• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AN EXTENSION OF ZOLOTAREV’S PROBLEM AND SOME RELATED RESULTS?

    2021-10-28 05:44:48TranLocHUNGPhanTriKIEN

    Tran Loc HUNG Phan Tri KIEN

    University of Finance and Marketing,77 Nguyen Kiem Street,Phu Nhuan District,Ho Chi Minh City,Vietnam

    E-mail:tlhung@ufm.edu.vn;phankien@ufm.edu.vn

    Abstract The main purpose of this paper is to extend the Zolotarev’s problem concerning with geometric random sums to negative binomial random sums of independent identically distributed random variables.This extension is equivalent to describing all negative binomial in finitely divisible random variables and related results.Using Trotter-operator technique together with Zolotarev-distance’s ideality,some upper bounds of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables are established.The obtained results are extension and generalization of several known results related to geometric random sums.

    Key words Zolotarev’s problem;geometric random sum;negative binomial random sum;negative binomial in finitely divisibility;Trotter–operator technique

    1 Introduction

    An analogue of Zolotarev’s problem on geometric random sums originated by Klebanov et al.[12]is stated as follows:describe all random variables Y that for any p∈(0,1),there exists a random variable Xpsuch that

    where?pis a Bernoulli random variable having probability mass function

    In eq.(1.1)the random variables Y,Xpand?pare independent.In eq.(1.1)and from now on,the notationexpresses the equality in the sense of distributions.

    The solution of eq.(1.1)is a geometric random sum,de fined as follows

    where Xp,j,j≥1 are independent,identically distributed(i.i.d.)random variables and νpis a geometric random variable with mean p?1,(0

    Geometric random summations arise in many applied problems in physics,biology,economics,insurance mathematics,reliability,regenerative models,etc.Up to now,geometric random summations have been investigated by many authors like Klebanov et al.[12],Kruglov and Korolev[20],Kalashnikov[10],Sandhya and Pillai[25],Asmussen[2],Gnedenko and Kruglov[5],Lin[21],Kotz et al.[16],Kozubowski[18],Bon[3],Gamboa and Pamphile[4],Malinowski[23],Aly and Bouzar[1],Hung[6],and Korolev et al.[13–15],etc.

    It is worth pointing out that the convolution of k(k∈N)geometric random variables with common parameter p,p∈(0,1)will be a negative binomial random variable with two parameters p∈(0,1)and k∈N(see for instance[27]).We propose here some natural enlargements of the class of geometrically in finitely divisible random variables is due to Klebanov et al.([12],De finition 1,page 792).Let Np,kbe a negative binomial distributed random variable with two parameters p∈(0,1)and k∈N,denoted by Np,k~NB(p,k),whose probability mass function de fined as follows

    where x is an integer and x≥k(see[27],for more details).Recently,the negative binomial sums of i.i.d.random variables together with applications have been studies by Yakumiv[29],Sunklodas[27],Sheeja and Kumar[26],Jankovi′c[8],etc.It is clear that when k=1,the Np,1reduces to a geometric random variable νp~Geo(p),p∈(0,1).

    For any p∈(0,1)and k∈N,let{Xp,k,j,j≥1}be a sequence of random variables,independent of Np,k.Consider the so-called negative binomial random sum

    (see for instance[27]).It is plain that when k=1,the negative binomial random sum in(1.4)reduces to the geometric random sum de fined in(1.2).

    By an argument analogous to result of Klebanov et al.[12],the negative binomial random sums in eq.(1.4)will be considered as an extension of Zolotarev’s problem.This extension is equivalent to describing all negative binomial in finitely divisible random variables and related results.Using Trotter–operator technique[28]together with Zolotarev-distance’s ideality,some upper bounds of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables are established.Note that when k=1,the well known results related to weak limit theorems for geometric random sums will be obtained as direct consequences of theorems in this article.

    This paper is organized as follows.Section 2 presents an extension of Zolotarev’s problem.Section 3 introduces the notion of a negative binomial in finitely divisible(NBID)random variable and related results.In Section 4,the accuracy of the approximations to the distributions of normalized negative binomial random sums are estimated.

    2 An Extension of Zolotarev’s Problem

    Let?pbe a Bernoulli random variable,de fined in eq.(1.1).The problem to be considered in this section is that of describing all random variablesYthat for any p∈(0,1)and k∈N,there are random variables Xp,kand Yjsuch that

    and

    where random variables Xp,k,Yjand?pare independent for j=1,2,···,k.

    The following theorem will be considered as an extension of well-known result originated by Klebanov et al.in[12].

    Theorem 2.1Let assumptions(2.1)and(2.2)hold.Then,the random variableYshould be de fined as a negative binomial random sum in the form

    From(2.4)we conclude that

    In the other hand,the relation(2.2)is equivalent to

    Therefore,from(2.5)we have

    It follows that

    where Xp,k,jare i.i.d.copied of Xp,kand they are independent of Np,k~NB(p,k).

    The proof is complete.

