• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HYERS–ULAM STABILITY OF SECOND-ORDER LINEAR DYNAMIC EQUATIONS ON TIME SCALES?

    2021-10-28 05:45:36DouglasANDERSON

    Douglas R.ANDERSON

    Department of Mathematics,Concordia College,Moorhead,MN 56562 USA

    E-mail:andersod@cord.edu

    Masakazu ONITSUKA

    Department of Applied Mathematics,kayama University of Science,Okayama,700-0005,Japan

    E-mail:onitsuka@xmath.ous.ac.jp

    Abstract We investigate the Hyers–Ulam stability(HUS)of certain second-order linear constant coefficient dynamic equations on time scales,building on recent results for firstorder constant coefficient time-scale equations.In particular,for the case where the roots of the characteristic equation are non-zero real numbers that are positively regressive on the time scale,we establish that the best HUS constant in this case is the reciprocal of the absolute product of these two roots.Conditions for instability are also given.

    Key words stability;second order;Hyers–Ulam;time scales

    1 Introduction

    The story of Ulam and Hyers–Ulam stability(HUS)is recounted in many papers dealing with the subject,as has the development of dynamic equations on time scales.In this work,we continue the connection between those two areas by extending recent results on HUS for first-order time scale equations with constant coefficient[1],to second-order dynamic equations with constant coefficients.Other papers exploring HUS for dynamic equations on time scales include[2–6].With a more general view,[7]established Ulam–type stability for a first-order equation using measure theory.

    First,a brief review of time scales.Any closed,nonempty subset of the real line R is a time scale[11].For example,R,hZ,and N are common examples of time scales.In this paper,we denote a time scale by T.We de fine the jump operators σ,ρ:T→T by

    Setμ(t)=σ(t)?t.The point t∈T is called right-scattered,right-dense,left-dense,leftscattered if σ(t)>t,σ(t)=t,ρ(t)=t,ρ(t)0,then σ(t)=t+h,ρ(t)=t?h,andμ(t)=h hold for any t∈hZ;that is,all t∈hZ are right and left-scattered.De fine the set Tby T=T?{M}if T has a left-scattered maximum M;if not,then T=T.Let t∈Tand f:T→R.The delta derivative at t of f is de fined by the following:For any ε>0,there is a neighborhood B of t for which

    In this study,we call it the?-derivative product rule.

    Initially,we focus on the first-order linear dynamic equation

    Theorem 1.1

    ([1,Theorem 3.7]) Let t∈T and ε>0 be given.Suppose a function φ:T→R that is delta-differentiable on Tsatis fies

    Remark 1.2

    Since T is any closed,nonempty subset of R,we have the following facts:supT<∞if and only if maxT exists,and thus,supT=maxT holds;supT=∞if and only if maxT does not exist;inf T>?∞if and only if minT exists,and thus,inf T=minT holds;inf T=?∞if and only if minT does not exist.

    2 First-order Non-homogeneous Linear Dynamic Equations

    A function f:T→R is said to be rd-continuous if it is continuous at all right-dense points in T and its left-sided limit exists(fi nite)at left-dense points of T.If f is rd-continuous,then there is a function F such that F=f(see,[11]).We de fine

    where C is an arbitrary constant of integration.Next,consider the first-order non-homogeneous linear dynamic equation

    where the function f is rd-continuous on T.Theorem 1.1 is improved as follows.

    Theorem 2.1

    Let t∈T and ε>0 be given.Suppose a function φ:T→R that is delta-differentiable on Tsatis fies

    Before proving the theorem,we give two lemmas as follows.

    Lemma 2.2

    ([11,Theorem 6.2]) Let t∈T.If a∈R,then the inequality

    holds for all t∈[t,∞).

    Lemma 2.3

    ([1,Lemma 3.5]) Let t∈T.If a∈Rand a<0,then the inequality

    holds for all t∈(?∞,t].

