• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ZERO KINEMATIC VISCOSITY-MAGNETIC DIFFUSION LIMIT OF THE INCOMPRESSIBLE VISCOUS MAGNETOHYDRODYNAMIC EQUATIONS WITH NAVIER BOUNDARY CONDITIONS?

    2021-10-28 05:44:16FucaiLI栗付才

    Fucai LI(栗付才)

    Department of Mathematics,Nanjing University,Nanjing 210093,China

    E-mail: fli@nju.edu.cn

    Zhipeng ZHANG(張志朋)?

    Department of Mathematics,Nanjing University,Nanjing 210093,China;Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    E-mail:zhangzhipeng@nju.edu.cn

    Abstract We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain ??R3.It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W1,∞(?)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L∞(0,T;L2),L∞(0,T;W1,p)(2≤p<∞),and L∞((0,T)×?)for some T>0.

    Key words incompressible viscous MHD equations;ideal incompressible MHD equations;Navier boundary conditions;zero kinematic viscosity-magnetic diffusion limit

    1 Introduction

    We consider the incompressible viscous magnetohydrodynamic(MHD)equations(for example,see[6,9])

    in(0,T)×?,where ??R3is a smooth bounded domain.The unknowns v?,H?and p?represent the velocity,the magnetic field and the pressure of the fluid,respectively.The pressure p?can be recovered from v?and H?via an explicit Calder′on-Zygmund singular integral operator([7]).Here,we assume that the viscosity coefficient is equal to the magnetic diffusivity coefficient,denoted by?>0.We add to system(1.1)the initial-boundary conditions

    where(?u)Tdenotes the transpose of the matrix?u,and uτstands for the tangential part of u on??,i.e.,

    The boundary condition(1.2)1was first introduced by Navier in[18]to show that the velocity is proportional to the tangential part of the stress;it allows the fluid slip along the boundary and is often used to model rough boundaries.The boundary condition(1.2)1can be generalized to the following form([11]):

    Here A is a(1,1)-type tensor on the boundary??.When A=ζ Id(Id denotes the identity matrix),(1.3)is reduced to the standard Navier boundary conditions.In addition,for smooth functions,we can get the form of the vorticity

    where ω=?×u and B=2A?S(n)(see[27]).

    In this paper,we are interested in the uniform regularity and the zero kinematic viscositymagnetic diffusion limit of the problem(1.1)–(1.2),and taking the limit?→0 to obtain the ideal incompressible MHD equations(Suppose that the limits v?→v and H?→H as?→0 exist),i.e.

    with the following initial-boundary conditions:

    When taking H?=0 in the system(1.1),it is reduced to the classical incompressible Navier-Stokes equations.There are a lot of works on the vanishing viscosity limit of the incompressible Navier-Stokes equations.The inviscid limit of the Cauchy problem has been studied by many authors,see[14,16,21].When the boundary appears,the inviscid limit problem becomes challenging due to the possible appearance of the boundary layer[13,19].On one hand,for the incompressible Navier-Stokes equations with no-slip boundary condition,its vanishing viscosity limit is wildly open except when the initial datum is analytic[22,23]or the initial vorticity is located away from the boundary in the two-dimensional half plane[15].On the other hand,considering the incompressible Navier-Stokes system with Navier boundary conditions,more results are available,see[2–5,11,13,17,28]and the references cited therein.The uniform H3bound and a uniform existence time interval with respect to?were obtained by Xiao and Xin[28]for the flat boundary.Subsequently,the conclusions in[28]were extended to Wk,p(?)with k≥3 and p≥2 in[2].The main reason for this is that the boundary integrals vanish on the flat boundary,see also[3,4].However,such results can’t be expected for the general boundary since boundary layer may appear.In order to analyze the effect of the boundary layer in a general bounded domain,Iftimie and Sueur[13]constructed the boundary layer for the incompressible Navier-Stokes equations with the Navier boundary condition(1.2)1in the form

    where the function V vanishes for x outside a small neighborhood of?? and φ(x)is the distance between x and?? for x in a neighborhood of??.The boundary layers constructed in[13]are of width O(√?),like the Prandtl layer[19],but are of amplitude O(√?)(the Prandtl layer is of width O(√?)and of amplitude O(1)).Thus it is impossible to obtain the H3(?)or W2,p(?)(p large enough)uniform estimates for the incompressible Navier-Stokes equations.Recently,Masmoudi and Rousset[17]considered the vanishing viscosity limit for the incompressible Navier-Stokes equation with the boundary condition(1.2)1in the anisotropic conormal Sobolev spaces(de fined below),and this can eliminate the effects of normal derivatives near the boundary.They obtained uniform regularity and the convergence of the viscous solutions to the inviscid one by compactness arguments.Subsequently,some results in[17]were extended to the compressible isentropic Navier-Stokes equations with Navier boundary conditions[20,26].Moreover,based on the results in[17],the rates of convergence in different spaces were obtained by Gie and Kelliher[11]and Xiao and Xin[27],respectively.

