at 160°C and 0.35 MPa to form TE legs with size 1 mm×1 mm×1.3 mm.The illustration on a pair of p/n TEG integration flow is shown in Scheme 2.PDMS was employed as elastomer substrate film,two cubes(1 mm×1 mm)with a spacing of 1 mm were hollowed out.Next, Ag fabrics were used as flexible interconnects,and TE legs were filled in the hollows with silver paste adhering the TE legs and Ag fabrics.Finally, a few drops of PDMS solution were added to encapsulate the device.

    Scheme 2.Schematic illustration on integration steps of stretchable TEG.

    2.5.Characterization

    The microstructures of the hybrid films were observed by scanning electron microscopy (SEM, FEI Sirion 200).X-ray diffraction (XRD, Rigaku D/MAX 2200 PC with Cu-Kα radiation λ = 1.5406) and Raman spectroscopy(LabRAMHR800 using an Ar—Kr laser operating at 632.8 nm)were employed to analyze the phase and chain structures of the hybrid films.The electrical conductivity and Seebeck coefficient were measured using a ZEM-3 system(IULVAC-RIKO).Hall coefficients were measured using a Hall measurement system(Lakeshore 8400 Series,Model 8404)from room temperature to 200°C.

    2.6.Output performance measurement of TEG

    To precisely control the temperature gradient applied across the TEG,a temperature control system has been setup as shown in Fig.S1.The TEG was placed on a temperature control stage (TLTP-FW-TEC2410D, Wuhan Talent Century Technology Co., Ltd.) maintained at a constant temperature,i.e., 25°C as the cold end.A Peltier device, controlled by a DC power supply (TPR3005T-3C, Shenzhen Atten Technology Co.,Ltd.) was employed as a heater to provide temperature at the hot end.Meanwhile,a thermometer(UT325,UNIT Co., Ltd.) was used to monitor the temperature at the hot end.The output voltage of the TEG was recorded via a digit multimeter(Keithley,DMM 6500).

    3.Results and discussion

    3.1.Microstructures of Bi2S3@Bi/PANI hybrid films

    The phases of the synthesized Bi2S3@Bi nanorods are checked by XRD as shown in Fig.1(a).Since the positions of main diffraction peaks of Bi are very close to those of Bi2S3(see the standard PDF cards),and peaks are overlapped due to the peak broadening,it could hardly differentiate Bi and Bi2S3phases from these diffraction patterns.Instead, Bi2S3@Bi nanorods with different reduction reaction time are compared as shown in Fig.1(b).Longer reaction time results in higher Bi content,thus,it could be identified from the increasing intensity of the peak assigned to the(012)plane of Bi that elemental Bi has been reduced and coexists with Bi2S3.

    Fig.1.(a) XRD patterns of Bi2S3@Bi core-shell nanorods in comparison with Bi2S3 nanorods.(b) XRD patterns of Bi2S3@Bi core-shell nanorods with different reduction reaction time.

    Fig.2.SEM images of (a) Bi2S3 nanorods and Bi2S3@Bi core-shell nanorods with different reaction time: (b)1 h,(c)2 h,and(d)3 h.

    Fig.3.Cross-sectional SEM images of Bi2S3@Bi/PANI hybrid films with filler content (a) 50%, (b) 60%, (c) 70%, (d) 80%, (e) 90%, (f) 70% hybrid film after heat treatment.

    The microstructures of Bi2S3@Bi nanorods with different Bi contents in comparison with Bi2S3nanorods(Fig.2(a))are shown in Figs.2(b)—2(d).At low Bi content, i.e., with reaction time 1 h, the core-shell structure almost keeps the morphology of the Bi2S3nanorod.As reduction reaction increases,the morphologies of some nanorods begin to collapse,resulting in shorter nanorods and a small number of nanoparticles(see Figs.2(c)and 2(d)).Therefore,Bi2S3@Bi nanorods at reaction time 1 h were employed as fillers for hybrids.