    Proof of Theorem 2.1

    Given any ε>0,let φ:T→R satisfy

    Fix t∈T,and let

    Then,?is a particular solution of(2.1).We see,moreover,that

    follows from the?-derivative product rule.Let y(t)=φ(t)??(t).Then,

    holds for all t∈T.

    for all t∈T.This is a contradiction of the fact that e(t,t)→∞as t→∞by Lemma 2.2.

    The arguments given above for(i)and(ii)can be modi fied to establish the validity of(iii)and(iv);the details are omitted.Note here that the uniqueness of the solution x in(iv)is shown by using Lemma 2.3.This completes the proof.

    In a de finition analogous to that given for the homogeneous equation(1.1),equation(2.1)is Hyers–Ulam stable(HUS)on T if and only if there exists a constant K>0 satisfying the following property.For any ε>0,if some function φ:T→R satis fies|φ(t)?aφ(t)?f(t)|≤ε for all t∈T,then there exists some solution x:T→R of(2.1)such that|φ(t)?x(t)|≤Kε for all t∈T.By Theorem 2.1,we get a simple result,immediately.

    For the cases a<0 with inf T>?∞or inf T=?∞,we can use Theorem 2.1(iii)and(iv),so that,(2.1)has HUS on T when a<0 as well.

    Proof

    Let t∈T.For arbitrary ε>0,let φ:T→R be given by

    Corollary 2.4 and Theorem 2.5 imply the following theorem,immediately.

    Remark 2.7

    Almost at the same time as the start of this study,Shen and Li[12]gave a result similar to Theorem 2.1.The difference from their result is that the integral that appears in Theorem 2.1 is the inde finite integral.Therefore,our result is represented by any primitive function.Furthermore,in this study,we deal with the best(minimum)value of the HU-stability constant.Shen and Li[12]do not study the minimum HUS constant for(2.1)on T.For this reason,the originality of this section is guaranteed.If we can obtain the minimum HUS constant,then it is often called the best HUS constant or the best constant.For the best constant for functional equations and some positive linear operators,see Popa and Ra?sa[13,14].For linear differential equations and linear difference equations,the papers[15–18]are representative of recent results.

    3 Second-Order Linear Dynamic Equations

    Using the previous results on first-order linear dynamic equations,in this section we focus on the second-order linear constant coefficient dynamic equation

    where α and β are real numbers and f:T→R is rd-continuous.Here,the set Tis de fined by T=T?{M,M}if T and Thave left-scattered maximums M and M,respectively;T=Tif T has a left-scattered maximum M,but Tdoes not have a left-scattered maximum;T=T if T does not have a left-scattered maximum.Note here that if T does not have a left-scattered maximum,then T=T,so that,Tdoes not have a left-scattered maximum.We say that(3.1)is Hyers–Ulam stable(HUS)on T if and only if there exists some constant K>0 with the following property.For arbitrary ε>0,if some function φ:T→R satis fies

    for all t∈T,then there exists some solution x:T→R of(3.1)such that|φ(t)?x(t)|≤Kε for all t∈T.Any such constant K is called an HUS constant for(3.1)on T.Hyers–Ulam stability for second-order linear constant coefficient difference equations,differential equations,and dynamic equations on times scales were studied in[19–26].In addition,Hyers–Ulam stability for second-order non-constant coefficient differential equations,functional differential equations,and dynamic equations were discussed in[27–31].The first result for(3.1)is as follows.

    Proof

    Set ψ(t):=φ(t)?λφ(t)for t∈T.Since φand φ are delta-differentiable,we get

    for all t∈T.Using Corollary 2.4 with(3.2),a solution y:T→R of

    for all t∈T.Since y is a solution of(3.3),y is delta-differentiable,and thus y is rd-continuous on T.Using Corollary 2.4 with(3.4),a solution x:T→R of

    for t∈T.This completes the proof.

    Theorem 3.2

    Suppose that supT=∞and inf T=?∞,and that the characteristic equation λ+αλ+β=0 for(3.1)has non-zero real roots λand λwith λ,λ∈R.Let t∈T and ε>0 be given.If a twice?-differentiable function φ:T→R satis fies

    so that the assertion is established.Next,consider the case λ=λ.By[11,Theorem 2.36],it is known that

    Using this,the assertion is true.