    As for the 3D incompressible viscous MHD equations,the study of the inviscid limit is quite limited,see[29–31].Specially,Xiao,Xin and Wu[29]investigated the inviscid limit for the system(1.1)with the boundary conditions

    Motivated by[17],in this paper,we investigate the inviscid limit for the system(1.1)with Navier boundary conditions for(u?,H?)in a bounded domain ??R3in the framework of anisotropic conormal Sobolev spaces.Due to the strong coupling between v?and H?,a priori estimates become more complicated than that in[17].We obtain the uniform regularity of the solution,which allow us to pursue the inviscid limit for the problem(1.1)–(1.2).Moreover,we obtain some rates of convergence for(v?,H?)in different spaces.

    Our uniform regularity result reads as follows:

    Based on the uniform estimates in Theorem 1.1,by strong compactness arguments similar to those of[17],we can justify the zero kinematic viscosity-magnetic diffusion limit,but without a convergence rate.In what follows,we are interested in the zero kinematic viscosity-magnetic diffusion limit with rates of convergence.First,thanks to the result in[24],we know that there exists a unique solution(v,H)∈H3of the ideal incompressible MHD equations(1.5)with the boundary condition(1.6)1and the initial condition(v0,H0)∈H3which satis fies

    Theorem 1.3Assume that(v0,H0)belong to H3(?)and satisfy the same assumptions as in Theorem 1.1.Let(v,H)be the smooth solution of(1.5)–(1.6)on[0,T1],and(v?,H?)be the solution of(1.1)–(1.2)on[0,T0].Then there exists a time T2=min{T0,T1}>0 and a constantsuch that

    for?small enough.Consequently,

    for 2

    We now outline the proof of Theorem 1.3.Our approach is similar to that of[27]in spirit.However,due to the strong coupling between the magnetic field and the velocity field,we meet some new difficulties.We first give the rates of the convergence in L∞(0,T2;L2(?))and L∞([0,T2]×?)by using an elementary energy estimate and Gagliardo-Nirenberg interpolation inequality.Next,we find that it is very difficult to estimate some boundary terms caused by multiplying(4.1)1by?(v??v)and(4.1)2by?(H??H)directly in the proof of the rate of the convergence in L∞(0,T2;H1(?)).Indeed,we get‖v?‖H2≤‖P?v?‖+‖v?‖and‖H?‖H2≤‖P?H?‖+‖H?‖from Section 2 in[27],where P is Leray projector.Therefore,we replace?(v??v)and?(H??H)by P?(v??v)and P?(H??H)to prove the rates of the convergence in L∞(0,T2;H1(?))and L∞(0,T2;W1,p(?)).

    The rest of this paper is organized as follows:in the next section,we give some assumptions on the domain and the de finitions on conormal Sobolev spaces,and present some inequalities which will be used frequently.In Section 3,we prove a priori energy estimates and give the proof of Theorem 1.1.Theorem 1.3 will be veri fied in Section 4.

    Throughout this paper,we shall denote by‖·‖Hmand‖·‖W1,∞the usual Sobolev norms in ? and‖·‖for the standard L2norm.The letter C is a positive constant which may change from line to line,but which is independent of?∈(0,1]and|ζ|≤1.

    2 Preliminaries

    We first state the assumptions on the bounded domain ??R3and then introduce some norms.We assume that ? has a covering such that

    We say that ? is Cmif the functions ψkare Cmfunctions.Denote by Cma positive constant independent of?∈(0,1]and|ζ|≤1 which depends only on the Ck-norm of the functions ψk,k=1,···,n.

    To de fine the conormal Sobolev spaces,we consider(Zk)1≤k≤N,a finite set of generators of vector fields that are tangential to??,and set

    In this paper,we shall still denote by?i(i=1,2,3)or?the derivatives with respect to the standard coordinates of R3.The coordinates of a vector field u in the basiswill be denoted by ui,thus,

    We denote by uithe coordinates in the standard basis of R3,i.e.,

    Denote by n the unit outward normal vector which is given locally by

    and by Π the orthogonal projection Π(x)=Π(Ψ(y,z))u=u?n(Ψ(y,z)),which gives the orthogonal projector onto the tangent space of the boundary.Note that n and Π are de fined in the whole ?kand do not depend on z.By using these notations,(1.2)1and(1.2)2read as

    where θ is the shape operator(second fundamental form)of the boundary,θ(v?)=and θ(H?)=

    Since the boundary layers may appear in the presence of physical boundaries,in order to obtain the uniform estimates for the solutions of the incompressible MHD equations with the boundary conditions(1.2)1and(1.2)2,we need to find a suitable functional space.Here,we de fine the functional space Em(T)for functions(v,H)(t,x)as

    where the norm‖(·,·)‖Emis given by

    We note that the a priori estimates in Theorem 3.1 below are obtained in the situation in which the approximate solution is sufficiently smooth up to the boundary.Therefore,in order to obtain a self-contained result,we need to assume that the approximated initial data satis fies the boundary compatibility conditions(1.2)1and(1.2)2.For the initial data(v0,H0)satisfying(1.6)2,it is not clear if there exists an approximate sequence(δ being a regularization parameter)which satis fies the boundary compatibility conditions and0 as δ→0.Thus,we set

    and

    Now we introduce some inequalities.First,we give a well-known inequality.