    Remark 2.2When k=1,Theorem 2.1 reduces to Zolotarev’s problem in[12].

    3 Negative Binomial In finitely Divisibility

    The following notion will be needed in the sequel.

    De finition 3.1A random variableYis said to be negative binomial in finitely divisible(NBID),if for any p∈(0,1)and for a fixed k∈N,there exists a sequence of i.i.d.random variables Xp,k,1,Xp,k,2,···such that

    where Np,k~NB(p,k),and Xp,k,1,Xp,k,2,···are independent of Np,kand Y.

    Remark 3.2The extension of Zolotarev’s problem,formulated in Section 2 is thus equivalent to describing all negative binomial in finitely divisible random variables.For a deeper discussion of de finition of negative binomial in finitely divisibility we refer the reader to[8]and[29].

    Remark 3.3When k=1 the de finition of NBID random variables reduces to the well known de finition of geometric in finitely divisible(GID)random variables,originated by Klebanov et al.[12].Results of this nature may be found in[1,8,16,19,21,23].

    The following theorem states that the weak limiting distribution of a negative binomial random summation is a NBID distribution.The symbolhereinafter denotes convergence in distribution.

    Theorem 3.4For fixed k∈N,let

    ThenYis a NBID random variable.

    ProofLet us denote by fXp,k(t)the common characteristic function of Xp,k,jfor j≥1.According to[7](Theorem 9.1,page 193),the characteristic function of a negative-binomial random sumis given by

    Thus,for fixed k,from(3.1),it follows that

    where fY(t)is characteristic function of the limit random variableYand

    It is clear that fk(t)is a characteristic function of limit distribution of a geometric random sum.

    According to[20](Theorem 8.1.2,page 243),the characteristic function f(t)must be GID.

    On the other hand,on account of Klebanov et al.[12](Theorem 2,page 792),it follows that

    is an in finitely divisible characteristic function.Therefore,we get

    where f(t)is an in finitely divisible characteristic function.

    From Theorem 2.1 the proof is complete.

    Remark 3.5It is worth noticing that the weak limit distribution of a geometric random sum will be GID distribution(see,for instance,[20],Theorem 8.1.2,page 243).It was deduced from Theorem 3.4 for case of k=1.

    Theorem 3.6A random variableYis NBID if and only if its characteristic function fY(t)is given by

    where ?(t)is a characteristic function of some in finitely divisible(ID)distribution.

    ProofWe first observe that,on account of Theorem 2.1,the random variableYis NBID if and only if both relations(2.1)and(2.2)hold.Evidently,the relation(2.1)holds if and only if all random variables Yj,j=1,2,···,k are geometrically in finitely divisible(see[12]for more details).According to Theorem 2 in[12],it follows that

    where ?(t)is an in finitely divisible characteristic function.

    In the other hand,the relation(2.2)is equivalent to

    According to(3.3),we conclude that,the random variableYis NBID if and only if

    where ?(t)is an in finitely divisible characteristic function.The proof is complete.

    Remark 3.7The similar result is due to Jankovi[8]and Yakumiv[29]with de finition of negative binomial in finitely divisible random variable in the form

    Remark 3.8When k=1,the relation(3.1)reduces to geometric in finitely divisible(GID)characteristic function that is

    where ?(t)is an in finitely divisible characteristic function(see[12],Theorem 2,page 792).Result of this nature also may be found in[20](Theorem 8.1.1,pages 241–242).

    Corollary 3.9(The Lvy–Khinchin type representation) A random variableYis NBID if and only if its characteristic function is given in the form

    where k∈N and γ is a real constant,G(x)is a bounded non-decreasing function.Note that the function under the integral sign is equal to?t2/2 at the point x=0.

    ProofAccording to Lvy–Khinchin formula(see[24],page 30,Theorem 1.16),the function ?(t)is an in finitely divisible characteristic function if and only if it admits the representation

    On account of Theorem 3.6,the random variableYis NBID if and only if

    Equivalently,

    The proof is complete.

    Remark 3.10When k=1,the relation(3.4)reduces to a geometric in finitely divisible(GID)characteristic function in form

    (See[12],Corollary 1,page 792).

    Some negative binomial in finitely divisible(NBID)random variables are shown as follows.

    Example 3.11LetGbe a Gamma distributed random variable with two parameters λ>0 and k∈N,denoted byG~Gamma(λ,k),whose characteristic function is given by

    It is clear thatGis a negative binomial in finitely divisible random variable.Indeed,we have

    Therefore,?(t)is an in finitely divisible characteristic function.By Theorem 3.4,we get the con firmation.

    According to[16],a random variable L is said to be classical Laplace distributed random variable with parameters zero and σ>0,denoted by L~Laplace(0,σ),if its characteristic function has the form

    Let L1,L2,···be a sequence of independent,classical Laplace distributed random variables with parameters zero and σ>0.For k∈N,write

    Then,the characteristic function of L is given by

    Extending the concept of classical Laplace distributed random variable,the generalized Laplace distributed random variable will be introduced as follows.

