• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE PRODUCT OPERATOR BETWEEN BLOCH-TYPE SPACES OF SLICE REGULAR FUNCTIONS?

    2021-10-28 05:44:46YuxiaLIANG梁玉霞

    Yuxia LIANG(梁玉霞)

    School of Mathematical Sciences,Tianjin Normal University,Tianjin 300387,China

    E-mail:liangyx1986@126.com

    Abstract There is little work concerning the properties of quaternionic operators acting on slice regular function spaces de fined on quaternions.In this paper,we present an equivalent characterization for the boundedness of the product operator C?Dmacting on Bloch-type spaces of slice regular functions.After that,an equivalent estimation for its essential norm is established,which can imply several existing results on holomorphic spaces.

    Key words essential norm;differentiation;composition operator;Bloch-type space;slice regular functions

    1 Introduction

    Gentili and Struppa first introduced slice hyperholomorphic functions in 2006(see,e.g.,[12]).Since then,many mathematicians have been involved in creating a theory regarding the functions of quaternionic variables,and this has several applications,for example in Schur analysis and operator theory.Associated with slice hyperholomorphic functions,there is a very rich literature on Schur analysis;see the book[1]and the references therein.Slice hyperholomorphic functions can also be referred to as slice regular,as they are de fined on quaternions and are quaternionic-valued.With the development of the theory of slice regular functions,there have appeared various slice regular function spaces,such as Fock space[2,11,26],Hardy and Bergman spaces[7,23],and Bloch,Besov and Dirichlet spaces[25]and so on.These quaternionic function spaces play important roles in quaternionic operator theory,which is different from the complex operator theory.As far as we are concerned,one of the main difference is the de finition of the spectrum of a linear operator,which is called the S-spectrum in quaternionic operator theory,and is widely used in fractional powers and fractional diffusion processes(see the excellent books[5,6]).

    For a long time,describing the behavior of linear operators acting on various complex holomorphic function spaces has been a very fundamental topic.The linear operators include the(weighted differentiation)composition operators([4,17,19,20,24,27,28,30,31]),the integral-type operator([3])and so on.To the best of our knowledge,there is very little work on the properties of quaternionic operators on slice regular function spaces.Considering that the Bloch-type space is a convenient setting for many problems in functional analysis and the product operator C?Dmis a very general operator,we fix our attention in this paper on some classical and challenging problems to characterize the boundedness and compactness of this product operator acting between the Bloch-type spaces of slice regular functions.

    We now recall some preliminaries regarding slice regular functions.For more information regarding the ensuing facts,we refer readers to[9,10].Let the symbol H denote the noncommutative,associative,real algebra of quaternions q=x0+x1e1+x2e2+x3e3=Req+Imq,with Req=x0and Imq=x1e1+x2e2+x3e3,where xjare real numbers for j=0,1,2,3,and the imaginary units e1,e2,e3are subject to the rule=?1.The set{e0=1,e1,e2,e3}is the usual basis of the quaternions.An element q∈H can also be written as a linear combination of two complex numbers,that is,q=(x0+x1e1)+(x2+x3e1)e2.Moreover,we can consider the space R3embedded in H as follows:

    We say the conjugate of q∈H is q=Req?Imq and its modulus is|q|2==|Req|2+|Imq|2.Every q∈H can be expressed as q=x+yI,where x,y∈R and I=Imq/|Imq|if Imq0,otherwise we take I arbitrarily such that I2=?1.Let the symbol S denote the two-dimensional unit sphere of purely imaginary quaternions,meaning that

    hence I∈S.It is obvious that q2=?1 for all q∈S.

    In the sequel,we take i∈S and let C(i)denote the space generated by{1,i},which can be identi fied as the usual complex plane.It is easy to check that

    The set B={q∈H:|q|<1}is a unit ball in H,and so Bi=B∩C(i)is identi fied as the unit disk D in the complex plane C(i)for i∈S.

    We denote the space of holomorphic functions on D by H(D).For 0<α<∞,an f∈H(D)is said to be in the complex Bloch-type space or α-Bloch spaceif

    That the complex Bloch-type space is important in operator theory is due to its invariance with respect to M¨obius transformation.We refer the readers to the book[31]by Zhu,which is an excellent source concerning the development of theory on complex holomorphic function spaces.

    As regards the theory of slice regular functions,it has been developed systematically in recent decades and is widely applied in quaternionic quantum mechanics;see e.g.,[10].Here we first present the de finition of slice regular functions and cite some basic properties;see,e.g.,[8,9,13].

