• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOME OSCILLATION CRITERIA FOR A CLASS OF HIGHER ORDER NONLINEAR DYNAMIC EQUATIONS WITH A DELAY ARGUMENT ON TIME SCALES?

    2021-10-28 05:44:08XinWU吳鑫

    Xin WU(吳鑫)

    School of Sciences,East China JiaoTong University,Nanchang 330013,China

    E-mail:wuxin8710180@163.com

    Abstract In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the formon an arbitrary time scale T with supT=∞,where n≥2,?(u)=|u|γsgn(u)for γ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈Crd(T,(0,∞)).The function τ∈Crd(T,T)satis fies τ(t)≤t andτ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.

    Key words oscillation;nonlinear dynamic equations;higher order equation;delay dynamic equations;time scale

    1 Introduction

    During the past several decades,a great number of theoretical issues concerning dynamic equations on time scales have received considerable attention.Much of the focus has been on attempting to harmonize the oscillation theory for the continuous and the discrete,so the oscillation and nonoscillation of solutions of various equations has been investigated extensively;we refer the reader to the excellent monograph[3],the papers[1,7,9,10,20,23,30],and the references cited therein.Saker and Grace[21]studied the oscillation of the second-order quasilinear functional dynamic equation

    and established some new sufficient conditions which ensure that every solution oscillates or converges to zero.Deng et al.[4]established some new oscillation criteria for second order delay dynamic equations

    by means of the Riccati transformation technique.Zhou et al.[29]established necessary and sufficient conditions for the oscillation of second order strongly superlinear and strongly sublinear dynamic equations

    Baculikova[2]considered the second order noncanonical differential equation with a delay argument

    and established some sufficient conditions for the oscillation of(1.4).Karpuz[13]studied the asymptotic behaviour of the bounded solutions of a class of higher-order neutral dynamic equations

    Recently,Hassan and Kong[12]discussed the new asymptotics and oscillation criteria for the nth-order nonlinear dynamic equation

    with Laplacians and a deviating argument on a general time scale without any restrictions on g(t).For more results on dynamic equations,we refer the reader to the papers[6,8,11,14–17,22,24,26–28].

    Motivated by the aforementioned classical works,in this paper,we shall investigate the higher order nonlinear delay dynamic equation

    where ?(u)=|u|γsgn(u)for γ>0.Throughout this paper,we assume that T is an arbitrary time scale with supT=∞,and de fine the time scale interval[t0,∞)Tby[t0,∞)T:=[t0,∞)∩T.Furthermore,we assume that

    The purpose of this paper is to establish some new oscillation criteria for a higher order nonlinear delay dynamic equation(1.5)under very mild conditions.Compared with(1.2),the investigation of higher order equation(1.5)is more complicated.To overcome the corresponding difficulties,we will employ the generalized Riccati technique.We would like to mention that the Riccati transformation plays an important role in the study of oscillatory behavior for(1.5).In short,the obtained results here improve and unify many known results on the topic.

    The rest of this paper is organized as follows:in Section 2,we present our main results.In Section 3,we prove some useful lemmas and important estimates,which will be used in the proof of our main results.Later,we prove Theorems 2.1–2.3.In Section 4,we apply the oscillation criteria to different types of time scales to show that our results not only unify some of the known oscillation results for differential and difference equations,but can also be applied to other cases to determine oscillatory behavior.Finally,some examples are provided to illustrate the main results.

    2 Main Results

    For the convenience of our discussion,we de fine

    where ?(u)=|u|γsgn(u)for γ>0.

    A time scale T is an arbitrary nonempty closed subset of real numbers which have a topology inherited from the real numbers with the standard topology.For t∈T,we de fine the forward jump operator σ:T→T by σ(t):=inf{s∈T:s>t},while the backward jump operator ρ:T→T is de fined by ρ(t):=sup{s∈T:sinf T and ρ(t)=t.The graininess functionμ:T→[0,∞)is de fined byμ(t):=σ(t)?t.The function f:T→R is called right-dense continuous on T if it is continuous at right-dense points in T,and its left-sided limits exist at left-dense points in T.The set of all rd-continuous functions f are denoted by Crd(T,R).By a solution of(1.5),we mean a nontrivial real-valued function x∈([Tx,∞)T)with Tx≥t0,which has the property that Sk(t,x(t))∈([Tx,∞)T)for 0≤k≤n,and which satis fies(1.5)on[Tx,∞)T,whereis the space of differentiable functions whose derivative is rd-continuous.The solutions vanishing in some neighborhood of in finity will be excluded from our consideration.A solution x(t)of(1.5)is said to be oscillatory if it is neither eventually positive nor eventually negative;otherwise it is called nonoscillatory.For more details on time scales,we refer the reader to Bohner and Peterson[3].