    Lemma 2.1([25,28]) For u∈Hs(?)(s≥1),we have

    Next,we introduce Korn’s inequality,which plays an important role in energy estimates.

    Lemma 2.2(Korn’s inequality[10]) Let ? be a bounded Lipschitz domain of R3.There exists a constant C>0 depending only on ? such that

    Third,we also need the following anistropic Sobolev embedding and trace estimates:

    Finally,we introduce the following Gagliardo-Nirenberg-Moser inequality,which will be used frequently:

    3 A Priori Estimates and Proof of Theorem 1.1

    The main aim of this section is to prove the following a priori estimates which is the crucial step in the proof of Theorem 1.1.To this end,let(v?,H?)be the solution of the problem(1.1)–(1.2)with pressure p?.Moreover,the solution(v?,H?,p?)possesses proper regularity such that the procedure of formal calculations makes sense.

    Theorem 3.1For m>6 and a Cm+2bounded domain ?,there exists a constant Cm+2>0,independent of?∈(0,1]and|ζ|≤1,such that for any sufficiently smooth solution de fined on[0,T]of the problem(1.1)–(1.2)in ?,we have

    Since the proof of Theorem 3.1 is quite complicated and lengthy,we divide it into subsections.

    3.1 Conormal Energy Estimates

    In this subsection,we first give the basic a priori L2energy estimate.

    Lemma 3.2For a smooth solution to the problem(1.1)–(1.2),it holds that,for any?∈(0,1]and|ζ|≤1,

    ProofMultiplying(1.1)1and(1.1)2by v?and H?,respectively,applying the boundary condition(1.2),and integrating by parts,we obtain

    where(·,·)stands for the L2scalar product.Now,let us treat the terms with the coefficient?in(3.4).Integrating by parts and using the boundary condition(1.2)1,we have

    Putting(3.5)and(3.6)into(3.4),we then obtain(3.3).

    We remark that the above basic energy estimation is insufficient to get the vanishing viscosity limit.Thus,higher order energy estimates are needed.

    Lemma 3.3For every m∈N+,it holds that

    ProofIn view of Korn’s inequality and Lemma 3.2,we can prove the case for m=0.Now we assume that(3.7)has been proved for|α|≤m?1.We shall prove that it also holds for|α|=m≥1.Applying Zαwith|α|=m to(1.1)1and(1.1)2,respectively,we obtain that

    where

    Multiplying(3.10)1and(3.10)2by Zαv?and ZαH?,respectively,and integrating by parts,we have

    First,in view of Lemma 2.4,we obtain that

    Next,we deal with the terms with the viscosity coefficient?.Notice that

    For the first term of the right-hand side of(3.13),by integrating by parts,we get

    Thus,it follows from Lemma 2.2 that there exists a c0>0 such that

    It remains to control the boundary term in(3.15).To this end,we have the following observations:due to the Navier boundary condition(2.4),we obtain

    To estimate the boundary term,we note that when m=1,(3.7)can be obtained easily.Thus we assume that m≥2.Integrating by parts along the boundary,we get

    Substituting(3.12),(3.26),(3.27)and(3.29)into(3.11),we obtain that

    Consequently,using Lemma 2.3,Young’s inequality,and the assumptions with respect to|α|≤m?1,we have

    This ends the proof of Lemma 3.3.

    3.2 Normal Derivative Estimates

    In view of(3.31)and(3.32),we obtain

    Similarly,we get

    Furthermore,using(3.46),(3.47)and Young’s inequality,we have

    Since?(‖?v?‖1+‖?H?‖1)has been estimated in Lemma 3.3,this yields(3.36)for the case of m=1.

    To prove the general case,we assume that(3.36)holds for|α|≤m?2.Let us consider the situation where|α|=m?1.Applying Zαto(3.38)1and(3.38)2,respectively,yields that

    where

    Multiplying(3.49)1and(3.49)2by Zαand Zα,respectively,and integrating by parts,we obtain that

    where i=1,2,3.To estimate the last two terms on the right-hand side of(3.51),we use the structure of the commutator[Zα,?i]and the expansionin the local basis.We have the following expansion:

    We can do similar calculations for the other terms in C3and C4.Consequently,based on(1.2)1,(1.2)2and Lemma 2.4,we get

    By combining(3.50),(3.54)–(3.57)and(3.59)–(3.61),and using the induction assumption and Young’s inequality,we get(3.36).

    3.3 Pressure Estimates

    The aim of this subsection is to give the pressure estimates.