    De finition 1.1(Slice regular functions) Let ? be a domain in H.A real differentiable quaternionic-valued function f:?→H is called slice regular if,for any i∈S,its restriction fion ?i=?∩C(i)satis fies

    for all x+yi∈?i.We denote by R(?)the set of all slice regular functions on ?.

    Proposition 1.2(Splitting lemma) If f∈R(?),then for any i∈S and every j∈S orthogonal to i,there are two holomorphic functions F,G:?∩C(i)→C(i)such that,for any z=x+iy,it holds that

    Slice regular functions possess good properties on speci fic open sets that we will call axially symmetric slice domains.On these domains,slice regular functions satisfy the representation formula,which allows us to reconstruct the values of the function once we know its values on some complex plane C(i).

    De finition 1.3Let ??H be a domain.Then

    (1)? is called a slice domain(or s-domain for short)if it intersects the real axis and if,for any i∈S,?iis a domain in C(i).

    (2)? is called an axially symmetric domain if,for any x+yi∈? with x,y∈R and i∈S,the entire two-sphere x+yS is contained in ?.

    Proposition 1.4(Representation Formula) Let f be a slice regular function on an axially symmetric s-domain ??H.Choose any j∈S.Then the following equality holds for all q=x+yi∈?:

    Letting i,j∈S be mutually orthogonal vectors and ??H an axially symmetric s-domain,the splitting lemma and the representation formula entail the ensuing de finitions,which relate the slice regular function space R(?)on ? with the space of pairs of holomorphic functions on?i,denoted by H(?i).Afterwards,de fine

    Based on the above mappings,we first recall a de finition for the slice regular α-Bloch space on the unit ball B from[15,De finition 2.1].Then we present its relation with a complex Bloch-type space.

    De finition 1.5For 0<α<∞,the slice regular α-Bloch space associated with the unit ball B is the quaternionic right linear space of slice regular function f on B such that

    where Re p=x0;that is to say,

    It is easy to check that Bαis a Banach space endowed with the norm

    where

    is a holomorphic map of complex variable z=x0+iy and i∈S.Hence,

    The next proposition shows that the spaces Bαandcontain the same elements.

    Proposition 1.7([25,Proposition 2.6]) Let i∈S.Then f∈if and only if f∈Bα.More precisely,one has

    In addition,it also holds that

    In the sequel,we de fine the composition operator on slice regular α-Bloch spaces.

    De finition 1.8Let ?:B→B be a slice regular map such that ?(Bi)?Bifor some i∈S.Then the C(i)-composition operator(C?)i:Bα→Bβof the unit ball B,with the domain consisting of all h∈Bαsuch that C?h belongs to Bβ,is de fined by

    Using the Representation Formula,we can obtain all values of C?f on H.

    Readers can also refer to[22]for the de finition of the slice regular composition operator C?.It is well-known that the study of composition operators is a fairly active field.For general references on the theory of composition operators on the holomorphic functions of complex variables,see the excellent books[4],by Cowen and MacCluer,and[24],by Shapiro.As regards the slice regular composition operators,Ren and Wang([22])studied their properties acting on the quaternionic Hardy spaces.As a generalization,the basic properties of the slice regular weighted composition operator were systematically characterized in the recent papers[16,18].As far as we are concerned,there has been no investigation on the product operator of differentiation and composition operators acting on slice regular function spaces,so we concentrate on this characterization with regard to Bloch-type spaces.

    A natural notion of differentiation can be given for slice regular functions(see[12,13]),and this is called the slice(or Cullen)derivative of f.

    De finition 1.9Let ? be a slice domain in H,and let f:?→H be a slice regular function.The slice derivative of f at q=x+yi∈?iis de fined by

    We notice that the operators?iand thatcan commute,and that?if=for regular function f.Therefore,the slice derivative of a regular function is still regular,so we can iterate the differentiation to obtain the m-th slice derivative

    In the ensuing sections,we will directly denote the m-th slice derivativef by f(m)for i∈S and m∈N,and denote

    Generally,for a nonnegative integer m∈N,we denote

    Combining the differentiation operator with a map ? satisfying ?(Bi)?Bifor some i∈S,we de fine the product operator of differentiation and composition operators as

    Using the Representation Formula,we can extend all values of the operator C?Dmon R(B).