    Seen from the cross-sectional SEM images of the Bi2S3@Bi/PANI hybrid films shown in Figs.3(a)—3(e) with filler loading increasing from 50% to 90%, the hybrid films present compact microstructure.The PANI turns into discontinuity as Bi2S3@Bi filler exceeds 70% weight fraction (see Fig.3(c)),and the hybrid film becomes too fragile to be freestanding as Bi2S3@Bi loading reaches 90%.After heat treatment at 210°C in vacuum,the interfaces between polymer and inorganic fillers become obscure (see Fig.3(f)) compared to the morphology of the as-prepared film shown in Fig.3(c),indicating slight change on polymer morphologies by heat treatment.

    Further, Raman spectra were used to study the chemical bonds change brought by incorporation of Bi2S3@Bi fillers and heat treatment.As shown in Fig.4, the typical vibrating modes of pure PANI occur at 1191 cm?1, 1507 cm?1,and 1563 cm?1assigned to C—H bending vibration of the quinoid or benzenoid ring, N—H stretching vibration of the benzenoid ring,and C—C stretching vibration of the benzenoid ring, respectively.[21]Peaks at 1334 cm?1are assigned to the C—N+vibration of the quinoid ring and 1403 cm?1and 1638 cm?1to the delocalized polarons in the expanded polymeric conformation.Incorporating Bi2S3@Bi generally reserves the expanded polymeric conformation as seen from the existence of the 1638 cm?1mode in all the as-prepared hybrid films.Intensity increase of vibrating mode 1403 cm?1is an indication that cross-linking of PANI polymer has occurred,[16]which becomes more intense in hybrids after heat treatment with Bi2S3@Bi loading exceeding 70%,in consistent with the microstructure change.

    Fig.4.Raman spectra of Bi2S3@Bi/PANI hybrid films with various Bi2S3@Bi contents before and after the heat treatment.

    3.2.Thermoelectric properties of Bi2S3@Bi/PANI hybrid films

    The temperature-dependent TE performances of the asprepared hybrid films are shown in Figs.5(a)—5(c).The electrical conductivity of the hybrid films, as shown in Fig.5(a),decreases with increasing Bi2S3@Bi core-shell nanorods loading.This is due to their low electrical conductivity compared to PANI and the discontinuity of the conducting PANI polymer at high filler loading, which leads to sharp drop in the conductivity from 4700 S/m for 50% to 1057.8 S/m for 80% loading at room temperature.The significant decrease in the electrical conductivity of the hybrid films with increasing temperature is attributed to the decrease in crystallinity and loss of the emeraldine sequence due to chain scission, crosslinking of the PANI matrix as well as the partial loss of CSA.The carrier in the as-prepared hybrid films at room temperature is still p-type,and due to the opposite carrier types of PANI and Bi2S3@Bi, the competition between carriers results in very low Seebeck coefficients as shown in Fig.5(b), i.e., about 15μV/K for 50% hybrid film and decreasing to 7.6μV/K for 80% hybrid film.With increasing temperature to higher than 200°C,a transition from p-type to n-type is observed,and the maximum Seebeck coefficient ?150μV/K is obtained in 80% hybrid film at 230°C.Meanwhile,the power factor calculated for these Bi2S3@Bi/PANI hybrid films reaches the maximum value 5.24μW/m·K2for 80% hybrid film at 230°C shown in Fig.5(c).

    Temperature-dependent Hall effect measurement was carried out to study the transport behavior of the carriers of the Bi2S3@Bi/PANI hybrids.As shown in Fig.5(d), the carrier concentration increases as the temperature rises,while the mobility decreases quickly, suggesting that the hopping of carriers in the polymer chains has been obstructed.As the temperature continues to increase exceeding 160°C,the carrier concentration drops abruptly and the mobility turns its sign from positive to negative,originated from the change in Hall coefficient(RH)according to μ =RH/ρ, where ρ is the resistivity.The observation thus reflects a change in major carrier from holes contributed from PANI to the electrons from Bi2S3@Bi,confirming that n-type material has been obtained at 200°C.