    From[11,Theorems 3.16 and 3.34]the following lemma is immediately true.

    Lemma 3.4

    For(3.1),assume the characteristic equation λ+αλ+β=0 has non-zero real roots λand λwith λ,λ∈R.Let t∈T.Then,the general solution of(3.1)is given by:

    where Cand Care arbitrary constants.

    Lemma 3.5

    ([1,Lemma 5.2]) Assume a∈Rwith a<0,and let t∈T.Then,the inequality

    holds for all t∈[t,∞).

    Lemma 3.6

    Assume a>0,and let t∈T.Then,the inequality

    holds for all t∈(?∞,t].

    Proof

    Let

    for all t∈(?∞,t],then y(t)=0.We will show that y(t)≥0 for all t∈(?∞,t].Using the?-derivative quotient rule,we have

    for all t∈(?∞,t).Note here that t≤σ(t)≤tfrom t0 and e(t,t)=1 implies that

    and thus,y(t)≤0 for all t∈(?∞,t).Consequently,we obtain y(t)≥0 for all t∈(?∞,t],completing the proof.

    Lemmas 2.2,2.3,3.5 and 3.6 imply the following lemma.

    (i)If supT=∞,then

    (ii)If inf T=?∞,then

    Proof

    First,we consider case(i).By(3.7),(3.8)and λ,λ∈R,we have

    for all t∈T.Using this inequality,we get

    for all t∈[t,∞).This together with(3.9)implies that

    for all t∈[t,∞),and thus,

    for all t∈[t,∞).Therefore,we get

    Next,we consider case(ii).In the same way,we have

    for all t∈T.From this,we get

    for all t∈(?∞,t].This together with(3.10)implies that

    for all t∈(?∞,t],and thus,

    for all t∈(?∞,t].Therefore,we get

    Remark 3.9

    Let λ∈R.If T=R and t=0,thenμ(t)=0,so that we have

    If T=hZ and t=0,thenμ(t)=h,so that we have

    From these facts,we say that the assumptions

    in Theorem 3.2 and Lemma 3.8 are natural conditions.

    Proof of Theorem 3.2

    Set ψ(t):=φ(t)?λφ(t)for t∈T.Then,we get(3.2)for all t∈T.

    from Lemma 3.3,where C is an arbitrary constant.

    from Lemma 3.3,where C is any constant,and F is de fined by(3.11).

    To end this section,we give instability results for the homogeneous version of(3.1),under certain assumptions on the characteristic roots and their corresponding dynamic exponential functions.

    Theorem 3.10

    Assume supT=∞.The second-order homogeneous dynamic equation

    for any choice of cand c.This ends the proof.

    Theorem 3.11

    Assume supT=∞,and fix t∈T.If λ∈R but not positively regressive,with m≤|e(t,t)|≤M for all t∈T,for some 0

    4 Minimum HUS Constant

    From Remark 3.9,we get the following corollaries.

    Remark 4.3

    In[17],Baias and Popa studied the Hyers–Ulam stability of the second order linear differential operator.When restricted to the case where the characteristic equation has non-zero real roots,a result given in[17]matches Corollary 4.2.Note that they are also considering the case of complex roots.

    Remark 4.5

    When T=hZ,the condition λ,λ∈Rmeans that 1+λh>0 and 1+λh>0.Since λand λare non-zero real roots of(3.1),we have

    for i∈{1,2}.Under this condition,using a result in[18],we can obtain the same best HUS constant given in Corollary 4.4.

    5 Conclusion and Future Direction

    This study deals with conditions under which second-order linear dynamic equations on time scales with constant coefficients are Hyers–Ulam stable(HUS),but also unstable in other cases.To achieve this goal,HUS for first-order non-homogeneous linear dynamic equations is established first.Moreover,the best HUS constant is obtained in some cases.By using the results,a sufficient condition for HUS and the main theorem related to HUS are obtained.It is also shown that an HUS constant obtained here is the best one.Finally,the results for several time scales are introduced.