    De finition 3.12A random variable L is said to have generalized Laplace distribution,denoted by L~GLaplace(0,σ,k),if its characteristic function is de fined by

    For a deeper discussion of the generalized Laplace distributions and their properties we refer the reader to[9,11,13,16–18].

    Remark 3.13When k=1,the generalized Laplace distributed random variable reduces to the classical Laplace distributed random variable with parameters zero and σ>0.

    Example 3.14Let L~GLaplace(0,σ,k).Then,L is a NBID random variable.It is easily seen that for n∈N and t∈R,

    is an in finitely divisible characteristic function.According to Theorem 3.6,we have the con firmation.

    We follow the de finition used in[16].A random variable ξ is said to be symmetric Linnik distributed random variable with parameters α∈(0,2]and σ>0,denoted by ξ~Linnik(α,σ),if its characteristic function is given by

    Lin[21]proved that Linnik distributions is geometric in finitely divisible(GID)and there are no closed–form expressions for the distribution and density function for Linnik random variable except for α=2,which corresponds to the Laplace distribution.

    Let ξ1,ξ2,···be a sequence of independent,symmetric Linnik distributed random variables with parameters α∈(0,2]and σ>0.For any k∈N,set

    Then,the characteristic function of ζ has following form

    Extending the concept of symmetric Linnik distributed random variable,the generalized Linnik distributed random variable will be de fined as follows.

    De finition 3.15A random variable ζ is said to have generalized Linnik distribution,denoted by ζ~GLinnik(α,σ,k),if its characteristic function is given by

    For a deeper discussion of generalized Linnik distributions we refer reader to[11,13,16–18],and the references given there.

    Remark 3.16When k=1,the generalized Linnik distribution reduces to symmetric Linnik distribution.Moreover,for k=1 and α=2,we obtain the classical Laplace distribution(see for instance[16]).

    Example 3.17Let ζ~GLinnik(α,σ,k).Then,ζ is a NBID random variable.

    For n∈N and t∈R,we have

    is an in finitely divisible characteristic function.According to Theorem 3.6,we obtain the con firmation.

    Theorem 3.18Let{fm(t),m=1,2,···}be a sequence of NBID characteristic functions converging to some characteristic function f(t).Then,f(t)is a NBID characteristic function.

    ProofDue to{fm(t),m=1,2,···}is a sequence of NBID characteristic functions,according to Theorem 3.6,there exists a sequence of in finitely divisible characteristic functions{?m(t),m=1,2,···}such that

    Letting m→∞,then fm(t)converges to the characteristic function f(t),hence ?m(t)will converge to the characteristic function ?(t),and

    According to Lemma 1.20([24],page 30),?(t)is an in finitely divisible characteristic function.Therefore,on account of Theorem 3.6,it follows that f(t)is a NBID characteristic function.This completes the proof.

    Remark 3.19When k=1,the Theorem 3.6 deduces to GID characteristic function as a limiting characteristic function of sequence of GID characteristic functions(see,for example,[12],Theorem 1,page 792).

    Theorem 3.20Every NBID characteristic function is in finitely divisible.

    ProofLet f(t)be a arbitrary NBID characteristic function.According to Theorem 3.6,we have

    where ?(t)is an in finitely divisible characteristic function.It is plain that,

    where ?(t)=e?ψ(t)is an in finitely divisible characteristic function.To complete the proof it remains to show that f(t)is an in finitely divisible characteristic function.

    First,we attempt to show that

    is an in finitely divisible characteristic function.According to Lukacs[22](Theorem 12.2.3,page 320),for any a>1 and g(t)is an arbitrary characteristic function,thenis an in finitely divisible characteristic function.For n≥1,taking

    we have

    On the other hand,by Taylor series expansion,we obtain

    On account of Petrov[24](Lemma 1.20,page 30),the limit of a sequence of in finitely divisible characteristic functions is in finitely divisible.Therefore,the function h(t)is de fined by(3.8)is in finitely divisible.According to[22](Theorem 5.3.2,page 109),the characteristic function f(t)in(3.7),is the product of k in finitely divisible characteristic functions.Thus,f(t)is an in finitely divisible characteristic function.The proof is complete.

    Remark 3.21It is to be noticed that every GID characteristic function is in finitely divisible(see,for instance,[20],page 242).It was deduced from Theorem 3.18 for k=1.

    4 Bounds of the Accuracy of the Approximations to the Distributions of Negative Binomial Random Sums

    We follow the notation used in[28].The symbol C(R)will denote the set of all bounded uniformly continuous functions on R with norm

    Lemma 4.1Let{Xj,j≥1}and{Yj,j≥1}be two sequences of i.i.d.random variables with E|X1|r<+∞,E|Y1|r<+∞(r∈N).Assume that the following condition

    holds for m=1,2,···,r?1(r∈N).Suppose that N is a positive integer–valued random variable,independent of all Xjand Yj(j≥1).Further,assume that E(N)<+∞.Then

    where f∈Cr(R)and‖f(r)‖=

    ProofUsing Taylor series expansion formula with Lagrange remainder for f∈Cr(R),we can assert that

    where θ∈(0,1)and x∈R.From this,for X and Y are random variables and f∈Cr(R),we conclude that

    Since|f(r)(x)|≤‖f(r)‖for any x∈R,from(4.1)it follows that

    Based on Trotter–operator’s properties[28]and applying the inequality(4.2)to sequences{Xj,j≥1}and{Yj,j≥1}of i.i.d.random variables,we obtain

    Let N be a positive integer–valued random variable,independent of all Xjand Yjfor j≥1,with E(N)<+∞.Then

    The proof is complete.