    To support the idea that Bi2S3@Bi core-shell heterostructure is more effective in enhancing the electrical conductivity of PANI-based hybrids so as to further optimize the ntype TE properties, TE properties of Bi2S3@Bi/PANI have been compared with those of Bi2S3/PANI hybrid films.As shown in Fig.6, taking filler loading at 80% as an example,the as-prepared Bi2S3@Bi/PANI has higher electrical conductivity at room temperature (1057.8 S/m for Bi2S3@Bi filler vs.718.6 S/m for Bi2S3filler).Since Bi2S3@Bi filler could endure higher temperature up to 220°C, the carrier concentration is adjusted to a more favorable value,thus the Seebeck coefficient continues to increase.PFis 5.24 μW/m·K2for Bi2S3@Bi/PANI and 0.97 μW/m·K2for Bi2S3/PANI, more than 4 times increment.It is worth noting that,Bi2S3@Bi heterostructure promotes not only electrical conductivity,but also leads to slightly higher Seebeck coefficient compared with Bi2S3, which probably comes from the energy filtering effect enabled by the Bi2S3/Bi/PANI multiple interfaces.The work function of Bi, ΦBi, is about 4.22 eV,[22,23]while the conduction band of Bi2S3is around ?4.27 eV,[24]the lowest unoccupied molecular orbital (LUMO) energy in PANI is?4.15 eV,[20]to equilibrate the Fermi levels, energy barriers would be formed at Bi2S3/Bi and Bi/PANI interfaces,permitting electrons with higher energy to pass through so as to give rise to the Seebeck coefficient of the Bi2S3@Bi/PANI hybrid film.

    After the heat treatment,the room temperature TE properties of the hybrid films with different filler loadings are shown in Fig.6(d).For all the hybrid films, the n-type is retained,and the higher content of Bi2S3@Bi filler,the higher Seebeck coefficient,showing a maximum value of ?159.4μV/K.However,due to the crosslink of polymer chains as well as the loss of partial dopant,the electrical conductivity is low.Finally,the optimal stable n-type Bi2S3@Bi/PANI has been obtained in 70% Bi2S3@Bi/PANI hybrid film withPF=0.246μW/m·K2.

    Fig.5.Temperature-dependent thermoelectric properties of the as-prepared Bi2S3@Bi/PANI hybrid films: (a)electrical conductivity,(b)Seebeck coefficient,(c)power factor.(d)Temperature-dependent transport parameters,carrier concentration and mobility of Bi2S3@Bi/PANI film.

    Fig.6.Comparison on thermoelectric properties between Bi2S3@Bi/PANI and Bi2S3/PANI hybrid films at 80% filler loading.(a) Electrical conductivity,(b)Seebeck coefficient,(c)power factor.(d)Thermoelectric properties measured at room temperature of heat-treated Bi2S3@Bi/PANI films with different Bi2S3@Bi loadings.

    3.3.Performances of stretchable TEG

    The thermal energy harvesting functions of the integrated stretchable TEG from n-type Bi2S3@Bi/PANI and p-type Te-MWCNT/PANI hybrids are demonstrated in Fig.7.Figure 7(a)presents the steady voltage responses to different ΔT.The output voltages with ΔTconform to a linear relationship,i.e.,V= |S|×ΔT, where the slope is the sensitivity of the TE sensor.As shown in Fig.7(b), the sensitivity of the asfabricated device is about 84±3μV/K,and when placed in the atmosphere, the slope decreases about 15% to 71±4 μV/K.The mechanical stability of the stretchable TEG was measured under a fixed temperature difference of 10 K within situexternal tensile strain loaded.As shown in Fig.7(c),the output voltage decreases as the TEG elongation increases,due to increase in internal resistance from geometry variation and the gradually destruction at the joints where the electrodes interconnect the TE legs and encapsulated PDMS.The TEG could be stretched to 75% before broken, suggesting its good mechanical compliance.

    Fig.7.(a) Steady responses of TEG to various temperature differences.(b) Comparison on the output voltages changing with ΔT of the asfabricated TEG and stored one month later.(c)The in situ output performance measurement of the TEG with increasing stretching strain at a fixed temperature difference of 10 K.