    The stability results presented here cover only the case where the characteristic equation has non-zero real roots,with instability in the zero-root case,because these results depend on the results of the first-order dynamic equation.If one can obtain HUS results for the complexvalued dynamic equations of first-order,one will obtain some results for the case where the characteristic equation has complex roots,by using the same methods.

    久久国产精品男人的天堂亚洲 | 国产成人精品无人区| 99热全是精品| av国产精品久久久久影院| 国产精品99久久久久久久久| 亚洲人与动物交配视频| av天堂久久9| 男女免费视频国产| 国产深夜福利视频在线观看| 久久影院123| 大香蕉久久成人网| 国产精品一区二区在线观看99| 午夜视频国产福利| 成年av动漫网址| 一级毛片黄色毛片免费观看视频| 51国产日韩欧美| 大香蕉97超碰在线| 精品少妇内射三级| 国精品久久久久久国模美| 午夜老司机福利剧场| 亚洲婷婷狠狠爱综合网| 国产免费一区二区三区四区乱码| 国产免费一区二区三区四区乱码| 99久国产av精品国产电影| 免费日韩欧美在线观看| 亚洲人与动物交配视频| 国产乱来视频区| 国产老妇伦熟女老妇高清| 大码成人一级视频| 黄片无遮挡物在线观看| 看免费成人av毛片| 亚洲欧美成人精品一区二区| 久久久久久久国产电影| 在线免费观看不下载黄p国产| 最近中文字幕高清免费大全6| 一区二区av电影网| 亚洲精品aⅴ在线观看| 在线精品无人区一区二区三| 久久狼人影院| 乱人伦中国视频| 久久人人爽人人片av| 国模一区二区三区四区视频| 黄片播放在线免费| 亚洲国产精品专区欧美| 国产熟女午夜一区二区三区 | 国产男女超爽视频在线观看| 伊人久久国产一区二区| 国产精品一区www在线观看| 成人无遮挡网站| 青青草视频在线视频观看| 亚洲国产欧美在线一区| 国产一区亚洲一区在线观看| 久久ye,这里只有精品| 免费大片18禁| 精品少妇内射三级| 视频区图区小说| 国产精品国产三级专区第一集| 亚洲精品,欧美精品| 日韩精品有码人妻一区| 亚洲欧美成人综合另类久久久| 亚洲色图 男人天堂 中文字幕 | 亚洲精华国产精华液的使用体验| 亚洲国产日韩一区二区| 国产av精品麻豆| 亚洲av日韩在线播放| 男人操女人黄网站| 久久精品久久久久久噜噜老黄| 18禁裸乳无遮挡动漫免费视频| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产av玫瑰| 免费久久久久久久精品成人欧美视频 | √禁漫天堂资源中文www| 多毛熟女@视频| 天美传媒精品一区二区| 毛片一级片免费看久久久久| 一本大道久久a久久精品| 亚洲欧美一区二区三区国产| 亚洲国产成人一精品久久久| 夜夜骑夜夜射夜夜干| 免费av中文字幕在线| 国产免费福利视频在线观看| 99久久人妻综合| 色视频在线一区二区三区| 亚洲精品,欧美精品| 国产欧美日韩一区二区三区在线 | 亚洲国产最新在线播放| 久久人人爽av亚洲精品天堂| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产一区二区| 国产精品一区二区在线不卡| 久久人人爽av亚洲精品天堂| 亚洲,一卡二卡三卡| 国产成人免费无遮挡视频| 91精品伊人久久大香线蕉| 午夜老司机福利剧场| 精品人妻熟女av久视频| 婷婷色av中文字幕| 老女人水多毛片| 欧美一级a爱片免费观看看| 中国美白少妇内射xxxbb| 在线观看人妻少妇| 夜夜爽夜夜爽视频| 飞空精品影院首页| 国语对白做爰xxxⅹ性视频网站| 黄片播放在线免费| 国产男人的电影天堂91| 五月伊人婷婷丁香| 国产极品天堂在线| av.