• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COARSE ISOMETRIES BETWEEN FINITE DIMENSIONAL BANACH SPACES?

    2021-10-28 05:44:14YuqiSUN孫玉奇WenZHANG張文
    關鍵詞:張文

    Yuqi SUN(孫玉奇)Wen ZHANG(張文)

    School of Mathematical Science,Xiamen University,Xiamen 361005,China

    E-mail:sunyuqi00@163.com;wenzhang@xmu.edu.cn

    Abstract Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f:X→Y satis fies an integral convergence condition or weak stability on a basis,then there exists a surjective linear isometry U:X→Y such that‖f(x)?Ux‖=o(‖x‖)as‖x‖→∞.This is a generalization about the result of Lindenstrauss and Szankowski on the same finite dimensional Banach spaces without the assumption of surjectivity.As a consequence,we also obtain a stability result for ε-isometries which was established by Dilworth.

    Key words coarse isometry;linear isometry;fi nite dimensional Banach spaces

    1 Introduction

    Research on the properties of surjective coarse isometries between real Banach spaces started in 1985,when Lindenstrauss and Szankowski[1] first studied a large perturbation function for a surjective standard mapping f between real Banach spaces X and Y which was de fined by

    where a mapping f:X→Y is standard if f(0)=0.

    They obtained the following result about the asymptotical stability of f:

    Theorem 1.1(Lindenstrauss and Szankowski) Let f be a surjective standard map from a Banach space X onto a Banach space Y.If

    then there is a linear isometry U from X onto Y such that

    At the same time,they showed that condition(1.1)cannot be removed(for details on this one can refer to[2,p.367-370]).

    Remark 1.2Dolinar[3]proved that Theorem 1.1 also holds if ?f(t)is substituted by εf(t)in the integral convergence condition(1.1).Here

    Now let us recall the de finition of coarse isometry.

    De finition 1.3Let X,Y be real Banach spaces and let f:X→Y be a mapping,where εf(t)is de fined as in(1.2).f is called a coarse isometry if εf(t)=o(t)as t→∞.In particular,we say that f is an ε-isometry ifεf(t)=ε<∞.

    Remark 1.4Note that εf(t)≤?f(t)for each t≥0,so(1.1)implies that ?f(t)=o(t)when t→∞.Then every mapping f:X→Y satisfying(1.1)is a coarse isometry.

    As far as we know,when we study a coarse isometry f from a Banach space X to a Banach space Y,it is difficult to find a suitable condition guaranteeing the existencefor each x∈X,even if both X and Y are the real line R.Thus the representation of non-surjective coarse isometries has not been studied until 2019.Cheng et al.[4] first investigated the nonsurjective coarse isometry f:X→Y and obtained the following result,where Y is a uniformly convex Banach space of power type p:

    Theorem 1.5(see[4])Suppose that f:X→Y is a standard coarse isometry and that Y is uniformly convex with convexity of type p.If

    then there is a linear isometry U:X→Y such that

    In this paper,we study the properties of non-surjective coarse isometries between the same finite dimensional Banach spaces.In Section 2,inspired by the idea in[5],we prove that if every standard coarse isometry f:X→Y with dimX=dimY<∞satis fies the integral convergence condition

    then there exists a surjective linear isometry U:X→Y such that‖f(x)?Ux‖=o(‖x‖)as‖x‖→∞.Here the condition(1.3)is essential,but when the target spaces X,Y are the real line R,the condition(1.3)can be removed.

    In Section 3,we prove that if a standard coarse isometry f:X→Y is weakly stable on a basis of X,i.e.,for each x?∈SX?,there exists φ∈SY?such that

    where{ek}?X is a basis.Then there exists a surjective linear isometry U:X→Y such that‖f(x)?Ux‖=o(‖x‖)as‖x‖→∞.Furthermore,we prove that the weakly stable condition is weaker than(1.3)for coarse isometries between the same finite dimensional Banach spaces.As a consequence,we also obtain a stability result for ε-isometry which was established by Dilworth[3,Theorem 2].

    Throughout this paper,the letters X and Y are used to denote real Banach spaces,and X?and Y?are their dual spaces.For a real Banach space X,we denote by B(0,1)and°B(0,1)the closed unit ball and the open unit ball of X,respectively.Given a bounded linear operator T:X→Y,T?:Y?→X?is its dual operator.