    As is well known,the composition operator is a typical bounded operator on the complex classical Bloch spacewith α=1,while the differentiation operators are typically unbounded on various complex Banach spaces of holomorphic functions.Recently,a lot of work has appeared on new characterizations in terms of ?mfor composition and differentiation operators between complex holomorphic function spaces.For example,Zhao[30]obtained the new characterization for the compactness of composition operator C?fromtoas=0,where ?mmeans the m-th power of ?.For more similar characterizations regarding the boundedness and compactness of some classical linear operators,we refer readers to[3,17,20,27–29]and the references therein.

    Regarding the complex-valued product operator C?Dm,we have deduced an equivalent description for its boundedness and estimated its essential norm in terms of monomial znin the complex Bloch-type spaces,which have concise representations,as follows:

    Theorem A([19,Theorem 1]) Let 0<α,β<∞,m be a nonnegative integer and let ? be a holomorphic self-map of the unit disk D.Then C?Dm:is bounded if and only if

    where z∈D,n∈N.

    Theorem B([19,Theorem 2]) Let 0<α,β<∞,m be a nonnegative integer and let ? be a holomorphic self-map of the unit disk D.Suppose thatis bounded,then the estimate for the essential norm of

    Building on the above foundations,we continue to provide the corresponding characterizations for the boundedness and essential norm estimation of C?Dm:Bα→Bβof slice regular functions.Throughout the remainder of this paper,N will denote the set of all nonnegative integers and C will denote a positive constant,the exact value of which will vary from one appearance to the next.The notations A?B,AB,AB mean that there may be different positive constants C such that B/C≤A≤CB,A≤CB,CB≤A.

    2 The Characterizations for C?Dm:Bα→Bβof Slice Regular Functions

    In this section,we first present a characterization for the boundedness of C?Dm:Bα→Bβacting between the slice regular Bloch-type spaces containing Theorem A as a particular case.

    Theorem 2.1Let 0<α,β<∞,m be a nonnegative integer and let ?:B→B be a slice regular map such that ?(Bi)?Bifor some i∈S.Then the product operator C?Dm:Bα→Bβis bounded if and only if

    where In(p)=pn,p∈H,n∈N.

    ProofNecessityAssume that the operator C?Dm:Bα→Bβis bounded.Combining this with Proposition 1.7 ensures that the operator C?Dm:→is bounded.Suppose that p=x0+Iy∈B with some I∈S,and denote z=x0+iy and=x0?iy.It then holds that|z|==|p|.Since

    Here we have used(1.1)with In,2(z)=0.Putting the display(2.6)into(2.3)yields that

    which,together with the formulas(2.4)and(2.2),implies that

    SufficiencySupposing the formula(2.1)holds,we get that

    Letting j∈S with j⊥i,it holds that

    Therefore,by ?(Bi)?Bi,we deduce that

    The above arguments,together with(2.7),ensure that

    We can verify that H∞(B)is a Banach space under the norm‖f‖∞.Immediately,we go on showing that C?Dm:Bα→Bβis compact if‖?‖∞<1.The following proposition can be deduced by a similar way as[14,Proposition 3.3],which plays a critical role in proving the compactness of operators:

    Proposition 2.2Let 0<α,β<∞,m be a nonnegative integer and let ?:B→B be a slice regular map such that ?(Bi)?Bifor some i∈S.Then the product operator C?Dm:Bα→Bβis compact if and only if,for any bounded sequence{fk}k∈Nin Bαwith fk→0 as k→∞on compact sets,‖C?Dmfk‖Bβ→0 as k→∞.

    Theorem 2.3Let 0<α,β<∞,m be a nonnegative integer and let ?:B→B be a slice regular map such that ?(Bi)?Bifor some i∈S.If‖?‖∞<1,then the product operator C?Dm:Bα→Bβis compact.

    ProofLet{fk}k∈Nbe a bounded sequence in Bαsatisfying fk→0 as k→∞on compact sets of B.Then it also holds that fk→0 as k→∞on compact sets of Bifor i∈S.Let j∈S be such that j⊥i,and let fk,1,fk,2:Bi→C(i)be holomorphic functions satisfying(fk)i(z)=fk,1(z)+fk,2(z)j for some z=x0+iy∈Bi.By Remark 1.6,it follows that the two functions fk,1(z)and fk,2(z)lie in the complex Bloch-type spaceson Bi,where Biis identi fied with D?C(i).In addition,it is obvious that fk,l→0 as k→∞on compact sets of D and l=1,2.Hence we obtain that

    where the last line is due to the corresponding result in complex Bloch-type spaces(see,e.g.,[19,page 356])under the case‖?‖∞<1.Based on the fact that

    we use(2.8)to deduce that

    Employing Proposition 2.2,the compactness of C?Dm:Bα→Bβfollows.