在线天堂| 免费大片黄手机在线观看| 亚洲久久久国产精品| 少妇被粗大的猛进出69影院 | 亚洲色图综合在线观看| 丰满迷人的少妇在线观看| 国产成人免费观看mmmm| 日韩精品有码人妻一区| 免费观看a级毛片全部| 91国产中文字幕| 两个人的视频大全免费| 亚洲美女黄色视频免费看| 亚洲av.av天堂| 丰满乱子伦码专区| 亚洲婷婷狠狠爱综合网| 久久国内精品自在自线图片| 人妻系列 视频| 女的被弄到高潮叫床怎么办| 国产日韩欧美亚洲二区| 午夜免费男女啪啪视频观看| 欧美日韩综合久久久久久| 久久久久久久久久久久大奶| 精品国产一区二区久久| 久久精品久久久久久噜噜老黄| 成人手机av| 亚洲av.av天堂| 亚洲精品视频女| 久久热精品热| av播播在线观看一区| 免费不卡的大黄色大毛片视频在线观看| 人妻一区二区av| 热99久久久久精品小说推荐| 夜夜爽夜夜爽视频| 免费人成在线观看视频色| 另类亚洲欧美激情| 夫妻性生交免费视频一级片| 视频在线观看一区二区三区| 亚洲伊人久久精品综合| 精品久久国产蜜桃| 一区二区三区四区激情视频| a级毛片黄视频| 丰满饥渴人妻一区二区三| 亚洲精品乱码久久久v下载方式| 人妻 亚洲 视频| 成人亚洲精品一区在线观看| 中文天堂在线官网| 国产熟女午夜一区二区三区 | 晚上一个人看的免费电影| 国产又色又爽无遮挡免| 看免费成人av毛片| 人成视频在线观看免费观看| 国产熟女欧美一区二区| 亚洲精品美女久久av网站| 国产有黄有色有爽视频| 最新的欧美精品一区二区| 男的添女的下面高潮视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级黄片播放器| 国产免费视频播放在线视频| 国产成人91sexporn| 18禁裸乳无遮挡动漫免费视频| 女人精品久久久久毛片| 又粗又硬又长又爽又黄的视频| 久久ye,这里只有精品| 热re99久久国产66热| 日韩 亚洲 欧美在线| 国产精品蜜桃在线观看| 一级毛片aaaaaa免费看小| 国产免费现黄频在线看| 亚洲精品日韩在线中文字幕| 国产一区二区在线观看av| 国产视频首页在线观看| 最后的刺客免费高清国语| 丰满饥渴人妻一区二区三| 亚洲欧美色中文字幕在线| 在线播放无遮挡| 久久久久久久久久成人| 亚洲国产精品999| 中国美白少妇内射xxxbb| 在线精品无人区一区二区三| 高清视频免费观看一区二区| 中文字幕亚洲精品专区| 九九爱精品视频在线观看| 亚洲精品一区蜜桃| 新久久久久国产一级毛片| 久久国产精品男人的天堂亚洲 | 九九爱精品视频在线观看| 99久久人妻综合| 亚洲国产成人一精品久久久| 在线亚洲精品国产二区图片欧美 | 久久99一区二区三区| 亚洲第一区二区三区不卡| 亚洲av二区三区四区| 国产精品偷伦视频观看了| 青春草亚洲视频在线观看| 久久国内精品自在自线图片| 亚洲美女搞黄在线观看| 黄色配什么色好看| 中文欧美无线码| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 国产淫语在线视频| 肉色欧美久久久久久久蜜桃| 成人国语在线视频| 国内精品宾馆在线| 99热这里只有精品一区| 国产精品99久久久久久久久| 纵有疾风起免费观看全集完整版| 久久久久久伊人网av| 有码 亚洲区| 久久影院123| 视频中文字幕在线观看| 18禁在线无遮挡免费观看视频| 在线免费观看不下载黄p国产| 秋霞伦理黄片| 高清午夜精品一区二区三区| 久久精品国产自在天天线| 91久久精品国产一区二区三区| 久久综合国产亚洲精品| 