    4.Conclusion and perspectives

    Core-shell heterostructured n-type Bi2S3@Bi nanorods have been incorporated into PANI to transform an intrinsic p-type polymer into n-type TE materials via carrier adjustment strategy in combination of a proper heat treatment processing.Heterostructured Bi2S3@Bi nanorods are more effective in improving the power factor of the hybrids than the Bi2S3nanorods due to higher electrical conductivity brought by the Bi.Further, a pair of n/p bulk TE legs made from the PANI-based hybrids were integrated with elastomer substrate into stretchable TEG.Its function as thermal energy harvester showing stable output with thermopower 84±3μV/K for one pair and little degradation over a one-month period in the air was demonstrated.The mechanical stability test showed that the TEG could withstand up to 75% elongation.This study has therefore provided a promising strategy to develop stretchable TEGs harvesting heat from environment with stable and high thermopower performances as long-term power supply.

    Acknowledgments

    The study was supported by the National Key Research and Development Program of China (Grant Nos.2018YFA0702100 and 2018YFB0703600),the National Natural Science Foundation of China (Grant Nos.51872009 and 92066203), Beijing Nova Programme Interdisciplinary Cooperation Project,and the Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    亞龍王瑤鵬程
    GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*
    冷靜是一種智慧,寬恕是一種力量
    A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS?
    船舶上層建筑建造工藝探討
    在傳統(tǒng)與創(chuàng)新中尋求制衡點(diǎn)
    THE CAUCHY PROBLEM FOR THE TWO LAYER VISOUS SHALLOW WATER EQUATIONS*
    A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced(3+1)-Dimensional Nonlinear Evolution Equation?
    “王瑤式”說法
    愛你(2017年10期)2017-04-14 11:21:51
    王瑤怎樣當(dāng)北大教授
    Clinical observation of Huatan Huoxue Formula in treating coronary heart disease with hyperlipidemia