    2 Coarse Isometries Under the Integral Convergence Condition

    To begin this section,we recall some related de finitions and results of paracompact spaces,which are taken from[2,p.416–417].

    Let Z be a Hausdorffspace.An open cover V is called locally finite if every x∈Z has a neighborhood W that intersects only finitely many sets in V.We say that an open cover V′is a re finement of V if every V′∈V′is contained in some V ∈V.The space is said to be paracompact if every open cover of Z admits a locally finite open re finement.A locally finite partition of unity on Z is a family{Fα:α∈A}of continuous functions from Z to[0,1]such that

    (i){{x∈Z:Fα(x)>0}:α∈A}form a locally finite open cover of Z;

    We say that the partition of unity{Fα}is subordinated to the cover V if,for each α∈A,{x∈Z:Fα(x)>0}is contained in some V∈V.

    Proposition 2.1(see[2]) Metrizable spaces are paracompact.

    Proposition 2.2(see[2]) Let Z be a paracompact space.Then for every open cover V of Z,there is a locally finite partition of unity subordinated to V.

    The following lemma is essentially inspired by[5,Lemma 2.8]:

    Lemma 2.3Let X,Y be Banach spaces and let f:X→Y be a standard coarse isometry.Then there exist a standard continuous coarse isometry g:X→Y and a constant M such that

    ProofLet{zγ:γ∈Γ}be a maximal set which satis fies the condition that‖zξ?zη‖≥1 if ξη.Let 0∈{zγ:γ∈Γ}.Then,for each x∈X,there is a γ∈Γ such that||x?zγ||<1.Note that{(zγ,1):γ∈Γ}is an open cover of X,hence there exists a locally finite partition of unity{Fα:α∈A}subordinated to{°B(zγ,1):γ∈Γ}.Then for each α∈A,we can choose a γα∈Γ such that{y∈X:Fα(y)>0}?°B(zγα,1).We de fine g:X→Y by

    Since,for each γ∈Γ with zγ0,0/∈°B(zγ,1)and for each α∈A with Fα(0)>0,0∈{y∈X:Fα(y)>0}?°B(0,1),g(0)=0.

    Then g is continuous.Moreover,if Fα(x)>0 for each x∈X,then‖x?‖<1.Consequently,

    Since f is a coarse isometry,εf(1)<∞.Letting M=1+εf(1),we obtain that‖f(x)?g(x)‖≤M for all x∈X and that εg(t)≤εf(t)+2M,so g is a coarse isometry.

    Lemma 2.4([5,Proposition 4.1]) Let X,Y be Banach spaces with dimX=dimY<∞and let f:X→Y be a continuous non-surjective map with‖f(x)‖=∞.Then,given M>0,there are points x,y∈X with‖x?y‖≥M and f(x)=f(y).

    Remark 2.5According to Lemma 2.4,we can show that every continuous coarse isometry f:X→Y satisfying the condition dimX=dimY<∞is surjective.Indeed,since f is a coarse isometry,

    This contradicts(2.1).

    The following result is a generalization of Theorem 1.1,where we choose the same finite dimensional Banach spaces(here we don’t need the assumption of surjectivity):

    Theorem 2.6Let X,Y be Banach spaces with dimX=dimY<∞and let f:X→Y be a standard coarse isometry.If Z

    then there exists a surjective linear isometry U:X→Y such that

    ProofAccording to Lemma 2.3 and Remark 2.5,there exist a constant M and a surjective standard continuous coarse isometry g:X→Y with εg(t)≤εf(t)+2M.Thendt<∞.By Remark 1.2([3,Proposition 1]),there exists a surjective linear isometry U:X→Y such that

    Thus

    The following example says that the condition(2.2)in Theorem 2.6 is essential:

    Example 2.7Let ?:(0,∞)→(0,∞)be a function de fined by ?(t)=for t>0.Then ? is monotone increasing,and satis fies

    Then by the argument of[2,p.367],there is no isometry U:R2→R2with‖f(x)?Ux‖=o(‖x‖)as‖x‖→∞and εf(t)≤?(t)for all t>0.However f is a coarse isometry.