日韩成人av中文字幕在线观看| av女优亚洲男人天堂| 国产日韩欧美亚洲二区| 老司机影院毛片| 日本午夜av视频| xxx大片免费视频| 美女cb高潮喷水在线观看| 如何舔出高潮| 国产精品人妻久久久久久| 亚洲精品自拍成人| 午夜久久久在线观看| 99久国产av精品国产电影| av线在线观看网站| 少妇高潮的动态图| 纵有疾风起免费观看全集完整版| 九九久久精品国产亚洲av麻豆| 在线观看免费高清a一片| 久久97久久精品| 日本黄色片子视频| av在线老鸭窝| 成人二区视频| 美女cb高潮喷水在线观看| 亚洲国产最新在线播放| 久久97久久精品| 2018国产大陆天天弄谢| 亚洲精品亚洲一区二区| 制服丝袜香蕉在线| 制服丝袜香蕉在线| 大香蕉久久成人网| 欧美日韩成人在线一区二区| 国产国拍精品亚洲av在线观看| 中国国产av一级| 精品少妇内射三级| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 蜜臀久久99精品久久宅男| 亚洲一级一片aⅴ在线观看| 国模一区二区三区四区视频| 久久精品国产亚洲av天美| 国产伦理片在线播放av一区| 永久免费av网站大全| 26uuu在线亚洲综合色| 久久人人爽人人爽人人片va| 成人无遮挡网站| 久久久久久久久久久丰满| 久久国产精品大桥未久av| 国产成人91sexporn| 性色avwww在线观看| av在线app专区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人一区二区在线| 高清视频免费观看一区二区| 久久女婷五月综合色啪小说| 成人毛片60女人毛片免费| 黄片无遮挡物在线观看| 国产国语露脸激情在线看| 免费不卡的大黄色大毛片视频在线观看| 免费大片18禁| 色婷婷久久久亚洲欧美| 中文字幕亚洲精品专区| 免费看不卡的av| 狠狠婷婷综合久久久久久88av| 日本av免费视频播放| 九色成人免费人妻av| 高清不卡的av网站| 狂野欧美白嫩少妇大欣赏| 国产乱人偷精品视频| 午夜福利,免费看| 纵有疾风起免费观看全集完整版| 国产免费福利视频在线观看| 国产黄频视频在线观看| 啦啦啦在线观看免费高清www| 国模一区二区三区四区视频| av线在线观看网站| 国产色爽女视频免费观看| 免费人成在线观看视频色| 熟女av电影| 久久久国产精品麻豆| 国产免费一级a男人的天堂| av在线观看视频网站免费| 亚洲av男天堂| 九色成人免费人妻av| 天堂8中文在线网| 丰满少妇做爰视频| 亚洲欧美一区二区三区国产| 亚洲国产色片| 高清不卡的av网站| 一级毛片电影观看| 一本—道久久a久久精品蜜桃钙片| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| xxxhd国产人妻xxx| 插阴视频在线观看视频| 午夜激情福利司机影院| 亚洲av综合色区一区| 建设人人有责人人尽责人人享有的| 下体分泌物呈黄色| 三级国产精品片| 精品人妻一区二区三区麻豆| 久久婷婷青草| 欧美日本中文国产一区发布| 国产一区二区在线观看日韩| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| 中文字幕人妻熟人妻熟丝袜美| 男女免费视频国产| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 99re6热这里在线精品视频| 亚洲精品日韩av片在线观看| 午夜老司机福利剧场| 久久婷婷青草| 国产午夜精品久久久久久一区二区三区| 国产日韩一区二区三区精品不卡 | 在线观看免费视频网站a站| 久久99精品国语久久久| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 久久久久久久久久久久大奶| av天堂久久9| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av| 