    性少妇av在线| www.自偷自拍.com| av视频免费观看在线观看| 国产有黄有色有爽视频| 最黄视频免费看| 亚洲欧洲国产日韩| 国产精品99久久99久久久不卡| 精品少妇久久久久久888优播| 色视频在线一区二区三区| 黄片播放在线免费| 91九色精品人成在线观看| 啦啦啦在线观看免费高清www| 99热网站在线观看| 一本色道久久久久久精品综合| 最新的欧美精品一区二区| 日韩一本色道免费dvd| 久久天躁狠狠躁夜夜2o2o | 少妇的丰满在线观看| 午夜激情久久久久久久| 国产激情久久老熟女| 欧美大码av| 久久久久久久久免费视频了| 午夜免费鲁丝| 99国产精品99久久久久| av电影中文网址| 亚洲精品第二区| 婷婷色av中文字幕| 女人久久www免费人成看片| 波多野结衣一区麻豆| 国产一区二区 视频在线| 久久久久国产精品人妻一区二区| 欧美黄色片欧美黄色片| 国产黄色免费在线视频| 人人妻人人添人人爽欧美一区卜| 女人被躁到高潮嗷嗷叫费观| 国产免费现黄频在线看| 成人国产av品久久久| 国产成人91sexporn| 91精品国产国语对白视频| 老司机亚洲免费影院| 啦啦啦视频在线资源免费观看| av有码第一页| 国产av精品麻豆| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品美女久久av网站| 精品国产乱码久久久久久男人| 国产精品 国内视频| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 最近手机中文字幕大全| 中文字幕制服av| 精品亚洲乱码少妇综合久久| 欧美人与善性xxx| 国产福利在线免费观看视频| 国产极品粉嫩免费观看在线| 18禁裸乳无遮挡动漫免费视频| 一级毛片电影观看| 亚洲色图综合在线观看| 伦理电影免费视频| 女性被躁到高潮视频| 成人国产一区最新在线观看 | 日韩av免费高清视频| 精品少妇久久久久久888优播| 免费一级毛片在线播放高清视频 | 欧美日韩综合久久久久久| 91麻豆精品激情在线观看国产 | av国产久精品久网站免费入址| 亚洲欧美清纯卡通| 下体分泌物呈黄色| 性色av一级| 老熟女久久久| 少妇被粗大的猛进出69影院| 黄色视频不卡| 久久精品国产亚洲av高清一级| 中国美女看黄片| 日本一区二区免费在线视频| 狂野欧美激情性xxxx| 日日夜夜操网爽| 狠狠精品人妻久久久久久综合| 19禁男女啪啪无遮挡网站| 亚洲人成电影免费在线| 精品少妇内射三级| 天天影视国产精品| 电影成人av| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 久久久精品免费免费高清| 久久久亚洲精品成人影院| 欧美少妇被猛烈插入视频| 久久国产精品影院| 国产三级黄色录像| 国产成人免费观看mmmm| 国产黄色视频一区二区在线观看| 欧美激情 高清一区二区三区| 国产精品成人在线| 中文字幕av电影在线播放| 国产爽快片一区二区三区| 波野结衣二区三区在线| 国产一区二区在线观看av| 一本久久精品| 熟女av电影| 欧美精品一区二区免费开放| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 香蕉丝袜av| 熟女少妇亚洲综合色aaa.| 亚洲精品一卡2卡三卡4卡5卡 | 黄色一级大片看看| 久久久精品国产亚洲av高清涩受| 亚洲精品日本国产第一区| 国产午夜精品一二区理论片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品人妻蜜桃| 国产成人a∨麻豆精品| 国产无遮挡羞羞视频在线观看| 亚洲,欧美,日韩| 久久精品亚洲av国产电影网| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 国产免费又黄又爽又色| 啦啦啦 在线观看视频| 伊人亚洲综合成人网| 免费观看a级毛片全部| 国产成人啪精品午夜网站| a级毛片黄视频| 国产爽快片一区二区三区| 一区福利在线观看| 一区二区日韩欧美中文字幕| 国产精品久久久人人做人人爽| 国产91精品成人一区二区三区 | 老司机深夜福利视频在线观看 | 97在线人人人人妻| 亚洲av美国av| 人体艺术视频欧美日本| 国产精品国产三级专区第一集| 精品久久蜜臀av无| 高清不卡的av网站| 亚洲五月色婷婷综合| 国产xxxxx性猛交| 亚洲激情五月婷婷啪啪| 91精品伊人久久大香线蕉| 91成人精品电影| 美女大奶头黄色视频| 曰老女人黄片| 高清视频免费观看一区二区| 国产熟女午夜一区二区三区| 国产片特级美女逼逼视频| 熟女av电影| 久久精品久久久久久噜噜老黄| 婷婷色综合www| 男人添女人高潮全过程视频| 国产熟女午夜一区二区三区| 精品久久久精品久久久| 午夜福利,免费看| 国产精品国产三级专区第一集| 最新在线观看一区二区三区 | 高清不卡的av网站| 久久国产亚洲av麻豆专区| 免费在线观看视频国产中文字幕亚洲 | 超色免费av| 中文字幕色久视频| 日日夜夜操网爽| 日韩一区二区三区影片| 午夜免费成人在线视频| 高清视频免费观看一区二区| 