    Theorem 4.2Let X1,X2,···be a sequence of non–negative i.i.d.random variables with positive mean EX1=μ>0 and finite variance 0

    where f∈C2(R).

    ProofAccording to Example 3.11,theGis a NBID random variable.Let{Zj,j≥1}be a sequence of independent,exponential distributed random variables with parameterμ?1,independent of Np,k.It is easily seen that the characteristic function of random variables Zjis given by

    According to[7](Theorem 9.1,page 193),the characteristic function of the negative-binomial sums(p/k)is de fined by

    On account of the continuity theorem([7],Theorem 9.1,page 257),the Gamma distributed random variableGadmits the following presentation

    It is immediate that

    Applying Lemma 4.1 for r=2,we obtain

    This completes the proof.

    Remark 4.3The following results are direct consequences of Theorem 4.2.

    1.Let k∈N be a fixed number.A limit theorem for negative binomial sums of i.i.d.random variables is stated as follows

    Here and subsequently,the symbolstands for the convergence in distribution.

    2.When k=1,the Gamma distributed random variableGreduces toEμ~Exp(μ?1),an exponential distributed random variable with meanμ>0.Then

    where νp~Geo(p).Moreover,the R′enyi’s limit theorem for geometric sums of i.i.d.random variables(see e.g[20],Theorem 8.1.5,page 246)is stated as follows

    Theorem 4.4Let{Xj,j≥1}be a sequence of i.i.d.random variables with EX1=0,E()=σ2and E|X1|3=.Let Np,k~NB(p,k),independent of all Xj,j≥1.Assume that L~GLaplacewith σ>0.Then

    where f∈C3(R).

    ProofOn account of Example 3.14,L~GLaplaceis a NBID random variable.Analysis similar to that in the proof of Theorem 4.2 shows that

    where{Lj,j≥1}is a sequence of independent identically Laplace distributed random variables,independent of Np,k.It is clear that the characteristic function of Ljis given by

    According to Kotz et al.([16],page 20),since L1~Laplace,it is a simple matter to

    The proof is complete.

    Remark 4.5As immediate consequences of Theorem 4.4,we have

    1.For fixed k∈N the weak limit theorem for negative binomial sums of i.i.d.random variables is stated as follows

    2.When k=1,then

    It is worth pointing out that the Lemma 4.1 could not apply to the negative binomial sumsXj(0<α≤2),because its weak limiting distribution is Linnik law,whose absolute moments of order r are finite for 0

    where x,y∈R.For any f∈F,we have the following lemma.

    Lemma 4.6Let{Xj,j≥1}and{Yj,j≥1}be two sequences of i.i.d.random variables with E|X1|<+∞and E|Y1|<+∞.Assume that N is a positive integer-valued random variable,independent of all Xjand Yjfor j≥1.Assume that E(N)<+∞.Then,for any c0 and f∈F,there exists a positive constant M such that

    ProofSince f∈F,one has by the Taylor series expansion

    where 0<η<1 and x∈R.Since|f′(x)|≤‖f′‖for any x∈R and f∈F,for random variables X and Y with E|X|<+∞,E|Y|<+∞,we have

    According to Zolotarev-distance’s ideality(see[30]for more details),from(4.3),we obtain

    This completes the proof.

    Theorem 4.7Let{Xj,j≥1}be a sequence of i.i.d.random variables with E|X1|=ρ<+∞.Assume that Np,k~NB(p,k),independent of all Xjfor j≥1.Then,for any f∈F,there exists a positive constant M such that

    where ζ~GLinnik(α,σk?1/α,k)and 1<α<2.

    ProofOn account of Example 3.17,ζ~GLinnik(α,σk?1/α,k)is a NBID random variable.Let{ξj,j≥1}be a sequence of independent,Linnik distributed random variables with two parameters σ>0 and α∈(0,2].It is obvious that the characteristic function of ξjis given by

    Assume that Np,kis independent of all ξjfor j≥1.By an analogous to Theorem 4.2 we have

    According to Kotz et al.([16],Proposition 4.3.18,p.212),since ξ1~Linnik(α,σ),we have

    The proof is complete.

    Remark 4.8Under the assumptions of Theorem 4.7 it follows that

    1.Let k∈N be a fixed.Then

    2.When k=1 we have

    Moreover,the weak limit theorem for geometric random sum is stated as follows

    Concluding remarksWe conclude this paper with the following comments.