    The next theorem shows that the integral convergence condition(2.2)can be removed when X=Y=R.

    Theorem 2.8Let f:R→R be a standard coarse isometry.Then there is a linear isometry U:R→R such that

    ProofFirst,since f is a coarse isometry,

    This is a contradiction.Moreover,we shall prove that

    Otherwise,we can find two sequences{xk}?B(0,1),{nk}?N and ε0>0 such that

    According to the compactness of B(0,1)in R,without loss of generality,we can assume that xk→x0for some x0∈B(0,1).Then

    This contradicts(2.7).

    Finally,we show that

    This is a contradiction.Thus(2.3)holds.

    Corollary 2.9([6,Theorem 2]) Let X,Y be Banach spaces with dimX=dimY<∞and let f:X→Y be a standard ε-isometry.Then there exists a surjective linear isometry U:X→Y such that

    ProofAccording to Theorem 2.6,there is a surjective linear isometry U:X→Y such that

    Then,by[7,Proposition 2],

    3 Weak Stability of Coarse Isometries

    We start this section by recalling the remarkable results for ε-isometries.In 2013,Cheng,Dong and Zhang[8]established the weak stability formula.

    Theorem 3.1(see[8])Let X,Y be Banach spaces.Suppose that f:X→Y is a standard ε-isometry.Then,for every x?∈X?,there exists φ∈Y?with‖x?‖=‖φ‖≡r such that

    This has played an important role in the study of stability properties of ε-isometries(see[8–13]).Furthermore,the weak stability formula was improved in[14]and[15].

    Theorem 3.2(see[14,15])Let X,Y be Banach spaces.Suppose that f:X→Y is a standard ε-isometry.Then,for every x?∈X?,there exists φ∈Y?with‖x?‖=‖φ‖≡r such that

    The next result is inspired by the weak stability formula for ε-isometries.

    We recall that for a non-empty set ?,a family U of subsets of ? is said to be a free ultra filter provided that

    (1)?/∈U,and∩{U∈U}=?;

    (2)U,V∈U=?U∩V∈U;

    (3)U∈U and U?V??=?V∈U;

    (4)A??=?either A∈U,or,?A∈U.

    Let U be a free ultra filter,and let K be a Hausdorffspace.A mapping g:?→K is said to be U-convergent to k∈K provided that for any neighborhood V of k,g?1(V)∈U.This means that limUg=k.We should note that every mapping g:?→K is U-convergent when K is compact.

    Theorem 3.3Let X,Y be Banach spaces with dimX=dimY=m<∞and let f:X→Y be a standard coarse isometry.If,for each x?∈SX?,there exists φ∈SY?such that

    where{ek}?X is a basis,then there exists a surjective linear isometry U:X→Y such that

    ProofLet U be a free ultra filter on N and let{rn}n∈N?R with rn→∞as n→∞.Since f is a coarse isometry with f(0)=0,for each x∈X,

    de fines an isometry mapping.According to Remark 2.5 and the Mazur-Ulam theorem[16],we obtain that U:X→Y is a surjective linear isometry,and then U?:Y?→X?is also a surjective linear isometry.

    It remains to prove that

    Then(3.3)holds,from the proof of(2.6)in Theorem 2.8.

    Now we give another proof of[6,Theorem 2]by the weak stability formula for ε-isometries.

    Corollary 3.4([6,Theorem 2]) Let X,Y be Banach spaces with dimX=dimY<∞and let f:X→Y be a standard ε-isometry.Then there exists a surjective linear isometry U:X→Y such that

    ProofUx=de fines a surjective linear isometry from X onto Y by Theorem 3.2 and Theorem 3.3,so U?:Y?→X?is also a surjective linear isometry.Thus,for each φ∈SY?,

    Given δ>0,for each x∈X there exists φ∈SY?such that

    Then‖f(x)?Ux‖<3ε+δ.The arbitrariness of δ entails

    Note that in[7,Proposition 2],it was proved that‖f(x)?Ux‖=o(‖x‖)as‖x‖→∞implies that‖f(x)?Ux‖≤2ε for all x∈X.The proof is completed.

    In the proposition and example to follow,we compare the integral convergence condition(2.2)with(3.2)between the same finite dimensional Banach spaces.