    De finition 2.4The essential norm of a bounded linear operator T between two normed linear spaces X and Y is its distance from the compact operator K;that is,

    where‖.‖X→Ydenotes the operator norm(see,e.g.,[21]).

    It is obvious that T is compact if and only if‖T‖e=0.Thus Theorem 2.3 can yield‖C?Dm‖e=0 for the case‖?‖∞<1.Next,we continue to estimate the essential norm of C?Dm:Bα→Bβunder the case‖?‖∞=1,which contains Theorem B as a special case.

    Theorem 2.5Let 0<α,β<∞,m be a nonnegative integer and let ?:B→B be a slice regular map such that ?(Bi)?Bifor some i∈S and‖?‖∞=1.Suppose that C?Dm:Bα→Bβis bounded.Then the estimation for the essential norm of C?Dm:Bα→Bβis

    ProofThe lower estimationLet In(p)=pn.Then In(z)=znis a sequence on Bi(identi fied as the unit disk D)associated with n∈N.Since Inconverges to zero uniformly on compact subsets of Bi,Proposition 2.2 ensures that

    Here the second and third inequalities are both due to(1.2)in Proposition 1.7.Combining the formula(2.5)with the norm relation in Proposition 1.7,it follows that

    The lower estimation follows from the above arguments.

    The upper estimationLet Lnbe the sequence of operators given in[19,Lemma 3,4,5];that is,Lnis compact as an operator fromto.Using Remark 1.6,for every f∈,let j∈S be such that j⊥i,and let f1,f2:Bi→C(i)be holomorphic functions satisfying f(z)=f1(z)+f2(z)j for some z=x0+iy∈Bi.It follows that fk∈k=1,2,and so

    The formula(1.1)implies that

    On the other hand,we turn to estimate the term(2.11).By(1.1),it follows that

    which leads to

    This further implies that

    where we use the complex upper estimation(see[19,page 357-359])

    completing the proof of the upper estimation.

    Remark 2.6Let 0<α,β<∞,m be a nonnegative integer and let ?:B→B be a slice regular map such that ?(Bi)?Bifor some i∈S.Then(2.9)also holds for‖?‖∞<1.

    ProofBased on Theorem 2.3,we only need to show that the right part of(2.9)equals 0.Take 0

    implying that the formula(2.9)is true.

    The last corollary is a consequence of Theorem 2.5 and Remark 2.6.

    Corollary 2.7Let 0<α,β<∞,m be a nonnegative integer and let ?:B→B be a slice regular map such that ?(Bi)?Bifor some i∈S.Then the product operator C?Dm:Bα→Bβis compact if and only if

    To conclude,we pose a question for exploring in the near future:

    QuestionHow does one present the corresponding characterizations for a general slice regular map ?:B→B without the assumption ?(Bi)?Bi?