亚洲伊人久久精品综合| 日本猛色少妇xxxxx猛交久久| 亚洲精品av麻豆狂野| 亚洲四区av| 亚洲伊人久久精品综合| 亚州av有码| 成人18禁高潮啪啪吃奶动态图 | av女优亚洲男人天堂| 久久久久久久大尺度免费视频| 亚洲国产毛片av蜜桃av| 亚洲无线观看免费| 欧美精品一区二区大全| 亚洲综合色网址| 日韩欧美精品免费久久| 久久久久久久久久久丰满| 亚洲欧美一区二区三区黑人 | 精品亚洲乱码少妇综合久久| 国产av精品麻豆| 爱豆传媒免费全集在线观看| 亚洲国产色片| 人妻一区二区av| 最黄视频免费看| 精品少妇内射三级| 精品亚洲成a人片在线观看| 在线看a的网站| 日韩中文字幕视频在线看片| 亚洲国产色片| 午夜福利,免费看| 美女主播在线视频| 美女xxoo啪啪120秒动态图| 女性被躁到高潮视频| 久久久久久久久久久丰满| 亚洲成人av在线免费| 国产 一区精品| 久久久久人妻精品一区果冻| 亚洲av免费高清在线观看| 久久久久久久久久久丰满| 九草在线视频观看| 永久免费av网站大全| 日韩中文字幕视频在线看片| 美女cb高潮喷水在线观看| 一个人免费看片子| 制服丝袜香蕉在线| 国产精品免费大片| 久久精品夜色国产| 色5月婷婷丁香| 亚洲熟女精品中文字幕| 啦啦啦中文免费视频观看日本| 久久久精品区二区三区| 99国产精品免费福利视频| 如日韩欧美国产精品一区二区三区 | 成人午夜精彩视频在线观看| 99国产综合亚洲精品| 亚洲av男天堂| 国产精品久久久久久av不卡| 久久久久久久大尺度免费视频| 日本黄色日本黄色录像| 国产精品无大码| 黄色毛片三级朝国网站| 国产免费又黄又爽又色| 中文欧美无线码| 国内精品宾馆在线| kizo精华| 精品久久久久久久久亚洲| 精品卡一卡二卡四卡免费| 青春草视频在线免费观看| 又大又黄又爽视频免费| 精品人妻熟女av久视频| 看免费成人av毛片| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久免费av| 九色成人免费人妻av| 在线亚洲精品国产二区图片欧美 | 少妇丰满av| 亚洲精品国产色婷婷电影| 狂野欧美激情性bbbbbb| 少妇被粗大的猛进出69影院 | 亚洲精华国产精华液的使用体验| 人人妻人人澡人人看| 久久久久精品性色| 国产免费现黄频在线看| av一本久久久久| 精品亚洲成国产av| 视频在线观看一区二区三区| 久久久久久伊人网av| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 3wmmmm亚洲av在线观看| 国产极品粉嫩免费观看在线 | 国产成人a∨麻豆精品| 秋霞伦理黄片| 少妇人妻 视频| 免费观看性生交大片5| 视频中文字幕在线观看| 纯流量卡能插随身wifi吗| 高清视频免费观看一区二区| 日韩中文字幕视频在线看片| 丝袜美足系列| av线在线观看网站| 老司机影院毛片| 搡女人真爽免费视频火全软件| 久久午夜福利片| 亚洲精品乱码久久久v下载方式| 国产免费一级a男人的天堂| 97超视频在线观看视频| 精品一区二区三区视频在线| 国产伦理片在线播放av一区| 99热网站在线观看| 水蜜桃什么品种好| 国产 精品1| kizo精华| 国产成人91sexporn| 国产精品国产三级国产专区5o| 99精国产麻豆久久婷婷| 亚洲av电影在线观看一区二区三区| 飞空精品影院首页| 18在线观看网站| 亚洲欧美清纯卡通| 亚洲在久久综合| 亚洲国产av影院在线观看| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 欧美精品一区二区大全| 精品久久久精品久久久| 91精品一卡2卡3卡4卡| 精品久久蜜臀av无| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 99九九在线精品视频| 尾随美女入室| 亚洲综合色网址| 