    Proposition 3.5Let X,Y be Banach spaces with dimX=dimY<∞and let f:X→Y be a standard coarse isometry satisfying

    Then(3.2)holds.

    ProofAccording to Theorem 2.6,there exists a surjective linear isometry U:X→Y given by

    Given x?∈SX?,there exists φ∈SY?such that U?φ=x?,so

    Thus(3.2)holds.

    However(3.2)cannot imply the integral convergence condition(2.2).

    Example 3.6Suppose that f:R→R is given by

    Then f is a standard coarse isometry and(3.2)holds,but

    ProofBecause,for t>0

    without loss of generality we can assume that y

    AcknowledgementsThe authors would like to thank the colleagues and graduate students in the Functional Analysis group of Xiamen University for their very helpful conversations and suggestions.

    猜你喜歡
    張文
    The coupled deep neural networks for coupling of the Stokes and Darcy–Forchheimer problems
    說說“三不腐”
    Quantum annealing for semi-supervised learning
    張文作品
    今非昔比,婚前約定有效嗎?
    苗家小阿妹
    歌海(2019年2期)2019-06-11 07:02:14
    敲門磚
    今非昔比,婚前約定有效嗎?
    印象成都——寬窄巷子
    戲劇之家(2017年14期)2017-09-11 20:05:30
    握手
    歌海(2017年6期)2017-05-30 05:20:26
    国产高清国产精品国产三级| 欧美xxⅹ黑人| 美女中出高潮动态图| 女性被躁到高潮视频| 男女国产视频网站| 日韩大码丰满熟妇| 成人免费观看视频高清| 无遮挡黄片免费观看| 午夜91福利影院| cao死你这个sao货| 亚洲精品一二三| 欧美+亚洲+日韩+国产| 不卡av一区二区三区| 青青草视频在线视频观看| 成人国产av品久久久| 日本av手机在线免费观看| 操美女的视频在线观看| 免费高清在线观看视频在线观看| 91成人精品电影| 精品卡一卡二卡四卡免费| 国产极品粉嫩免费观看在线| 国产欧美日韩精品亚洲av| 超碰97精品在线观看| 91成年电影在线观看| 青春草亚洲视频在线观看| 性色av乱码一区二区三区2| 丝袜美足系列| 制服诱惑二区| 啦啦啦免费观看视频1| 一本综合久久免费| 99精国产麻豆久久婷婷| 亚洲 国产 在线| 国产成人免费无遮挡视频| 亚洲色图 男人天堂 中文字幕| 好男人电影高清在线观看| 国产精品一区二区在线不卡| 亚洲av欧美aⅴ国产| 一区福利在线观看| 国产精品熟女久久久久浪| 极品人妻少妇av视频| 色94色欧美一区二区| 国产高清视频在线播放一区 | 欧美一级毛片孕妇| 99国产综合亚洲精品| 久久久久久久国产电影| 国产av国产精品国产| 欧美日韩一级在线毛片| 大香蕉久久网| 亚洲伊人色综图| 亚洲专区字幕在线| 欧美精品一区二区免费开放| 人妻一区二区av| 国产伦理片在线播放av一区| 日韩欧美国产一区二区入口| 男男h啪啪无遮挡| 女警被强在线播放| 欧美黄色片欧美黄色片| 纯流量卡能插随身wifi吗| 成人手机av| 精品一区二区三区四区五区乱码| 精品国产超薄肉色丝袜足j| 亚洲精品国产av成人精品| 