    欧美激情久久久久久爽电影| 精品人妻一区二区三区麻豆| 午夜福利在线观看免费完整高清在| 国产淫片久久久久久久久| 久久久精品94久久精品| 99re6热这里在线精品视频| 久久99热这里只有精品18| 好男人视频免费观看在线| 国产国拍精品亚洲av在线观看| 大话2 男鬼变身卡| 欧美成人精品欧美一级黄| 亚洲一区高清亚洲精品| 免费观看的影片在线观看| 嫩草影院入口| www.av在线官网国产| 日韩 亚洲 欧美在线| 亚洲高清免费不卡视频| 亚洲av一区综合| 欧美性猛交╳xxx乱大交人| 久久精品综合一区二区三区| 爱豆传媒免费全集在线观看| 97人妻精品一区二区三区麻豆| 午夜福利在线在线| 精品一区二区三区人妻视频| 免费观看av网站的网址| 国产美女午夜福利| 18禁裸乳无遮挡免费网站照片| 欧美成人a在线观看| or卡值多少钱| a级毛片免费高清观看在线播放| 色综合亚洲欧美另类图片| 亚洲伊人久久精品综合| 美女大奶头视频| 神马国产精品三级电影在线观看| 色网站视频免费| 亚洲在线观看片| 国产91av在线免费观看| 国产一级毛片在线| 三级国产精品片| 国产美女午夜福利| 国产精品熟女久久久久浪| 久久韩国三级中文字幕| 深爱激情五月婷婷| 日韩av免费高清视频| 国产 亚洲一区二区三区 | 久久久久国产网址| 亚洲精华国产精华液的使用体验| av在线老鸭窝| 免费少妇av软件| av在线老鸭窝| videos熟女内射| 内地一区二区视频在线| 亚洲人与动物交配视频| 能在线免费观看的黄片| 亚洲国产色片| 简卡轻食公司| 午夜激情福利司机影院| 免费黄色在线免费观看| 好男人在线观看高清免费视频| 精品久久久久久久末码| 日日干狠狠操夜夜爽| 日本av手机在线免费观看| 国国产精品蜜臀av免费| or卡值多少钱| 观看美女的网站| 成人漫画全彩无遮挡| 成人特级av手机在线观看| 一级片'在线观看视频| 国产精品人妻久久久影院| 97超视频在线观看视频| 久久久久久伊人网av| 99久久中文字幕三级久久日本| 久久久久久伊人网av| 少妇被粗大猛烈的视频| 中文字幕av成人在线电影| 国产爱豆传媒在线观看| 午夜日本视频在线| 中文天堂在线官网| 三级国产精品欧美在线观看| 亚洲欧美精品自产自拍| 精品一区二区三区人妻视频| 国产有黄有色有爽视频| 精品国产露脸久久av麻豆 | 一个人看视频在线观看www免费| 亚洲在久久综合| 一个人看视频在线观看www免费| 日韩,欧美,国产一区二区三区| 久久精品国产亚洲av涩爱| 免费无遮挡裸体视频| 全区人妻精品视频| 国产探花在线观看一区二区| 最近最新中文字幕大全电影3| 国产成人a区在线观看| 国产片特级美女逼逼视频| 国模一区二区三区四区视频| 国产黄a三级三级三级人| 成人漫画全彩无遮挡| 免费观看无遮挡的男女| 亚洲国产精品成人综合色| 国产免费视频播放在线视频 | kizo精华| 熟妇人妻久久中文字幕3abv| 岛国毛片在线播放| 欧美激情久久久久久爽电影| 白带黄色成豆腐渣| 黄色日韩在线| 国产高清不卡午夜福利| 大话2 男鬼变身卡| 在线 av 中文字幕| 成人漫画全彩无遮挡| 国国产精品蜜臀av免费| 嫩草影院精品99| 六月丁香七月| 亚洲av免费高清在线观看| 国产美女午夜福利| 亚洲精品中文字幕在线视频 | 久久人人爽人人爽人人片va| 少妇裸体淫交视频免费看高清| 免费看美女性在线毛片视频| 欧美精品国产亚洲| 麻豆国产97在线/欧美| 国产高清国产精品国产三级 | 精品久久久久久成人av| 女人被狂操c到高潮| 欧美丝袜亚洲另类| 日本欧美国产在线视频| 国产黄色视频一区二区在线观看| 在线免费观看不下载黄p国产| 国产69精品久久久久777片| 色视频www国产| 亚洲精品中文字幕在线视频 | 菩萨蛮人人尽说江南好唐韦庄| 99久久精品热视频| 久久99热这里只有精品18| 丰满人妻一区二区三区视频av| 亚洲熟妇中文字幕五十中出| 一级a做视频免费观看| 淫秽高清视频在线观看| 午夜激情久久久久久久| 亚洲精品乱久久久久久| 99热网站在线观看| 边亲边吃奶的免费视频| 男女边摸边吃奶| 亚洲乱码一区二区免费版| 精华霜和精华液先用哪个| 久久久久精品久久久久真实原创| 国产精品久久久久久精品电影| 日日撸夜夜添| 久久久国产一区二区| 深爱激情五月婷婷| 六月丁香七月| 国产精品久久久久久精品电影小说 | 亚洲成人精品中文字幕电影| 欧美精品一区二区大全| 1000部很黄的大片| 亚洲精品aⅴ在线观看| 国产免费一级a男人的天堂| 男女啪啪激烈高潮av片| 深夜a级毛片| 少妇被粗大猛烈的视频| av免费在线看不卡| 男女边吃奶边做爰视频| 麻豆国产97在线/欧美| 精品久久久久久久久av| 狂野欧美激情性xxxx在线观看| a级毛片免费高清观看在线播放| 