99热这里只有精品一区| 美女大奶头黄色视频| 久久午夜福利片| 97超碰精品成人国产| 女人精品久久久久毛片| 欧美3d第一页| 久久免费观看电影| 中文字幕精品免费在线观看视频 | 国产乱人偷精品视频| 亚洲av中文av极速乱| 丰满少妇做爰视频| 少妇高潮的动态图| 久久精品久久精品一区二区三区| 在线播放无遮挡| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 一个人看视频在线观看www免费| 久久久国产一区二区| 九九爱精品视频在线观看| 国产极品天堂在线| 欧美 亚洲 国产 日韩一| 日韩,欧美,国产一区二区三区| 少妇的逼好多水| 国产爽快片一区二区三区| 国产女主播在线喷水免费视频网站| 黄色毛片三级朝国网站| 久久亚洲国产成人精品v| 中国三级夫妇交换| 欧美3d第一页| 国产永久视频网站| 国产精品久久久久成人av| 大香蕉久久网| 中国国产av一级| 免费人成在线观看视频色| 中文精品一卡2卡3卡4更新| 成年av动漫网址| av免费观看日本| 久久99热6这里只有精品| 国产精品 国内视频| 曰老女人黄片| 在线看a的网站| 欧美 亚洲 国产 日韩一| 国产av精品麻豆| 一本久久精品| 免费高清在线观看日韩| 一二三四中文在线观看免费高清| 高清视频免费观看一区二区| av天堂久久9| kizo精华| 成人影院久久| 国产av一区二区精品久久| 国产国拍精品亚洲av在线观看| 精品久久久噜噜| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 国产午夜精品久久久久久一区二区三区| 亚洲国产色片| 色网站视频免费| 国精品久久久久久国模美| 99久久精品一区二区三区| 亚洲一级一片aⅴ在线观看| 在线亚洲精品国产二区图片欧美 | 高清av免费在线| 亚洲精品一区蜜桃| 亚洲一区二区三区欧美精品| 一本大道久久a久久精品| 亚洲欧美成人精品一区二区| 97超视频在线观看视频| 欧美3d第一页| 母亲3免费完整高清在线观看 | 五月伊人婷婷丁香| 欧美 亚洲 国产 日韩一| 一个人看视频在线观看www免费| 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| 熟女电影av网| 国产精品一区二区在线不卡| 丁香六月天网| 国产午夜精品久久久久久一区二区三区| 一级毛片我不卡| 97超碰精品成人国产| 少妇人妻 视频| 久久精品夜色国产| 熟女电影av网| 在线观看国产h片| 国产乱人偷精品视频| 亚洲精品视频女| 男男h啪啪无遮挡| 成年女人在线观看亚洲视频| 观看av在线不卡| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 一级片'在线观看视频| 欧美成人午夜免费资源| 亚洲一区二区三区欧美精品| 久久久久国产精品人妻一区二区| 日产精品乱码卡一卡2卡三| 久久99热6这里只有精品| 制服诱惑二区| 欧美成人精品欧美一级黄| 亚洲美女视频黄频| 久久久久久久久久久丰满| 亚洲国产av新网站| 国产高清三级在线| 自拍欧美九色日韩亚洲蝌蚪91| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 考比视频在线观看| 国产精品一区二区在线不卡| kizo精华| 久久久久久久精品精品| 久久久欧美国产精品| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 美女国产视频在线观看| 蜜桃国产av成人99| 中文欧美无线码| 国产精品国产三级国产专区5o| 永久免费av网站大全| 我要看黄色一级片免费的| 九九在线视频观看精品| 毛片一级片免费看久久久久| 成年人免费黄色播放视频| 亚洲欧美日韩卡通动漫| 久久久久久久久久成人| 日韩强制内射视频| 国产又色又爽无遮挡免| 国国产精品蜜臀av免费| 成人综合一区亚洲|