午夜成年电影在线免费观看| 国产男女内射视频| 亚洲成国产人片在线观看| 亚洲精品久久久久久婷婷小说| 青草久久国产| 欧美日韩成人在线一区二区| 1024视频免费在线观看| 1024视频免费在线观看| 91国产中文字幕| 交换朋友夫妻互换小说| 久久久久久久久久久久大奶| 人成视频在线观看免费观看| 亚洲一区二区三区欧美精品| 久久精品成人免费网站| 嫁个100分男人电影在线观看| 视频在线观看一区二区三区| 久久精品亚洲av国产电影网| 久久精品亚洲av国产电影网| 大香蕉久久成人网| 美女主播在线视频| 国产成人一区二区三区免费视频网站| 一本色道久久久久久精品综合| 国产成人欧美在线观看 | 一区二区三区激情视频| 一二三四在线观看免费中文在| 99热网站在线观看| 男男h啪啪无遮挡| 女人爽到高潮嗷嗷叫在线视频| 免费久久久久久久精品成人欧美视频| 超碰成人久久| 精品国产一区二区三区四区第35| 久久av网站| 两个人免费观看高清视频| 日本91视频免费播放| 国产野战对白在线观看| tube8黄色片| 在线观看免费视频网站a站| 久久中文看片网| 19禁男女啪啪无遮挡网站| 久久女婷五月综合色啪小说| 大陆偷拍与自拍| 午夜福利在线免费观看网站| 19禁男女啪啪无遮挡网站| 成在线人永久免费视频| 亚洲av日韩在线播放| 成年美女黄网站色视频大全免费| 满18在线观看网站| 伊人亚洲综合成人网| 亚洲av国产av综合av卡| 亚洲美女黄色视频免费看| 国产极品粉嫩免费观看在线| 大码成人一级视频| 久久影院123| 亚洲精品av麻豆狂野| 午夜91福利影院| 高清欧美精品videossex| 在线 av 中文字幕| 一二三四在线观看免费中文在| 9191精品国产免费久久| 国产成人a∨麻豆精品| 两性午夜刺激爽爽歪歪视频在线观看 | 久久午夜综合久久蜜桃| 9色porny在线观看| 日日爽夜夜爽网站| 搡老熟女国产l中国老女人| 久久久久国产精品人妻一区二区| 亚洲国产成人一精品久久久| 国产成人系列免费观看| 午夜福利一区二区在线看| 岛国毛片在线播放| 男女免费视频国产| 亚洲激情五月婷婷啪啪| 久久精品亚洲av国产电影网| 热99re8久久精品国产| 18禁黄网站禁片午夜丰满| 18禁国产床啪视频网站| 各种免费的搞黄视频| 欧美精品一区二区免费开放| 69av精品久久久久久 | 欧美另类一区| 欧美日韩福利视频一区二区| 亚洲一码二码三码区别大吗| 老司机影院毛片| 日韩,欧美,国产一区二区三区| 蜜桃在线观看..| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看人妻少妇| 99久久人妻综合| 国产高清videossex| 亚洲国产精品999| 黄色怎么调成土黄色| 欧美中文综合在线视频| 18在线观看网站| 精品亚洲成国产av| 午夜精品国产一区二区电影| 在线亚洲精品国产二区图片欧美| 韩国高清视频一区二区三区| 亚洲精品中文字幕在线视频| www.自偷自拍.com| 国产精品久久久人人做人人爽| 久久精品人人爽人人爽视色| 久久久国产成人免费| 国产亚洲欧美精品永久| 美国免费a级毛片| 在线亚洲精品国产二区图片欧美| 91麻豆精品激情在线观看国产 | 国产av又大| 午夜激情久久久久久久| 国产成人av激情在线播放| 欧美国产精品va在线观看不卡| 亚洲欧美日韩另类电影网站| 自线自在国产av| 国产伦理片在线播放av一区| 中文字幕另类日韩欧美亚洲嫩草| 日韩有码中文字幕| 亚洲精品国产一区二区精华液| 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区三区久久久樱花| 五月开心婷婷网| 电影成人av| 大香蕉久久成人网| 三级毛片av免费| 99久久精品国产亚洲精品| 人妻人人澡人人爽人人| 蜜桃在线观看..