亚洲黑人精品在线| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 午夜激情av网站| 波多野结衣av一区二区av| 大香蕉久久网| av福利片在线| 国产日韩一区二区三区精品不卡| 亚洲一区中文字幕在线| 又紧又爽又黄一区二区| 日本av手机在线免费观看| 欧美精品啪啪一区二区三区 | 日本欧美国产在线视频| 精品福利观看| 女人被躁到高潮嗷嗷叫费观| 午夜免费男女啪啪视频观看| 久久精品国产亚洲av高清一级| 精品一区二区三区四区五区乱码 | 三上悠亚av全集在线观看| kizo精华| cao死你这个sao货| 久久久久视频综合| 中文字幕av电影在线播放| 丝袜在线中文字幕| h视频一区二区三区| 男女之事视频高清在线观看 | 久久人人爽人人片av| 大香蕉久久网| 亚洲综合色网址| 久久久久久免费高清国产稀缺| 国产精品一区二区在线观看99| 日韩av免费高清视频| 飞空精品影院首页| 色精品久久人妻99蜜桃| 亚洲国产最新在线播放| 亚洲精品美女久久久久99蜜臀 | 免费看不卡的av| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 国产成人一区二区在线| 国产精品欧美亚洲77777| 飞空精品影院首页| 日韩大码丰满熟妇| 欧美国产精品va在线观看不卡| 一本一本久久a久久精品综合妖精| 七月丁香在线播放| 老汉色∧v一级毛片| 香蕉丝袜av| 精品一区二区三区av网在线观看 | 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 日本一区二区免费在线视频| 一区二区三区激情视频| 满18在线观看网站| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 少妇的丰满在线观看| 丝袜在线中文字幕| 丝袜人妻中文字幕| 在现免费观看毛片| 成人亚洲精品一区在线观看| 亚洲欧洲精品一区二区精品久久久| 午夜免费成人在线视频| 观看av在线不卡| 在线 av 中文字幕| 色网站视频免费| 欧美少妇被猛烈插入视频| 亚洲国产精品国产精品| 亚洲av国产av综合av卡| 在线 av 中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 午夜免费观看性视频| 人人妻人人澡人人看| 欧美日韩精品网址| 狠狠婷婷综合久久久久久88av| 精品第一国产精品| h视频一区二区三区| 精品国产一区二区久久| 老汉色∧v一级毛片| av网站免费在线观看视频| 国产1区2区3区精品| 亚洲人成网站在线观看播放| 精品欧美一区二区三区在线| 中文字幕制服av| 日韩人妻精品一区2区三区| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 亚洲少妇的诱惑av| 一区在线观看完整版| 国产精品久久久久久精品电影小说| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲精品一区二区精品久久久| 国产无遮挡羞羞视频在线观看| 极品少妇高潮喷水抽搐| 超碰成人久久| 欧美 日韩 精品 国产| 成人免费观看视频高清| 久久性视频一级片| 首页视频小说图片口味搜索 | 日本欧美视频一区| 男女之事视频高清在线观看 | 欧美国产精品va在线观看不卡| 国产精品久久久av美女十八| 国产女主播在线喷水免费视频网站| 啦啦啦在线观看免费高清www| 成年人午夜在线观看视频| h视频一区二区三区| 亚洲精品自拍成人| 中文字幕最新亚洲高清| 一级黄片播放器| 亚洲男人天堂网一区| 婷婷色综合大香蕉| 美女福利国产在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久久久久久大奶| 久久久久久久久免费视频了| 美女中出高潮动态图| 亚洲欧美成人综合另类久久久| 国产一卡二卡三卡精品| 国产精品三级大全| 国产一区亚洲一区在线观看| 十八禁人妻一区二区| 波多野结衣一区麻豆| 欧美黄色淫秽网站| av天堂久久9| 熟女少妇亚洲综合色aaa.| 欧美日韩视频高清一区二区三区二| 美国免费a级毛片| 欧美 日韩 精品 国产| 91麻豆精品激情在线观看国产 | 免费看不卡的av| 最近中文字幕2019免费版| 色精品久久人妻99蜜桃| 一级毛片 在线播放| 两个人看的免费小视频| 久久精品亚洲熟妇少妇任你| 欧美日韩黄片免| 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 欧美成狂野欧美在线观看| www.