欧美日韩视频高清一区二区三区二| 亚洲精品久久午夜乱码| 女人十人毛片免费观看3o分钟| 好男人在线观看高清免费视频| 蜜桃亚洲精品一区二区三区| 青春草视频在线免费观看| 在线播放无遮挡| 女人久久www免费人成看片| 国产有黄有色有爽视频| 成人亚洲欧美一区二区av| 国产精品久久久久久久电影| 亚洲真实伦在线观看| 搡女人真爽免费视频火全软件| 一级毛片 在线播放| 麻豆国产97在线/欧美| 色播亚洲综合网| 日本欧美国产在线视频| 韩国av在线不卡| 精品99又大又爽又粗少妇毛片| 成人午夜精彩视频在线观看| 久久久久国产网址| 国产精品久久久久久久电影| 国产精品国产三级专区第一集| 精品一区二区免费观看| 又粗又硬又长又爽又黄的视频| 国产亚洲最大av| 性色avwww在线观看| 成年人午夜在线观看视频 | 啦啦啦韩国在线观看视频| 中文字幕av在线有码专区| 国内精品一区二区在线观看| 边亲边吃奶的免费视频| 26uuu在线亚洲综合色| 亚洲内射少妇av| 最后的刺客免费高清国语| 麻豆av噜噜一区二区三区| 久久久a久久爽久久v久久| 欧美激情久久久久久爽电影| 男人狂女人下面高潮的视频| 天堂网av新在线| 日韩国内少妇激情av| 国产毛片a区久久久久| 午夜福利在线观看免费完整高清在| 亚洲真实伦在线观看| 爱豆传媒免费全集在线观看| 啦啦啦中文免费视频观看日本| 人妻少妇偷人精品九色| 伊人久久国产一区二区| 久久精品国产亚洲av涩爱| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 一夜夜www| 久久久久精品性色| 欧美成人午夜免费资源| 久久精品国产亚洲av涩爱| 欧美精品一区二区大全| 色吧在线观看| 欧美xxxx黑人xx丫x性爽| 特大巨黑吊av在线直播| 中国美白少妇内射xxxbb| 亚洲欧美精品自产自拍| 久久99蜜桃精品久久| 色吧在线观看| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| 精品久久久久久久久久久久久| 尾随美女入室| 午夜福利高清视频| 99热网站在线观看| 国精品久久久久久国模美| 国产中年淑女户外野战色| 亚洲在线观看片| 亚洲经典国产精华液单| 欧美日韩精品成人综合77777| 国产视频首页在线观看| 美女cb高潮喷水在线观看| 别揉我奶头 嗯啊视频| 人妻一区二区av| 亚洲av中文av极速乱| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 伊人久久国产一区二区| 欧美激情久久久久久爽电影| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区性色av| 免费看日本二区| 1000部很黄的大片| 18禁在线播放成人免费| 一级av片app| 国产人妻一区二区三区在| 国产淫片久久久久久久久| 99热这里只有是精品50| 亚洲成人av在线免费| 精华霜和精华液先用哪个| 综合色丁香网| 99热这里只有是精品在线观看| 精品久久久噜噜| 欧美区成人在线视频| 日韩中字成人| 一级毛片久久久久久久久女| 免费在线观看成人毛片| 大又大粗又爽又黄少妇毛片口| 一个人看的www免费观看视频| 婷婷色综合大香蕉| 超碰av人人做人人爽久久| 青春草国产在线视频| 中文字幕人妻熟人妻熟丝袜美| 欧美激情久久久久久爽电影| 国产一区二区三区av在线| 亚洲精品国产成人久久av| 亚洲国产色片| 国产色婷婷99| 日本免费在线观看一区| 亚洲综合色惰| 午夜老司机福利剧场| 中文字幕人妻熟人妻熟丝袜美| 少妇高潮的动态图| 五月伊人婷婷丁香| 在线观看免费高清a一片| 久久久久久久国产电影| 伦精品一区二区三区| 黄片无遮挡物在线观看| 欧美一区二区亚洲| 午夜激情福利司机影院| 久久久精品免费免费高清| 我的老师免费观看完整版| 午夜激情久久久久久久| 亚洲最大成人手机在线| 天堂影院成人在线观看| 欧美日韩综合久久久久久| 99久久精品热视频| 精品久久久久久久末码| 国产91av在线免费观看| 免费无遮挡裸体视频| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 亚洲精品国产av蜜桃| 少妇熟女aⅴ在线视频| 久久国产乱子免费精品| 成人午夜高清在线视频| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放| 97人妻精品一区二区三区麻豆| 久久精品久久精品一区二区三区| 国产淫片久久久久久久久| 中文字幕久久专区| 一区二区三区高清视频在线| 国产成人福利小说| 一级黄片播放器| 成人午夜精彩视频在线观看| 日韩精品青青久久久久久| 