| 99精品久久久久人妻精品| 一区二区三区乱码不卡18| 日韩电影二区| 女警被强在线播放| 国产精品99久久99久久久不卡| kizo精华| 国产97色在线日韩免费| 亚洲精品中文字幕在线视频| 亚洲七黄色美女视频| 搡老乐熟女国产| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看| 精品高清国产在线一区| 欧美黄色片欧美黄色片| 老司机午夜福利在线观看视频 | 久久久久久久国产电影| 母亲3免费完整高清在线观看| 亚洲色图综合在线观看| 在线观看免费视频网站a站| 三上悠亚av全集在线观看| 91成年电影在线观看| 大片电影免费在线观看免费| 18禁观看日本| 亚洲精品自拍成人| 亚洲情色 制服丝袜| 久久精品国产a三级三级三级| 一个人免费在线观看的高清视频 | 麻豆av在线久日| 国产精品一区二区在线观看99| 国产亚洲欧美在线一区二区| 日本a在线网址| 国产精品秋霞免费鲁丝片| xxxhd国产人妻xxx| 男人爽女人下面视频在线观看| 亚洲国产成人一精品久久久| h视频一区二区三区| 少妇裸体淫交视频免费看高清 | 国产精品熟女久久久久浪| 国产视频一区二区在线看| 悠悠久久av| 青春草视频在线免费观看| 91精品三级在线观看| 欧美xxⅹ黑人| 丝袜人妻中文字幕| 最新在线观看一区二区三区| 法律面前人人平等表现在哪些方面 | av不卡在线播放| 亚洲三区欧美一区| 男人舔女人的私密视频| 精品人妻1区二区| 欧美97在线视频| 久久亚洲国产成人精品v| 精品人妻在线不人妻| 国产在线视频一区二区| 香蕉丝袜av| 一级片免费观看大全| 欧美日韩成人在线一区二区| 两性夫妻黄色片| 女人精品久久久久毛片| 国产男人的电影天堂91| 精品欧美一区二区三区在线| 搡老乐熟女国产| 日本av手机在线免费观看| 久久人人爽av亚洲精品天堂| 亚洲中文日韩欧美视频| 人妻人人澡人人爽人人| 亚洲专区字幕在线| 国产精品免费视频内射| 一级黄色大片毛片| 99热全是精品| 久久久久久免费高清国产稀缺| 下体分泌物呈黄色| 国产精品国产三级国产专区5o| 国产亚洲av高清不卡| 热99国产精品久久久久久7| 无限看片的www在线观看| 国产成人精品久久二区二区免费| 国精品久久久久久国模美| 黄色毛片三级朝国网站| 人人妻人人添人人爽欧美一区卜| 久久午夜综合久久蜜桃| 欧美性长视频在线观看| av线在线观看网站| 精品少妇黑人巨大在线播放| 最近最新中文字幕大全免费视频| 一区在线观看完整版| 成人18禁高潮啪啪吃奶动态图| 夜夜骑夜夜射夜夜干| 老熟女久久久| 国产精品九九99| 欧美精品一区二区免费开放| 美女扒开内裤让男人捅视频| 天天躁日日躁夜夜躁夜夜| 99国产极品粉嫩在线观看| 国产一区二区激情短视频 | 美国免费a级毛片| 国产成人系列免费观看| 视频区欧美日本亚洲| 免费人妻精品一区二区三区视频| 国产精品 欧美亚洲| 黑人操中国人逼视频| 亚洲中文字幕日韩| 美女中出高潮动态图| 男女免费视频国产| 午夜老司机福利片| av在线播放精品| 婷婷成人精品国产| 亚洲av美国av| 如日韩欧美国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 又黄又粗又硬又大视频| 欧美亚洲日本最大视频资源| 国产av一区二区精品久久| 中文字幕人妻丝袜制服| 久久久精品国产亚洲av高清涩受| 免费一级毛片在线播放高清视频 | 国产成人精品久久二区二区91| 热99re8久久精品国产| 中文字幕高清在线视频| 亚洲精品中文字幕在线视频| 美女高潮喷水抽搐中文字幕| 中亚洲国语对白在线视频| 久久久精品94久久精品| 午夜激情av网站| 欧美中文综合在线视频| 久久久久国产精品人妻一区二区| 99国产精品免费福利视频| 伊人亚洲综合成人网| svipshipincom国产片| 女性被躁到高潮视频| 国产精品久久久av美女十八| 亚洲欧美精品自产自拍| 国产一区二区在线观看av| 亚洲中文日韩欧美视频| 精品人妻1区二区| 国产精品自产拍在线观看55亚洲 | 久久久久久久国产电影| 成人免费观看视频高清| 操出白浆在线播放| 看免费av毛片| 欧美日韩亚洲高清精品| 亚洲男人天堂网一区| 久久精品亚洲av国产电影网| 青春草亚洲视频在线观看| 精品久久久精品久久久| 精品亚洲成a人片在线观看| 丝袜美腿诱惑在线| 菩萨蛮人人尽说江南好唐韦庄| 亚洲中文日韩欧美视频| 建设人人有责人人尽责人人享有的| 新久久久久国产一级毛片| 久久人妻福利社区极品人妻图片| 亚洲国产欧美在线一区| 五月天丁香电影| 少妇被粗大的猛进出69影院| 亚洲精华国产精华精| 久久久久久久久免费视频了| 久久人人爽人人片av| 宅男免费午夜| 在线观看免费日韩欧美大片| 