精华液| 不卡av一区二区三区| 自线自在国产av| 日本黄色日本黄色录像| 成年人黄色毛片网站| 亚洲av电影在线观看一区二区三区| 一级毛片我不卡| 女人高潮潮喷娇喘18禁视频| 捣出白浆h1v1| 嫁个100分男人电影在线观看 | 日本五十路高清| videosex国产| 国产成人av教育| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免| 男女边摸边吃奶| 男女边吃奶边做爰视频| 丝袜脚勾引网站| 80岁老熟妇乱子伦牲交| cao死你这个sao货| 精品久久蜜臀av无| 日本欧美国产在线视频| 巨乳人妻的诱惑在线观看| 国产亚洲精品久久久久5区| 性少妇av在线| 国语对白做爰xxxⅹ性视频网站| 天天躁夜夜躁狠狠躁躁| 日本黄色日本黄色录像| 一区在线观看完整版| 亚洲欧美日韩高清在线视频 | 国产熟女欧美一区二区| 最黄视频免费看| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| avwww免费| 亚洲国产精品一区二区三区在线| 女人精品久久久久毛片| 欧美日韩国产mv在线观看视频| 国产成人影院久久av| 国产激情久久老熟女| 免费在线观看视频国产中文字幕亚洲 | 亚洲人成77777在线视频| 国产成人91sexporn| 99久久99久久久精品蜜桃| 国产爽快片一区二区三区| 国产欧美亚洲国产| 香蕉国产在线看| 黄色怎么调成土黄色| 国产精品久久久久久精品古装| 午夜福利,免费看| 久久99精品国语久久久| 久久久精品94久久精品| 一二三四在线观看免费中文在| 人妻 亚洲 视频| 欧美在线一区亚洲| 国产成人啪精品午夜网站| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 国产精品 国内视频| 久久午夜综合久久蜜桃| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 国产色视频综合| 中国国产av一级| 久久精品久久久久久久性| 亚洲精品美女久久久久99蜜臀 | 麻豆乱淫一区二区| 尾随美女入室| 男人操女人黄网站| 日日摸夜夜添夜夜爱| 亚洲图色成人| 久久人妻熟女aⅴ| 欧美另类一区| 久久精品久久久久久久性| 九草在线视频观看| 亚洲欧洲国产日韩| 国语对白做爰xxxⅹ性视频网站| 搡老岳熟女国产| 中文字幕人妻丝袜制服| 日韩av免费高清视频| 久热爱精品视频在线9| 免费看不卡的av| 免费高清在线观看视频在线观看| 青青草视频在线视频观看| 晚上一个人看的免费电影| 91精品三级在线观看| 久久精品久久久久久噜噜老黄| 在线观看免费高清a一片| 精品亚洲乱码少妇综合久久| 国产福利在线免费观看视频| 亚洲国产中文字幕在线视频| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频| 国产国语露脸激情在线看| 日日摸夜夜添夜夜爱| 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 国产成人啪精品午夜网站| 一级黄色大片毛片| 欧美老熟妇乱子伦牲交| 99精品久久久久人妻精品| 9热在线视频观看99| 一二三四社区在线视频社区8| 视频区图区小说| 最近手机中文字幕大全| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 一级毛片我不卡| 蜜桃在线观看..| 69精品国产乱码久久久| 女性被躁到高潮视频| 亚洲av美国av| 精品一区二区三区四区五区乱码 | 韩国精品一区二区三区| 永久免费av网站大全| 色视频在线一区二区三区| 丁香六月天网| 一级片免费观看大全| 高潮久久久久久久久久久不卡| 欧美+亚洲+日韩+国产| 高清黄色对白视频在线免费看| 人人澡人人妻人| 国产亚洲精品第一综合不卡| 丝袜人妻中文字幕| 丝袜美足系列| 人妻 亚洲 视频| bbb黄色大片| 在线 av 中文字幕| 久久亚洲国产成人精品v| 菩萨蛮人人尽说江南好唐韦庄| 脱女人内裤的视频| 婷婷成人精品国产| 亚洲人成77777在线视频| 久久精品亚洲av国产电影网| 我的亚洲天堂| 无遮挡黄片免费观看| 日韩大码丰满熟妇| 精品高清国产在线一区| 国产日韩欧美在线精品| 日本色播在线视频| 我要看黄色一级片免费的| 欧美变态另类bdsm刘玥| 观看av在线不卡| 国产老妇伦熟女老妇高清| 久久久精品免费免费高清| 国产精品成人在线| 99九九在线精品视频| 80岁老熟妇乱子伦牲交| 日韩制服骚丝袜av| 日韩一区二区三区影片| 国产三级黄色录像| 欧美中文综合在线视频| 纯流量卡能插随身wifi吗| a级毛片在线看网站| 99久久99久久久精品蜜桃| 日韩欧美一区视频在线观看| 精品一区二区三卡| 男人操女人黄网站| 免费日韩欧美在线观看| 国产精品二区激情视频| 国产97色在线日韩免费| 久久久精品区二区三区| 亚洲七黄色美女视频| 高潮久久久久久久久久久不卡| 