    Lemma 3.5For every m≥2,we have the following estimates:

    3.4 L∞estimates

    In order to enclose the estimates in(3.70),we need to control‖?v?‖1,∞and‖?H?‖1,∞.We have

    Lemma 3.6For m>6,it holds that

    ProofWe observe that,away from the boundary,the following estimates hold:

    Here{βi}is a partition of unity subordinated to the covering(2.1).In order to estimate the near boundary parts,we adopt the ideas of Proposition 21 of[17].We use a local parametrization in the vicinity of the boundary given by a normal geodesic system

    where

    We can extend n and Π in the interior by setting

    We observe?z=?nand

    Hence,the Riemann metric g has the following form:

    Consequently,the Laplacian in this coordinate system reads as

    where|g|is the determinant of the matrix g and?~gis de fined by

    With these preparations,we begin to estimate the near boundary parts.In view of Lemma 2.3 and the equality(3.17),we have

    Hence,we need only to estimate‖χΠ?nv?‖1,∞and‖χΠ?nH?‖1,∞.To this end,we introduce the vorticity

    Note that in the derivation of the source terms above,we have used the fact that in the coordinate system just de fined,Π and n do not depend on the normal variable.Since?~ginvolves only the tangential derivatives,and the derivatives of χ are compactly supported away from the boundary,the following estimates hold:

    A crucial estimate towards the proof of Lemma 3.6 is the following lemma:

    Lemma 3.7([17]) Let ρ be a smooth solution of

    where u satis fies the divergence free condition and u·n vanishes on the boundary.Assume that ρ and f are compactly supported with respect to z.Then

    Therefore,we complete the proof of Lemma 3.6.

    3.5 Proof of Theorem 3.1

    Based on Lemma 3.6 and(3.70),we can easily prove Theorem 3.1.We omit the details here.

    3.6 Proof of Theorem 1.1

    4 Proof of Theorem 1.3

    In this section,we study the zero kinematic viscosity-magnetic diffusion limit of viscous solutions to the inviscid one with rates of convergence in different spaces.For the convenience of calculations,we replace the boundary conditions in(1.2)by(1.10).De fine

    It then follows from(1.1)and(1.5)that ??and ψ?satisfy

    in ?×(0,T2)with the initial boundary conditions

    and 0

    We start with the rates of convergence in L∞(0,T2;L2)and L∞([0,T2]×?).

    Lemma 4.1Under the assumptions in Theorem 1.3,it holds

    Furthermore,we have

    ProofMultiplying(4.1)1and(4.1)2by ??and ψ?,respectively,and integrating the results by parts,we have

    Next,we deal with the boundary integrals B1and B2.For B1,we have

    In view of Lemma 2.1,the trace theorem

    and the interpolation inequality

    we further obtain that

    where δ is small enough.Similarly,we also get that

    Finally,we deal with(Φ1,??)and(Φ2,ψ?).We have

    Using(4.1)3,(4.2)2and(4.2)3,we have

    Consequently,we obtain

    Based on Lemma 2.1,(4.3),(4.6),(4.7)and(4.8),we arrive at

    Then,by using Gronwall’s inequality,we get that,for t∈(0,T2],

    Furthermore,using the Gagliardo-Nirenberg interpolation inequality,we have

    This completes the proof of Lemma 4.1.

    Next,we focus on proving the rates of convergence in L∞(0,T;H1)and L∞(0,T;W1,p)(2≤p<∞).

    Lemma 4.2Under the assumptions in Theorem 1.3,it holds

    Next,we estimate the term I2.It is well known that

    holds for any function Φ∈L2(?).Thus we only need to control the scalar function φ.However,it is difficult to estimate φ on the boundary??.In order to overcome this difficulty,we need to transform it to an estimate on ?.First,we should extend n and B to the interior of ? as follows:

    is well-de fined in ?σ={x∈?,r(x)≤2σ}for some σ>0 and ?(s)∈[0,2σ)satisfying

    Then,by integrating by parts,we can obtain

    We easily get that

    As for the remaining terms in(4.20),by the same arguments as to those of I1,we have

    It follows from(4.21)and(4.22)that

    Finally,we deal with I3,i.e.,

    We observe that the estimate is trivial if the system(1.5)satis fies the same boundary conditions as the system(1.1)does.In general,[Bv]τ?n×ωvand[BH]τ?n×ωHmay be not equal to zero.As a result,the boundary layer may occur,so we will experience more complicated estimates.Similarly to I2,we obtain that

    We first deal with the term I31.It follows from the de finitions of Φ1and Φ2that

    where

    We first deal with the terms which contain higher derivatives.Integrating by parts leads to

    Compared to L1,both L2and L3can be easily estimated.In fact,we have

    We find that L4,L5and L6have similar structures to those of L1,L2and L3,respectively,so we can get

    It follows from(4.24)–(4.29)that

    Now,it remains to estimate the term I32,i.e.,

    We consider the first term in I32.Since it involves Leray projection,some terms which contain higher derivatives of ??or ψ?cannot be estimated easily.We have the following observations:

    Furthermore,since ??·n=0,v·n=0,ψ?·n=0 and H·n=0,we have

    where λ1and λ2are two scalar functions de fined on??.Based on the above observations,we easily obtain that

    where H is Leray projection space.Thus we have the equality

    Then it follows from(4.33),(4.34)and Lemma 4.1 that

    Next,by integrating by parts,we have

    Similarly,we obtain that

    In addition,we directly get that

    Therefore,in view of(4.35)–(4.38),we obtain that

    By taking the same arguments as to those above,we observe that

    Hence,we get

    which implies

    Thus,we conclude that

    In conclusion,it follows from(4.19),(4.23)and(4.41),that

    Now we need to deal with the left terms in the above inequality.Let us recall that

    In view of Lemma 2.1,we obtain

    where δ is small enough.Consequently,we get

    Applying Gronwall’s inequality to(4.42)gives us

    Thus,thanks to Lemma 2.1,we have

    Using the same arguments as those of Section 2 in[27],we get

    Therefore,it follows from Lemma 4.1 and(4.44)that

    In addition,it is well-known that the following inequality holds:

    Hence,we obtain that

    This completes the proof of Lemma 4.2.

    Combining Lemma 4.1 with Lemma 4.2,we easily get Theorem 1.3.

    七月丁香在线播放| 尾随美女入室| 亚洲国产色片| 美女cb高潮喷水在线观看| 欧美成人一区二区免费高清观看| 亚洲高清免费不卡视频| 在线观看免费高清a一片| 天美传媒精品一区二区| 欧美性感艳星| 我要看日韩黄色一级片| 我要看日韩黄色一级片| 最近中文字幕高清免费大全6| 少妇裸体淫交视频免费看高清| 久久综合国产亚洲精品| 在线观看国产h片| 成人特级av手机在线观看| 亚洲精品国产色婷婷电影| 大陆偷拍与自拍| 成人亚洲欧美一区二区av| 高清午夜精品一区二区三区| 日本黄大片高清| 欧美精品一区二区大全| 日韩av在线免费看完整版不卡| 日日啪夜夜撸| 2021天堂中文幕一二区在线观| 亚洲成人精品中文字幕电影| 精品国产乱码久久久久久小说| 99久久精品热视频| 亚洲精品国产成人久久av| 亚洲精品国产色婷婷电影| 久久99热这里只频精品6学生| 亚洲精品影视一区二区三区av| 一本一本综合久久| 国产一级毛片在线| 亚洲人成网站在线播| 日韩欧美一区视频在线观看 | 欧美一区二区亚洲| 91久久精品国产一区二区成人| 热99国产精品久久久久久7| 免费在线观看成人毛片| 伊人久久国产一区二区| 秋霞伦理黄片| 国产欧美亚洲国产| 成人毛片a级毛片在线播放| 黄片无遮挡物在线观看| 亚洲av免费在线观看| 91久久精品国产一区二区三区| av卡一久久| 亚洲欧美日韩另类电影网站 | 韩国高清视频一区二区三区| 新久久久久国产一级毛片| 另类亚洲欧美激情| 大陆偷拍与自拍| av在线观看视频网站免费| 亚洲国产精品专区欧美| 国产亚洲91精品色在线| 免费观看性生交大片5| 国产精品熟女久久久久浪| 干丝袜人妻中文字幕| 干丝袜人妻中文字幕| 精品人妻一区二区三区麻豆| 午夜免费男女啪啪视频观看| 欧美最新免费一区二区三区| 亚洲精品日韩在线中文字幕| 九九久久精品国产亚洲av麻豆| 国产一区二区亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 18禁动态无遮挡网站| 午夜免费观看性视频| 久久久久久久久久久免费av| 国内少妇人妻偷人精品xxx网站| 久久久久精品久久久久真实原创| 国产亚洲午夜精品一区二区久久 | 成年版毛片免费区| 日韩一本色道免费dvd| 亚洲国产av新网站| 中国国产av一级| 久久国内精品自在自线图片| 久久久久久久大尺度免费视频| 一级毛片aaaaaa免费看小| 女人久久www免费人成看片| av网站免费在线观看视频| 国内揄拍国产精品人妻在线| 成人特级av手机在线观看| 能在线免费看毛片的网站| 