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 人人妻人人澡人人爽人人夜夜| 极品人妻少妇av视频| 我要看黄色一级片免费的| 国产在线观看jvid| 精品久久久久久久毛片微露脸 | 亚洲av成人一区二区三| 国产欧美日韩一区二区三区在线| 在线精品无人区一区二区三| 国产国语露脸激情在线看| 一级毛片精品| 久久人人97超碰香蕉20202| 久久人妻福利社区极品人妻图片| 爱豆传媒免费全集在线观看| 岛国在线观看网站| 久久精品国产亚洲av香蕉五月 | 老熟妇仑乱视频hdxx| 一个人免费在线观看的高清视频 | 午夜日韩欧美国产| av欧美777| 日韩人妻精品一区2区三区| 亚洲av电影在线观看一区二区三区| 日韩一区二区三区影片| 亚洲,欧美精品.| 亚洲av国产av综合av卡| 制服人妻中文乱码| 午夜两性在线视频| 91精品三级在线观看| 亚洲av男天堂| 秋霞在线观看毛片| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 大片免费播放器 马上看| 97精品久久久久久久久久精品| 男人添女人高潮全过程视频| 99国产精品免费福利视频| 午夜老司机福利片| 又黄又粗又硬又大视频| 另类亚洲欧美激情| 中文欧美无线码| 窝窝影院91人妻| 午夜免费成人在线视频| 男女免费视频国产| 中文字幕最新亚洲高清| 老熟妇仑乱视频hdxx| 午夜福利在线免费观看网站| 国产男女内射视频| 国产高清视频在线播放一区 | 久久99热这里只频精品6学生| 精品人妻一区二区三区麻豆| 天堂中文最新版在线下载| 91大片在线观看| 欧美+亚洲+日韩+国产| 黄频高清免费视频| 国产亚洲欧美精品永久| 一区二区三区激情视频| 91成年电影在线观看| 在线av久久热| 婷婷色av中文字幕| 国产三级黄色录像| 国产男人的电影天堂91| 在线观看www视频免费| 女人久久www免费人成看片| 极品人妻少妇av视频| 欧美日韩av久久| 成年人免费黄色播放视频| 亚洲精品乱久久久久久| 午夜两性在线视频| 免费观看av网站的网址| √禁漫天堂资源中文www| 天堂俺去俺来也www色官网| 国产在线免费精品| 99热网站在线观看| 99热全是精品| 国产三级黄色录像| 亚洲欧洲日产国产| 免费在线观看影片大全网站| 51午夜福利影视在线观看| 亚洲精品国产色婷婷电影| 国产日韩欧美视频二区| 国产有黄有色有爽视频| 淫妇啪啪啪对白视频 | 久久久水蜜桃国产精品网| 少妇人妻久久综合中文| 精品少妇一区二区三区视频日本电影| 五月开心婷婷网| av网站在线播放免费| 12—13女人毛片做爰片一| cao死你这个sao货| 免费在线观看日本一区| 午夜福利一区二区在线看| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 亚洲精品自拍成人| 一本一本久久a久久精品综合妖精| 免费在线观看黄色视频的| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲天堂av无毛| 亚洲欧美精品综合一区二区三区| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 涩涩av久久男人的天堂| 成人手机av| 91九色精品人成在线观看| 久久亚洲国产成人精品v| 最新在线观看一区二区三区| 亚洲精品在线美女| 欧美xxⅹ黑人| 久久国产亚洲av麻豆专区| 他把我摸到了高潮在线观看 | 99香蕉大伊视频| 亚洲欧美清纯卡通| 亚洲男人天堂网一区| 在线av久久热| 久久久久久久大尺度免费视频| 男女边摸边吃奶| 丰满少妇做爰视频| 人妻一区二区av| 婷婷丁香在线五月| 国产精品影院久久| 一区二区三区精品91| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 成人三级做爰电影| 免费在线观看影片大全网站| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 国产精品影院久久| 国产黄频视频在线观看| 九色亚洲精品在线播放| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 一进一出抽搐动态| 