    1.In this paper,an extension of Zolotarev’s problem in[12]is discussed.The solution of the considered is a so-called negative binomial random sum that is equivalent to describing of negative binomial in finitely divisible(NBID)random variables.Some well known NBID distributions like Gamma,generalized Laplace and generalized Linnik distributions are shown as research examples.Estimate of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables is also research objective of this article.The obtained results are extension and generalization of several known ones related to geometric random summations of i.i.d.random variables.The mathematical tool used in study of estimates of convergence rates is Trotter-operator technique together with Zolotarev-distance’s ideality.Some analogous notions and de finitions in this paper may be found in references[13–18].

    2.An analogous result for the first point of Remark 4.7 is due to Korolev et al.in[13],using different way of proving.Theorem 6([13],page 13)is stated that

    where Nn,ν~NB(1/n,ν),ν>0,independent of Xjfor j≥1.Note that the first parameter p of NB(p,ν)is taken as p=1/n and p→0+as n→∞.

    3.The necessary and sufficient conditions of the convergence of distributions of random sums of i.i.d.random variables with finite variance to the Linnik distribution may be found in[14](Theorem 4,page 13)and[15](Theorem 4,page 9).

    AcknowledgementsThe authors are greatly indebted to Professor Kozubowski,Tomaz J.from University of Nevada(US)for providing some his publications related to Geometric In finitely Divisible(GID)laws.