天堂俺去俺来也www色官网| av在线老鸭窝| 大香蕉久久网| 91午夜精品亚洲一区二区三区| 免费播放大片免费观看视频在线观看| 麻豆国产97在线/欧美| 国产精品久久久久久av不卡| 免费黄色在线免费观看| 国产色爽女视频免费观看| 精品少妇黑人巨大在线播放| av网站免费在线观看视频| 久久久成人免费电影| 久久综合国产亚洲精品| 久久久久精品性色| 亚洲国产精品国产精品| 国产伦理片在线播放av一区| 亚洲欧美精品自产自拍| 99热国产这里只有精品6| 成人特级av手机在线观看| 插阴视频在线观看视频| 一级av片app| 日韩一区二区视频免费看| 色网站视频免费| 欧美日韩精品成人综合77777| 国国产精品蜜臀av免费| 插阴视频在线观看视频| 午夜精品国产一区二区电影 | 亚洲精品日韩av片在线观看| 欧美另类一区| 日韩欧美精品免费久久| 免费看日本二区| 80岁老熟妇乱子伦牲交| 午夜福利在线观看免费完整高清在| av免费观看日本| 丰满乱子伦码专区| 亚洲四区av| 久久精品国产亚洲av天美| 麻豆成人av视频| 亚洲精品自拍成人| 在线观看三级黄色| 国产精品国产av在线观看| .国产精品久久| 深夜a级毛片| av一本久久久久| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 中文资源天堂在线| 天天躁夜夜躁狠狠久久av| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩无卡精品| av一本久久久久| 在线免费十八禁| 亚洲图色成人| 久久久久国产网址| 91aial.com中文字幕在线观看| 国产亚洲午夜精品一区二区久久 | av在线蜜桃| 免费电影在线观看免费观看| 亚洲欧美日韩卡通动漫| 青春草国产在线视频| 美女被艹到高潮喷水动态| 国产精品久久久久久久电影| 少妇人妻 视频| 嫩草影院新地址| 久久精品久久久久久久性| a级一级毛片免费在线观看| 亚洲av日韩在线播放| 一本色道久久久久久精品综合| 少妇猛男粗大的猛烈进出视频 | 久久精品国产自在天天线| 在线观看国产h片| 国产中年淑女户外野战色| 成年女人在线观看亚洲视频 | 日韩免费高清中文字幕av| 亚洲人成网站在线播| 国产一区二区三区综合在线观看 | 久久久久久久久久人人人人人人| 99热国产这里只有精品6| 日韩成人av中文字幕在线观看| 国产中年淑女户外野战色| 日韩一区二区视频免费看| 两个人的视频大全免费| 国产精品国产三级国产av玫瑰| 欧美日韩国产mv在线观看视频 | 欧美潮喷喷水| 午夜福利网站1000一区二区三区| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美 | 少妇被粗大猛烈的视频| 超碰av人人做人人爽久久| 青春草国产在线视频| 国产成人午夜福利电影在线观看| 日韩一本色道免费dvd| 国产亚洲午夜精品一区二区久久 | 国产女主播在线喷水免费视频网站| 黄片wwwwww| 日本av手机在线免费观看| 国产亚洲一区二区精品| 久久久欧美国产精品| 亚洲精品亚洲一区二区| 91久久精品国产一区二区三区| 最近2019中文字幕mv第一页| 秋霞伦理黄片| 国产乱人视频| av一本久久久久| 99热6这里只有精品| 欧美变态另类bdsm刘玥| 欧美精品人与动牲交sv欧美| 少妇的逼好多水| 久久久久精品性色| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| 亚洲国产欧美人成| 亚洲欧美一区二区三区国产| 亚洲丝袜综合中文字幕| 纵有疾风起免费观看全集完整版| 国产亚洲91精品色在线| 国产精品久久久久久精品电影小说 | 午夜亚洲福利在线播放| 美女高潮的动态| 高清视频免费观看一区二区| 日日啪夜夜撸| 亚洲av一区综合| 国产亚洲一区二区精品| 尾随美女入室| 久久国产乱子免费精品| 欧美激情在线99| 欧美日韩亚洲高清精品| 五月开心婷婷网| 国内揄拍国产精品人妻在线| 18禁在线无遮挡免费观看视频| 亚洲av在线观看美女高潮| .国产精品久久| 中国三级夫妇交换| 亚洲四区av| 欧美潮喷喷水| 亚洲av中文av极速乱| 男女边吃奶边做爰视频| 国产片特级美女逼逼视频| 新久久久久国产一级毛片| 国产午夜福利久久久久久| xxx大片免费视频| 熟女人妻精品中文字幕| 成人欧美大片| 男的添女的下面高潮视频| 2018国产大陆天天弄谢| 欧美xxxx性猛交bbbb| 国产精品国产av在线观看| 中文欧美无线码| 国产av国产精品国产| 丝瓜视频免费看黄片| 在线a可以看的网站| 黑人高潮一二区| 男人爽女人下面视频在线观看| 精品视频人人做人人爽| 日韩人妻高清精品专区| 国产精品精品国产色婷婷| 日韩伦理黄色片| 69人妻影院| 内地一区二区视频在线| 日本免费在线观看一区| 久久人人爽人人爽人人片va| 51国产日韩欧美| 久久亚洲国产成人精品v| 国产精品无大码| 亚洲aⅴ乱码一区二区在线播放| 伊人久久国产一区二区| 我的老师免费观看完整版| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 久久久久国产网址| 久久久久久久久大av| 在现免费观看毛片| kizo精华| 五月伊人婷婷丁香| 精品久久久久久久末码| 日本一本二区三区精品| 日韩av在线免费看完整版不卡| 综合色丁香网| 99热这里只有精品一区| 