男人添女人高潮全过程视频| 最黄视频免费看| 欧美精品亚洲一区二区| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看 | av电影中文网址| 91精品三级在线观看| 亚洲免费av在线视频| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| 久久ye,这里只有精品| 午夜两性在线视频| 夫妻性生交免费视频一级片| 久久久国产一区二区| 中文字幕制服av| 免费看十八禁软件| 真人做人爱边吃奶动态| 亚洲国产看品久久| 如日韩欧美国产精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久成人aⅴ小说| 汤姆久久久久久久影院中文字幕| www.熟女人妻精品国产| 女人被躁到高潮嗷嗷叫费观| 国产高清不卡午夜福利| 午夜老司机福利片| 一二三四在线观看免费中文在| 午夜福利免费观看在线| 国产亚洲午夜精品一区二区久久| 好男人电影高清在线观看| 日韩一本色道免费dvd| 99国产精品99久久久久| 久久毛片免费看一区二区三区| 亚洲国产av影院在线观看| 欧美成人午夜精品| 久久人妻福利社区极品人妻图片 | 欧美97在线视频| 欧美精品一区二区大全| xxxhd国产人妻xxx| 搡老岳熟女国产| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 美女高潮到喷水免费观看| 欧美精品av麻豆av| 亚洲国产精品国产精品| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 老汉色av国产亚洲站长工具| 免费久久久久久久精品成人欧美视频| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 欧美国产精品va在线观看不卡| 久久亚洲国产成人精品v| 久久久久久亚洲精品国产蜜桃av| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站| 热re99久久国产66热| 热99久久久久精品小说推荐| 777米奇影视久久| 99热全是精品| 国产亚洲精品久久久久5区| 我的亚洲天堂| 91麻豆精品激情在线观看国产 | 我要看黄色一级片免费的| 欧美人与善性xxx| 国产97色在线日韩免费| 建设人人有责人人尽责人人享有的| 国产熟女欧美一区二区| 黄片播放在线免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久九九热精品免费| 人妻人人澡人人爽人人| 久久精品人人爽人人爽视色| 欧美另类一区| 亚洲国产看品久久| 男人操女人黄网站| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜一区二区| 国产亚洲午夜精品一区二区久久| 999久久久国产精品视频| 日本av免费视频播放| 欧美日韩av久久| 免费高清在线观看日韩| 国产av国产精品国产| 人妻一区二区av| 一级片'在线观看视频| av天堂在线播放| 美女主播在线视频| 亚洲中文字幕日韩| 1024视频免费在线观看| 日韩免费高清中文字幕av| 国产精品.久久久| 色视频在线一区二区三区| 一区福利在线观看| 成人国产av品久久久| 久久狼人影院| 99热网站在线观看| 国产高清视频在线播放一区 | 一级毛片黄色毛片免费观看视频| 国产成人免费无遮挡视频| 国产伦理片在线播放av一区| 国产精品欧美亚洲77777| 丁香六月天网| 亚洲av成人精品一二三区| 伊人久久大香线蕉亚洲五| 日本av免费视频播放| 亚洲精品国产av蜜桃| 亚洲国产av新网站| 91成人精品电影| 精品一区在线观看国产| 欧美黑人精品巨大| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 色综合欧美亚洲国产小说| 天天影视国产精品| 一边亲一边摸免费视频| 国产淫语在线视频| 免费av中文字幕在线| 蜜桃在线观看..| 久久久久久久久免费视频了| 久久av网站| 高清不卡的av网站| 国产精品九九99| 真人做人爱边吃奶动态| 老司机影院毛片| 人妻人人澡人人爽人人| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看 | 欧美激情极品国产一区二区三区| 亚洲精品久久午夜乱码| 精品人妻熟女毛片av久久网站| 日日夜夜操网爽| 日韩熟女老妇一区二区性免费视频| 国产成人a∨麻豆精品| 色网站视频免费| 一区二区三区乱码不卡18| 欧美xxⅹ黑人| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 欧美人与性动交α欧美精品济南到| 少妇粗大呻吟视频|