    考比视频在线观看| 久久精品亚洲av国产电影网| 满18在线观看网站| 中亚洲国语对白在线视频| 久久九九热精品免费| 国产欧美日韩综合在线一区二区| 日韩制服骚丝袜av| 亚洲精品国产一区二区精华液| 高清av免费在线| 成人三级做爰电影| 青春草亚洲视频在线观看| 脱女人内裤的视频| 久久精品国产综合久久久| 一边摸一边抽搐一进一出视频| 婷婷色av中文字幕| 日本五十路高清| 两个人免费观看高清视频| 十八禁网站免费在线| 丝袜美腿诱惑在线| 1024视频免费在线观看| 69精品国产乱码久久久| 午夜老司机福利片| 国产男人的电影天堂91| 91老司机精品| 黑人操中国人逼视频| 国产成+人综合+亚洲专区| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区mp4| 老汉色∧v一级毛片| 亚洲少妇的诱惑av| 一区二区日韩欧美中文字幕| 国产精品九九99| 中文字幕另类日韩欧美亚洲嫩草| 满18在线观看网站| 一区二区av电影网| 欧美日韩一级在线毛片| 亚洲成国产人片在线观看| 成人18禁高潮啪啪吃奶动态图| 91精品国产国语对白视频| 国产成+人综合+亚洲专区| 成人av一区二区三区在线看 | 亚洲人成电影免费在线| 亚洲国产看品久久| 丰满少妇做爰视频| 岛国在线观看网站| 在线 av 中文字幕| 国产精品一区二区精品视频观看| 性色av一级| 久久精品国产a三级三级三级| 亚洲视频免费观看视频| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区91| 久久这里只有精品19| 久久久久久久久免费视频了| 99久久99久久久精品蜜桃| 免费日韩欧美在线观看| 欧美 日韩 精品 国产| 十八禁高潮呻吟视频| 在线观看人妻少妇| 一区福利在线观看| 中文字幕人妻丝袜一区二区| avwww免费| 乱人伦中国视频| 婷婷成人精品国产| 亚洲全国av大片| tube8黄色片| 欧美变态另类bdsm刘玥| 一二三四社区在线视频社区8| 大香蕉久久网| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成国产人片在线观看| 免费久久久久久久精品成人欧美视频| 丰满迷人的少妇在线观看| 大片免费播放器 马上看| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 别揉我奶头~嗯~啊~动态视频 | 日韩制服丝袜自拍偷拍| 五月开心婷婷网| 欧美日韩一级在线毛片| 精品卡一卡二卡四卡免费| 亚洲精品国产av蜜桃| 99精品欧美一区二区三区四区| 亚洲av国产av综合av卡| 国产片内射在线| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 人人妻人人澡人人爽人人夜夜| 69精品国产乱码久久久| 精品少妇内射三级| 99久久人妻综合| 亚洲精品美女久久av网站| 亚洲人成电影观看| 大码成人一级视频| 男人爽女人下面视频在线观看| 波多野结衣av一区二区av| 黑丝袜美女国产一区| 亚洲欧美成人综合另类久久久| 窝窝影院91人妻| 女人被躁到高潮嗷嗷叫费观| 日韩视频一区二区在线观看| av又黄又爽大尺度在线免费看| 老司机亚洲免费影院| 国产日韩欧美亚洲二区| 久久99一区二区三区| 狂野欧美激情性xxxx| 国产精品久久久久成人av| 新久久久久国产一级毛片| 国产男女超爽视频在线观看| 一本色道久久久久久精品综合| 久久精品国产综合久久久| 老熟女久久久| 黄频高清免费视频| 欧美另类一区| 妹子高潮喷水视频| 免费高清在线观看日韩| 777米奇影视久久| 曰老女人黄片| 国产不卡av网站在线观看| 这个男人来自地球电影免费观看| 国产99久久九九免费精品| 精品国产超薄肉色丝袜足j| 国产91精品成人一区二区三区 | 亚洲av欧美aⅴ国产| 欧美一级毛片孕妇| 两性午夜刺激爽爽歪歪视频在线观看 | 日日摸夜夜添夜夜添小说| 午夜视频精品福利| videosex国产| 可以免费在线观看a视频的电影网站| av电影中文网址| 国产在线观看jvid| 亚洲av日韩在线播放| 少妇的丰满在线观看| 久久精品国产综合久久久| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 免费在线观看黄色视频的| 丁香六月欧美| 日韩视频在线欧美| 国产精品成人在线| 精品国产国语对白av| 精品亚洲成国产av| kizo精华| www.999成人在线观看| 亚洲五月色婷婷综合| 97精品久久久久久久久久精品| 国产主播在线观看一区二区| 日韩欧美一区二区三区在线观看 | 国产精品二区激情视频| 美女大奶头黄色视频| 两人在一起打扑克的视频| 亚洲精品av麻豆狂野| 韩国高清视频一区二区三区| 久热这里只有精品99| 精品国产一区二区三区久久久樱花| 中文字幕人妻熟女乱码| av一本久久久久| 国产老妇伦熟女老妇高清| 国产野战对白在线观看| 国产精品.久久久| 欧美日韩成人在线一区二区| 欧美少妇被猛烈插入视频| 久久久久网色| 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 久久久国产成人免费| 91麻豆av在线| 色播在线永久视频| 悠悠久久av| 国产精品二区激情视频| 18在线观看网站| 国产男女内射视频| 不卡av一区二区三区| 涩涩av久久男人的天堂| 性高湖久久久久久久久免费观看| 后天国语完整版免费观看| av天堂久久9| 久久久久国产精品人妻一区二区| 亚洲精品久久成人aⅴ小说| 久久国产精品大桥未久av| 777米奇影视久久| 在线观看www视频免费| 叶爱在线成人免费视频播放| 91老司机精品| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| 国产精品久久久久成人av| 久久中文看片网| 日本wwww免费看| 亚洲欧美精品综合一区二区三区| 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | 男人操女人黄网站| a级毛片黄视频| 成年人免费黄色播放视频| 亚洲成国产人片在线观看| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 精品一品国产午夜福利视频| av片东京热男人的天堂| 欧美日韩黄片免| 精品国产一区二区三区久久久樱花| 欧美精品av麻豆av| 99国产极品粉嫩在线观看| 伊人亚洲综合成人网| 免费在线观看日本一区| 精品人妻在线不人妻| 在线观看免费日韩欧美大片| 欧美日韩国产mv在线观看视频| 