一级毛片黄色毛片免费观看视频| 精品久久久久久久久av| 建设人人有责人人尽责人人享有的 | 美女cb高潮喷水在线观看| 国产探花在线观看一区二区| 久久99精品国语久久久| 国产高清有码在线观看视频| 国产在线一区二区三区精| 国产精品一区二区性色av| 成人特级av手机在线观看| 极品教师在线视频| 国产精品久久久久久久电影| 久久久久久久午夜电影| 91精品国产九色| 国产男女超爽视频在线观看| 久久久久久伊人网av| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 精品久久久久久电影网| 五月天丁香电影| 国产伦在线观看视频一区| 看非洲黑人一级黄片| 禁无遮挡网站| 久久久欧美国产精品| 只有这里有精品99| 校园人妻丝袜中文字幕| av黄色大香蕉| 国产爱豆传媒在线观看| 综合色丁香网| 国产亚洲av片在线观看秒播厂| 日韩欧美 国产精品| av一本久久久久| 一级av片app| 99视频精品全部免费 在线| 最近最新中文字幕免费大全7| 少妇 在线观看| 久久久久国产网址| 五月玫瑰六月丁香| 麻豆精品久久久久久蜜桃| 亚洲av二区三区四区| 中文精品一卡2卡3卡4更新| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看| 五月伊人婷婷丁香| 亚洲国产最新在线播放| 大又大粗又爽又黄少妇毛片口| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜爱| 国产久久久一区二区三区| 全区人妻精品视频| 久久久精品欧美日韩精品| 亚洲久久久久久中文字幕| 两个人的视频大全免费| 久久精品久久精品一区二区三区| 免费黄频网站在线观看国产| 亚洲精品日韩在线中文字幕| av卡一久久| 欧美潮喷喷水| 婷婷色综合大香蕉| 国产免费视频播放在线视频| 天堂网av新在线| 亚洲天堂av无毛| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添av毛片| 免费播放大片免费观看视频在线观看| 日韩欧美精品免费久久| 成人午夜精彩视频在线观看| 免费播放大片免费观看视频在线观看| 国产人妻一区二区三区在| 国产毛片a区久久久久| 大码成人一级视频| 欧美丝袜亚洲另类| 免费av不卡在线播放| 久久久精品94久久精品| 欧美成人午夜免费资源| 精品人妻偷拍中文字幕| 六月丁香七月| 国产精品国产av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩 亚洲 欧美在线| 白带黄色成豆腐渣| 色哟哟·www| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 国模一区二区三区四区视频| 日韩成人伦理影院| 国产精品一及| 日本黄色片子视频| 成年女人看的毛片在线观看| 日本爱情动作片www.在线观看| 成人综合一区亚洲| 精品久久久久久久久亚洲| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡 | 久久久久久久久久久免费av| 欧美少妇被猛烈插入视频| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 久久久久九九精品影院| 在线精品无人区一区二区三 | 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影小说 | 欧美一级a爱片免费观看看| 亚洲精品成人久久久久久| 丝袜脚勾引网站| 三级男女做爰猛烈吃奶摸视频| 噜噜噜噜噜久久久久久91| 涩涩av久久男人的天堂| 国产极品天堂在线| 亚洲va在线va天堂va国产| 欧美+日韩+精品| 一边亲一边摸免费视频| 久久精品国产a三级三级三级| 亚洲精品,欧美精品| 99久久精品国产国产毛片| 黄色配什么色好看| 国产视频首页在线观看| 99热这里只有是精品50| 日韩伦理黄色片| 久久久久性生活片| 永久网站在线| 六月丁香七月| 国产探花极品一区二区| 18禁裸乳无遮挡动漫免费视频 | 日本与韩国留学比较| 国产淫片久久久久久久久| av福利片在线观看| 最近中文字幕高清免费大全6| 国产在线男女| 色吧在线观看| 女的被弄到高潮叫床怎么办| freevideosex欧美| 五月天丁香电影| 在线a可以看的网站| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看 | 国产白丝娇喘喷水9色精品| 亚洲av电影在线观看一区二区三区 | 边亲边吃奶的免费视频| 能在线免费看毛片的网站| 日本熟妇午夜| 久久影院123| 男人添女人高潮全过程视频| 亚洲国产精品专区欧美| 欧美 日韩 精品 国产| 男女啪啪激烈高潮av片| 亚洲四区av| 亚洲成人av在线免费| 亚洲,一卡二卡三卡| 中国美白少妇内射xxxbb| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 日韩精品有码人妻一区| 热re99久久精品国产66热6| 中文天堂在线官网| 禁无遮挡网站| 国产高清不卡午夜福利| 亚洲精品久久午夜乱码| 欧美高清成人免费视频www| 午夜激情久久久久久久| 精品人妻一区二区三区麻豆| 少妇被粗大猛烈的视频| 免费看av在线观看网站| 亚洲精品日韩在线中文字幕| 