91久久精品国产一区二区三区| 99热6这里只有精品| 国产精品不卡视频一区二区| 亚洲欧美精品专区久久| 国产高清国产精品国产三级 | 精品国产露脸久久av麻豆 | 欧美+日韩+精品| 成年女人看的毛片在线观看| 国产精品人妻久久久影院| 简卡轻食公司| 欧美变态另类bdsm刘玥| 午夜福利在线观看免费完整高清在| 久久这里只有精品中国| 69人妻影院| 熟女人妻精品中文字幕| 免费少妇av软件| 午夜福利网站1000一区二区三区| 一边亲一边摸免费视频| 插阴视频在线观看视频| 久久精品熟女亚洲av麻豆精品 | 亚洲国产精品sss在线观看| 91久久精品国产一区二区三区| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 免费看a级黄色片| 一级二级三级毛片免费看| 一级av片app| h日本视频在线播放| 99久久中文字幕三级久久日本| 2021少妇久久久久久久久久久| 夜夜爽夜夜爽视频| 在线观看av片永久免费下载| 一级毛片电影观看| 又爽又黄无遮挡网站| 内射极品少妇av片p| 精品一区二区免费观看| 国产在视频线精品| 国产精品麻豆人妻色哟哟久久 | 在线观看免费高清a一片| 精品久久久久久久久久久久久| 永久网站在线| 国产黄a三级三级三级人| 男女视频在线观看网站免费| 秋霞在线观看毛片| 十八禁网站网址无遮挡 | 欧美bdsm另类| 嫩草影院入口| 成人综合一区亚洲| 亚洲精品乱码久久久久久按摩| 噜噜噜噜噜久久久久久91| 狠狠精品人妻久久久久久综合| 亚洲国产高清在线一区二区三| 久久人人爽人人爽人人片va| 午夜福利视频1000在线观看| 亚洲三级黄色毛片| 午夜福利在线在线| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 色网站视频免费| 亚洲欧洲日产国产| 欧美3d第一页| 国产精品一区二区三区四区免费观看| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 国产精品一区二区三区四区免费观看| 丰满人妻一区二区三区视频av| 国产麻豆成人av免费视频| 熟妇人妻久久中文字幕3abv| 又大又黄又爽视频免费| 免费观看的影片在线观看| 国产淫语在线视频| 日韩人妻高清精品专区| 久久99热这里只频精品6学生| av线在线观看网站| 午夜福利网站1000一区二区三区| 国内揄拍国产精品人妻在线| 国产在视频线精品| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 亚洲国产精品成人久久小说| 国产精品99久久久久久久久| 99热网站在线观看| av女优亚洲男人天堂| 熟妇人妻久久中文字幕3abv| 搡女人真爽免费视频火全软件| 精品欧美国产一区二区三| 日韩成人伦理影院| 日日撸夜夜添| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 午夜福利视频1000在线观看| 国产伦精品一区二区三区四那| 亚洲成人精品中文字幕电影| 成人无遮挡网站| 亚洲精华国产精华液的使用体验| 又大又黄又爽视频免费| 亚洲av免费高清在线观看| 国产精品一二三区在线看| 中文字幕久久专区| 天天躁夜夜躁狠狠久久av| 嫩草影院新地址| 中文字幕人妻熟人妻熟丝袜美| 日韩一本色道免费dvd| 欧美激情在线99| 乱码一卡2卡4卡精品| 午夜福利在线在线| 毛片一级片免费看久久久久| 在线观看人妻少妇| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 精品久久久噜噜| 男人舔女人下体高潮全视频| 性色avwww在线观看| 亚洲欧美成人精品一区二区| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 国产成人精品福利久久| 麻豆国产97在线/欧美| 极品教师在线视频| 日本-黄色视频高清免费观看| 一级毛片久久久久久久久女| 伊人久久国产一区二区| 神马国产精品三级电影在线观看| 青青草视频在线视频观看| 肉色欧美久久久久久久蜜桃 | 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院新地址| 中文在线观看免费www的网站| 国产女主播在线喷水免费视频网站 | 亚洲最大成人手机在线| 特级一级黄色大片| 国产精品一区二区三区四区久久| 亚洲国产成人一精品久久久| 大话2 男鬼变身卡| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 美女大奶头视频| 久久久色成人| 免费看光身美女| 高清av免费在线| 精品久久久久久成人av| 