欧美精品亚洲一区二区| 中文字幕另类日韩欧美亚洲嫩草| 欧美久久黑人一区二区| 国产成人系列免费观看| 最黄视频免费看| 国产日韩欧美视频二区| 欧美xxⅹ黑人| 国产免费一区二区三区四区乱码| 19禁男女啪啪无遮挡网站| 成人影院久久| 精品人妻一区二区三区麻豆| 18禁黄网站禁片午夜丰满| 久久久精品区二区三区| 交换朋友夫妻互换小说| 国产亚洲精品一区二区www | 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 国产极品粉嫩免费观看在线| 黄网站色视频无遮挡免费观看| 亚洲一码二码三码区别大吗| 咕卡用的链子| www.av在线官网国产| 多毛熟女@视频| 巨乳人妻的诱惑在线观看| 午夜老司机福利片| 少妇粗大呻吟视频| 成年人黄色毛片网站| 欧美精品亚洲一区二区| 91av网站免费观看| 9191精品国产免费久久| a级片在线免费高清观看视频| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美日韩在线播放| 一级,二级,三级黄色视频| 欧美 亚洲 国产 日韩一| 日韩熟女老妇一区二区性免费视频| 欧美久久黑人一区二区| 日本欧美视频一区| 爱豆传媒免费全集在线观看| 久久人人97超碰香蕉20202| 国产av又大| 亚洲精品第二区| 国产免费福利视频在线观看| 看免费av毛片| 久久av网站| 亚洲欧洲精品一区二区精品久久久| 精品视频人人做人人爽| 操美女的视频在线观看| 免费在线观看影片大全网站| 俄罗斯特黄特色一大片| svipshipincom国产片| 麻豆乱淫一区二区| 久久久久精品人妻al黑| 一本色道久久久久久精品综合| av免费在线观看网站| 亚洲精品美女久久av网站| 老司机靠b影院| 夫妻午夜视频| 亚洲第一av免费看| 操出白浆在线播放| 一区在线观看完整版| 亚洲中文字幕日韩| 亚洲黑人精品在线| 老熟妇乱子伦视频在线观看 | 69av精品久久久久久 | 啦啦啦在线免费观看视频4| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| av在线app专区| 少妇人妻久久综合中文| 亚洲av成人不卡在线观看播放网 | 欧美日韩黄片免| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 色精品久久人妻99蜜桃| 国产精品熟女久久久久浪| 人人妻人人澡人人爽人人夜夜| 久久热在线av| 午夜福利乱码中文字幕| 成人国产av品久久久| 久久影院123| 欧美黑人精品巨大| 亚洲av男天堂| 久久精品国产a三级三级三级| 69精品国产乱码久久久| 啦啦啦啦在线视频资源| 亚洲精品自拍成人| 亚洲一区中文字幕在线| 久久人妻福利社区极品人妻图片| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| www.熟女人妻精品国产| 一区福利在线观看| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 国产成人一区二区三区免费视频网站| 久久久久久免费高清国产稀缺| 亚洲精品日韩在线中文字幕| 欧美日韩av久久| 黄频高清免费视频| 色播在线永久视频| 国产亚洲欧美在线一区二区| 国产av国产精品国产| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 亚洲成人国产一区在线观看| 正在播放国产对白刺激| 国产又色又爽无遮挡免| 免费久久久久久久精品成人欧美视频| avwww免费| 国产男女内射视频| 精品国产一区二区三区四区第35| 大码成人一级视频| 男人添女人高潮全过程视频| 成人三级做爰电影| avwww免费| 多毛熟女@视频| 美女中出高潮动态图| 国产精品 欧美亚洲| 人妻 亚洲 视频| 久久ye,这里只有精品| 久久久欧美国产精品| 伦理电影免费视频| 欧美午夜高清在线| 国产人伦9x9x在线观看| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 国产在线免费精品| 欧美乱码精品一区二区三区| 亚洲一码二码三码区别大吗| 亚洲精品第二区| 久9热在线精品视频| 亚洲av成人不卡在线观看播放网 |