亚洲视频免费观看视频| 日韩中文字幕视频在线看片| 亚洲 国产 在线| 亚洲七黄色美女视频| 老司机福利观看| 一本大道久久a久久精品| 12—13女人毛片做爰片一| 精品国产一区二区三区四区第35| 午夜福利免费观看在线| 精品国产乱码久久久久久小说| 亚洲av电影在线观看一区二区三区| 美女国产高潮福利片在线看| 国产又爽黄色视频| 久久99一区二区三区| 老司机福利观看| 97人妻天天添夜夜摸| 人妻 亚洲 视频| 1024视频免费在线观看| 亚洲欧洲精品一区二区精品久久久| 国产老妇伦熟女老妇高清| 久久精品熟女亚洲av麻豆精品| 男女边摸边吃奶| 国产高清国产精品国产三级| 丰满饥渴人妻一区二区三| 亚洲精品美女久久久久99蜜臀| 国产一区二区三区av在线| 中文字幕av电影在线播放| 日韩欧美国产一区二区入口| 在线精品无人区一区二区三| 免费人妻精品一区二区三区视频| 国产一区二区 视频在线| 超碰97精品在线观看| 美女高潮喷水抽搐中文字幕| 一区二区三区精品91| 久久久久精品国产欧美久久久 | 国产又爽黄色视频| 久久天躁狠狠躁夜夜2o2o| 青春草亚洲视频在线观看| 老汉色∧v一级毛片| 女性生殖器流出的白浆| 国产精品秋霞免费鲁丝片| av电影中文网址| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 精品国内亚洲2022精品成人 | 操出白浆在线播放| 91九色精品人成在线观看| 啦啦啦免费观看视频1| 69av精品久久久久久 | 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 美女高潮喷水抽搐中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产三级国产专区5o| 欧美日韩亚洲综合一区二区三区_| 午夜久久久在线观看| 欧美 日韩 精品 国产| 中国美女看黄片| 精品少妇内射三级| 在线天堂中文资源库| 久久久久精品国产欧美久久久 | 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区mp4| 欧美日韩国产mv在线观看视频| 亚洲av美国av| www.熟女人妻精品国产| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看 | 日本wwww免费看| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 一二三四在线观看免费中文在| 日本精品一区二区三区蜜桃| 婷婷丁香在线五月| 午夜福利视频在线观看免费| 亚洲欧美成人综合另类久久久| 精品国产超薄肉色丝袜足j| 伊人亚洲综合成人网| 无限看片的www在线观看| 大香蕉久久网| 一级毛片精品| 亚洲国产日韩一区二区| 青春草亚洲视频在线观看| h视频一区二区三区| av片东京热男人的天堂| 十八禁高潮呻吟视频| 最黄视频免费看| 一边摸一边做爽爽视频免费| av超薄肉色丝袜交足视频| 一本综合久久免费| 亚洲性夜色夜夜综合| 日日夜夜操网爽| 亚洲国产精品999| 国产亚洲欧美精品永久| 亚洲第一av免费看| 国产97色在线日韩免费| 国产亚洲av片在线观看秒播厂| 久久香蕉激情| 欧美日韩亚洲高清精品| 最黄视频免费看| 丰满饥渴人妻一区二区三| 国产精品 国内视频| 老司机深夜福利视频在线观看 | www日本在线高清视频| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频 | 波多野结衣一区麻豆| 丝袜脚勾引网站| 日本a在线网址| 少妇猛男粗大的猛烈进出视频| 国产精品二区激情视频| 精品国产乱子伦一区二区三区 | 91精品国产国语对白视频| 99国产精品免费福利视频| 欧美大码av| 久久精品国产亚洲av香蕉五月 | 性少妇av在线| av线在线观看网站| 精品国产一区二区久久| 韩国精品一区二区三区| 亚洲伊人久久精品综合| 涩涩av久久男人的天堂| 亚洲精品乱久久久久久| 久久国产精品男人的天堂亚洲| 十分钟在线观看高清视频www| 亚洲伊人色综图| 欧美日韩一级在线毛片| 成年av动漫网址| 麻豆国产av国片精品| 国产亚洲一区二区精品| 国产黄频视频在线观看| 在线观看www视频免费| 亚洲av国产av综合av卡| 亚洲欧美激情在线| 中文欧美无线码| 动漫黄色视频在线观看| 麻豆国产av国片精品| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 国产日韩欧美视频二区| 免费看十八禁软件| 日韩中文字幕欧美一区二区| 久久性视频一级片| 老汉色∧v一级毛片| 国产av又大| 亚洲成人免费电影在线观看| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 国产熟女午夜一区二区三区| 亚洲精品国产av蜜桃| 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| a在线观看视频网站| 9热在线视频观看99| 男女免费视频国产| 亚洲午夜精品一区,二区,三区| 纵有疾风起免费观看全集完整版| 狂野欧美激情性bbbbbb| 亚洲五月婷婷丁香| 韩国高清视频一区二区三区| 69精品国产乱码久久久| 久久精品国产a三级三级三级| 国产一区二区在线观看av| 老熟女久久久| 国产97色在线日韩免费| 极品少妇高潮喷水抽搐| 亚洲第一欧美日韩一区二区三区 | a级片在线免费高清观看视频| 高清在线国产一区| 高清视频免费观看一区二区| 高潮久久久久久久久久久不卡| 国产一区二区三区综合在线观看| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲午夜精品一区,二区,三区| 精品福利永久在线观看| 一边摸一边做爽爽视频免费| 亚洲熟女精品中文字幕| 少妇粗大呻吟视频| 日本wwww免费看| 男女午夜视频在线观看| 午夜激情久久久久久久| 午夜免费观看性视频| 国产片内射在线| 国产主播在线观看一区二区| 美女主播在线视频| 狂野欧美激情性bbbbbb| 国产免费现黄频在线看| 欧美日韩亚洲国产一区二区在线观看 | 丝袜在线中文字幕| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 国产精品国产av在线观看| 女人精品久久久久毛片| 欧美 日韩 精品 国产| 久久天躁狠狠躁夜夜2o2o| 亚洲专区字幕在线| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡| 亚洲国产看品久久| 