亚洲欧美一区二区三区黑人 | 一级毛片黄色毛片免费观看视频| 麻豆国产97在线/欧美| 久久精品久久久久久久性| 最近中文字幕2019免费版| 一级毛片电影观看| 熟妇人妻不卡中文字幕| 国产爱豆传媒在线观看| 国精品久久久久久国模美| 联通29元200g的流量卡| 日本色播在线视频| 在现免费观看毛片| 一个人看视频在线观看www免费| 777米奇影视久久| 午夜福利成人在线免费观看| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 国产一区二区在线观看日韩| 成人性生交大片免费视频hd| 久久久久久久久久人人人人人人| 男女国产视频网站| 乱码一卡2卡4卡精品| 亚洲国产精品sss在线观看| 日本一二三区视频观看| 国产成人freesex在线| 国产亚洲91精品色在线| 久热久热在线精品观看| 午夜福利高清视频| 婷婷色综合www| 亚洲av二区三区四区| 欧美一区二区亚洲| 国产伦精品一区二区三区四那| 99热网站在线观看| 国产91av在线免费观看| 91aial.com中文字幕在线观看| 国产淫片久久久久久久久| h日本视频在线播放| 一级毛片久久久久久久久女| 国产午夜精品一二区理论片| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 日韩欧美精品v在线| 秋霞在线观看毛片| 国内少妇人妻偷人精品xxx网站| 亚洲国产最新在线播放| 免费大片黄手机在线观看| 嫩草影院精品99| 欧美潮喷喷水| 国产欧美另类精品又又久久亚洲欧美| 内地一区二区视频在线| 国产精品国产三级专区第一集| 精品欧美国产一区二区三| 美女脱内裤让男人舔精品视频| 嫩草影院新地址| 国产又色又爽无遮挡免| 一边亲一边摸免费视频| 亚洲在线观看片| 国产精品一及| 别揉我奶头 嗯啊视频| 亚洲精品成人久久久久久| 少妇熟女欧美另类| 成人毛片a级毛片在线播放| 色播亚洲综合网| 看免费成人av毛片| 免费看美女性在线毛片视频| 亚洲精华国产精华液的使用体验| 一级a做视频免费观看| 成人美女网站在线观看视频| 精品国产三级普通话版| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 性插视频无遮挡在线免费观看| 日韩国内少妇激情av| 嫩草影院新地址| 熟妇人妻久久中文字幕3abv| 青春草亚洲视频在线观看| 99久久精品一区二区三区| 久久久国产一区二区| 一级爰片在线观看| 国产男人的电影天堂91| 天堂影院成人在线观看| 亚洲国产精品专区欧美| 超碰97精品在线观看| 亚洲精品,欧美精品| 午夜激情欧美在线| ponron亚洲| 久99久视频精品免费| 日韩人妻高清精品专区| 好男人在线观看高清免费视频| 免费观看在线日韩| 亚洲最大成人手机在线| 99视频精品全部免费 在线| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区| 一级毛片久久久久久久久女| 日韩在线高清观看一区二区三区| 色哟哟·www| 99久久精品一区二区三区| 日韩av免费高清视频| 久久久精品免费免费高清| 精品午夜福利在线看| 国产日韩欧美在线精品| 国产欧美另类精品又又久久亚洲欧美| 精品人妻一区二区三区麻豆| 国产精品国产三级国产av玫瑰| 国产色爽女视频免费观看| 久久久久久久久久黄片| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 成人一区二区视频在线观看| 国产亚洲午夜精品一区二区久久 | 黄色欧美视频在线观看| 亚洲18禁久久av| 秋霞伦理黄片| 成人特级av手机在线观看| 亚洲精品一二三| 乱人视频在线观看| 日本熟妇午夜| 欧美成人a在线观看| 成人亚洲欧美一区二区av| 精品久久久精品久久久| 精品熟女少妇av免费看| 国产老妇伦熟女老妇高清| 男的添女的下面高潮视频| 欧美xxxx性猛交bbbb| 2021天堂中文幕一二区在线观| 亚洲精品中文字幕在线视频 | 在线观看美女被高潮喷水网站| 免费看光身美女| 国产精品久久久久久av不卡| 免费av不卡在线播放| 春色校园在线视频观看| 亚洲精品aⅴ在线观看| 久久精品夜色国产| 亚洲精品,欧美精品| 欧美极品一区二区三区四区| 精品久久久久久电影网| 中文在线观看免费www的网站| 久久久久久久久久黄片| 精品一区二区三卡| 国产视频首页在线观看| 国产探花极品一区二区| 大片免费播放器 马上看| 夜夜看夜夜爽夜夜摸| 久久久久精品性色| 黄片无遮挡物在线观看| 国产久久久一区二区三区| 七月丁香在线播放| 国产成人a区在线观看| 精品久久国产蜜桃| 亚洲性久久影院| 少妇猛男粗大的猛烈进出视频 | 高清午夜精品一区二区三区|