好男人在线观看高清免费视频| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只频精品6学生| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| 男女那种视频在线观看| 国产视频内射| 99视频精品全部免费 在线| 丝袜美腿在线中文| 亚洲性久久影院| 国产视频首页在线观看| 秋霞伦理黄片| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 成人二区视频| 2021天堂中文幕一二区在线观| 51国产日韩欧美| 亚洲av欧美aⅴ国产| 午夜福利视频1000在线观看| av天堂中文字幕网| 亚洲,一卡二卡三卡| 一个人看视频在线观看www免费| 噜噜噜噜噜久久久久久91| 99久久精品一区二区三区| 亚洲av福利一区| 久久久久久久亚洲中文字幕| 国产成人免费观看mmmm| 成年av动漫网址| 精品久久久久久久久亚洲| 亚洲精品中文字幕在线视频 | 99热6这里只有精品| 22中文网久久字幕| 亚洲国产色片| 1000部很黄的大片| 亚洲四区av| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 在线a可以看的网站| 美女内射精品一级片tv| 亚洲av二区三区四区| 卡戴珊不雅视频在线播放| 岛国毛片在线播放| 久久6这里有精品| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 麻豆成人av视频| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添av毛片| 在线观看国产h片| 国产精品不卡视频一区二区| 亚洲国产欧美人成| 日韩欧美一区视频在线观看 | 亚洲国产高清在线一区二区三| 国产在视频线精品| 99精国产麻豆久久婷婷| 日韩欧美精品免费久久| 国产老妇女一区| 免费观看无遮挡的男女| 国产成人精品福利久久| 国产亚洲午夜精品一区二区久久 | 国产乱人偷精品视频| 日韩中字成人| 成人鲁丝片一二三区免费| 亚洲精品日韩在线中文字幕| 在线免费十八禁| 久久久a久久爽久久v久久| 精品人妻偷拍中文字幕| 少妇 在线观看| 自拍偷自拍亚洲精品老妇| 麻豆乱淫一区二区| av播播在线观看一区| 国产精品久久久久久久久免| 成人黄色视频免费在线看| 欧美 日韩 精品 国产| 欧美bdsm另类| 亚洲精品国产av蜜桃| 搡女人真爽免费视频火全软件| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 尤物成人国产欧美一区二区三区| 高清日韩中文字幕在线| 亚洲av成人精品一区久久| 啦啦啦在线观看免费高清www| 久久精品熟女亚洲av麻豆精品| 少妇的逼好多水| 午夜视频国产福利| 国国产精品蜜臀av免费| 亚洲精华国产精华液的使用体验| 亚洲最大成人av| 色5月婷婷丁香| 免费观看性生交大片5| 黄色配什么色好看| 亚洲欧美日韩卡通动漫| 少妇高潮的动态图| 嫩草影院入口| 亚洲国产高清在线一区二区三| 男人和女人高潮做爰伦理| 91久久精品电影网| 99热6这里只有精品| 国产精品成人在线| 国产精品久久久久久久久免| 日韩精品有码人妻一区| 极品少妇高潮喷水抽搐| 大码成人一级视频| 亚洲丝袜综合中文字幕| 狂野欧美激情性xxxx在线观看| 午夜视频国产福利| 激情 狠狠 欧美| 免费看光身美女| av在线播放精品| 久久久久久久久久久免费av| 18禁裸乳无遮挡免费网站照片| 大话2 男鬼变身卡| 黄色视频在线播放观看不卡| 99久久九九国产精品国产免费| 成人无遮挡网站| 国产白丝娇喘喷水9色精品| 插阴视频在线观看视频| 两个人的视频大全免费| 亚洲欧美日韩另类电影网站 | 高清视频免费观看一区二区| 免费观看无遮挡的男女| 欧美区成人在线视频| 一本一本综合久久| 男女边摸边吃奶| 亚洲精品中文字幕在线视频 | 色哟哟·www| 日日摸夜夜添夜夜添av毛片| 国精品久久久久久国模美| 女人久久www免费人成看片| 亚洲综合精品二区| 成人毛片60女人毛片免费| 韩国av在线不卡| 久久精品国产自在天天线| videos熟女内射| 色哟哟·www| 搞女人的毛片| av国产久精品久网站免费入址| 欧美xxⅹ黑人| 亚洲精品成人av观看孕妇| 美女主播在线视频| 国产大屁股一区二区在线视频| 国产成人福利小说| 欧美+日韩+精品| 好男人视频免费观看在线| 麻豆久久精品国产亚洲av| 国产乱来视频区| 26uuu在线亚洲综合色| 亚洲天堂国产精品一区在线| 有码 亚洲区| 日韩国内少妇激情av| 午夜老司机福利剧场| 欧美精品人与动牲交sv欧美| 免费看av在线观看网站| 少妇人妻久久综合中文| 秋霞伦理黄片| 嫩草影院新地址| 全区人妻精品视频| 最近的中文字幕免费完整| 精品久久久久久久久亚洲| 观看免费一级毛片| 久久ye,这里只有精品| 女人久久www免费人成看片| 2021少妇久久久久久久久久久| 亚洲av国产av综合av卡| 如何舔出高潮| 黑人高潮一二区| 中文资源天堂在线| 亚洲高清免费不卡视频| 国产高潮美女av| 国产精品久久久久久精品古装| 国产精品av视频在线免费观看| 男女无遮挡免费网站观看| 日韩成人av中文字幕在线观看| 国产有黄有色有爽视频| 欧美xxxx性猛交bbbb| 哪个播放器可以免费观看大片| 直男gayav资源| 久久精品综合一区二区三区| 91狼人影院|