色婷婷av一区二区三区视频| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 久久精品亚洲熟妇少妇任你| 成人亚洲精品一区在线观看| 人人妻人人添人人爽欧美一区卜| 精品人妻在线不人妻| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 国产97色在线日韩免费| 亚洲精品久久成人aⅴ小说| 亚洲欧洲精品一区二区精品久久久| 午夜福利,免费看| 91老司机精品| 亚洲精品一二三| 国产精品欧美亚洲77777| 亚洲国产毛片av蜜桃av| 日本wwww免费看| 国产深夜福利视频在线观看| 婷婷丁香在线五月| 亚洲精品一二三| 亚洲 欧美一区二区三区| 精品久久久久久久毛片微露脸 | 亚洲专区字幕在线| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 91av网站免费观看| 97精品久久久久久久久久精品| 中文欧美无线码| 男人舔女人的私密视频| 久久久久久亚洲精品国产蜜桃av| 久久精品aⅴ一区二区三区四区| 亚洲国产精品一区三区| 性高湖久久久久久久久免费观看| 亚洲专区字幕在线| 亚洲精品日韩在线中文字幕| 久久久久久人人人人人| e午夜精品久久久久久久| 欧美在线黄色| 黄片播放在线免费| 色94色欧美一区二区| 国产在视频线精品| 亚洲国产欧美一区二区综合| 激情视频va一区二区三区| 精品国产乱码久久久久久小说| 国产野战对白在线观看| 男女国产视频网站| 亚洲精品美女久久av网站| 91九色精品人成在线观看| 天天操日日干夜夜撸| 韩国高清视频一区二区三区| 日韩制服骚丝袜av| 欧美黑人精品巨大| av国产精品久久久久影院| 99国产综合亚洲精品| 黄色视频在线播放观看不卡| 欧美人与性动交α欧美精品济南到| av天堂在线播放| 2018国产大陆天天弄谢| 欧美黄色片欧美黄色片| 国产免费一区二区三区四区乱码| 欧美精品一区二区大全| 悠悠久久av| 首页视频小说图片口味搜索| 蜜桃在线观看..| 啦啦啦视频在线资源免费观看| 肉色欧美久久久久久久蜜桃| 99热全是精品| 欧美精品一区二区免费开放| 久久久精品区二区三区| 在线观看免费日韩欧美大片| 国产亚洲av高清不卡| 国产精品久久久久久人妻精品电影 | 欧美另类亚洲清纯唯美| 国产日韩欧美亚洲二区| 中国美女看黄片| 男人爽女人下面视频在线观看| 亚洲人成77777在线视频| 亚洲av电影在线观看一区二区三区| 日韩精品免费视频一区二区三区| 日韩中文字幕视频在线看片| 少妇精品久久久久久久| 亚洲国产av新网站| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| 亚洲伊人色综图| 亚洲伊人久久精品综合| 十八禁高潮呻吟视频| av片东京热男人的天堂| 波多野结衣av一区二区av| 十分钟在线观看高清视频www| 日本91视频免费播放| 少妇的丰满在线观看| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| av欧美777| 一级毛片电影观看| 久久亚洲精品不卡| 中文字幕最新亚洲高清| 999精品在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久av美女十八| 欧美一级毛片孕妇| 久久狼人影院| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三 | 亚洲精品一区蜜桃| 女人精品久久久久毛片| 新久久久久国产一级毛片| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美色中文字幕在线| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 人人澡人人妻人| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 一个人免费在线观看的高清视频 | 国产欧美日韩一区二区三区在线| 欧美日韩一级在线毛片| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频 | 国产成人影院久久av| 啦啦啦啦在线视频资源| 国产精品偷伦视频观看了| 自线自在国产av| 在线av久久热| 国产精品麻豆人妻色哟哟久久| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| 老司机福利观看| 少妇被粗大的猛进出69影院| 丰满迷人的少妇在线观看| 在线天堂中文资源库| 黑人操中国人逼视频| 天堂中文最新版在线下载| 水蜜桃什么品种好| 久久性视频一级片| 中文字幕制服av| 女警被强在线播放| 国产亚洲av片在线观看秒播厂| 高清av免费在线| 1024香蕉在线观看| 久久99热这里只频精品6学生| 国产精品一区二区在线观看99| 无限看片的www在线观看| 欧美日韩亚洲综合一区二区三区_| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧洲日产国产| 国产成人精品在线电影| 亚洲中文字幕日韩| 日韩中文字幕视频在线看片| 国产一区二区三区综合在线观看| 高清欧美精品videossex| 久久久久久久久久久久大奶| 水蜜桃什么品种好| 中文字幕人妻丝袜一区二区| 久久精品成人免费网站| 热re99久久国产66热| 亚洲第一青青草原| 制服人妻中文乱码| 精品少妇黑人巨大在线播放| 亚洲成人手机| 欧美xxⅹ黑人| 亚洲欧美日韩另类电影网站| 成人黄色视频免费在线看| 久久久久久久国产电影| 99热网站在线观看| 一区福利在线观看| 欧美久久黑人一区二区| 大香蕉久久网| 国产精品久久久久成人av| 久久精品成人免费网站| 12—13女人毛片做爰片一| 少妇人妻久久综合中文| 日韩电影二区| 一级毛片电影观看| 亚洲精品美女久久av网站| 一区二区三区乱码不卡18| 久久久久久久久久久久大奶| 婷婷成人精品国产| 国产一区二区在线观看av| 国产欧美日韩一区二区三区在线| 一级,二级,三级黄色视频| 婷婷色av中文字幕| 成人国语在线视频| 高清视频免费观看一区二区| 手机成人av网站| 极品人妻少妇av视频| 午夜免费观看性视频| 一级毛片女人18水好多| 亚洲九九香蕉| 另类精品久久| av网站在线播放免费| 岛国毛片在线播放| 一本大道久久a久久精品| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 永久免费av网站大全| 韩国高清视频一区二区三区|