    For any t∈[t0,∞)T,we let

    Given T∈[t0,∞)Tsufficiently large,for any t≥T,we de fine

    and for any given function φ(t)>?1/rn(t)(t,T)such that rn(t)φ(t)is a?-differentiable function,and a positive?-differentiable function a(t),we assume that

    and

    Our main results on oscillation theorems for equation(1.5)can be stated as follows:

    Theorem 2.1Suppose that either

    holds.Furthermore,assume that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive?-differentiable function a(t),such that,for a sufficiently large T∈[t0,∞)T,

    where T?∈(T,∞)Tand d+(t):=max{d(t),0}.Then,

    (i)every solution x(t)of(1.5)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(1.5)is either oscillatory orx(t)=0 when n is even.

    For convenience,let Γ:={(t,s)∈T2:t0≤s≤σ(t),t,s∈[t0,∞)T}.For any function Q:T2→R,denote by QΔsthe partial derivative of Q(t,s)with respect to s.De fine

    Theorem 2.2Assume that either(2.3)or(2.4)is satis fied.Furthermore,suppose that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,a positive?-differentiable function a(t)and Q∈X such that,for a sufficiently large T∈[t0,∞)T,

    where T?∈(T,∞)T.Then,

    (i)every solution x(t)of(1.5)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(1.5)is either oscillatory orx(t)=0 when n is even.

    In order to obtain more oscillation results for(1.5),as in[1],one can de fine another class of functions as follows:U∈Y if U∈→R and satis fies U(t,t)=0,t≥t0,U(t,s)>0,t>s≥t0.Using the function U,we establish a similar oscillation result as to that of Theorem 2.2.

    Theorem 2.3Suppose that either(2.3)or(2.4)holds.Let U∈Y such that UΔs∈Crd(D,R)and UΔs≤0 on D,where D={(t,s):t≥s≥t0}.Furthermore,assume that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive?-differentiable function a(t)such that,for a sufficiently large T∈[t0,∞)T,

    where T?∈(T,∞)T.Then,

    (i)every solution x(t)of(1.5)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(1.5)is either oscillatory orx(t)=0 when n is even.

    Remark 2.4The results in this paper are expressed in a form with a high degree of generality.With an appropriate choice of the functions φ(t)and a(t)in Theorems 2.1–2.3,Q(t,s)in Theorem 2.2 and U(t,s)in Theorem 2.3,we can see that[25,Theorems 3.1–3.2]are special cases of Theorem 2.2–2.3.

    Remark 2.5To conclude this section,we propose the following open problem:fi nd sufficient conditions for every solution of(1.5)to be oscillatory when n is even.

    3 The Proof of Main Results

    3.1 Some useful lemmas

    It is easy to prove the following lemma(see also Sun et al.[22,Lemma 2.1]):.

    Lemma 3.1Let 1≤μ≤n.Then,

    Lemma 3.2Let x(t)be an eventually positive solution of equation(1.5).Then there exist a T∈[t0,∞)Tand an integer 0≤κ≤n with n+κ being even such that

    (i)κ≤n?1 implies(?1)κ+iSi(t,x(t))>0 on[T,∞)Tfor any κ≤i≤n?1;

    (ii)κ>0 implies Si(t,x(t))>0 on[T,∞)Tfor any 0≤i≤κ?1.

    ProofSupposing that x(t)is an eventually positive solution of equation(1.5),there exists t1∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[t1,∞)T.In a fashion similar to the proof of[26,Lemma 2.2],it is not difficult to obtain the desired results.

    Lemma 3.3Assume that(2.3)or(2.4)holds.Let x(t)be an eventually positive solution of equation(1.5).Then there exists T∈[t0,∞)Tsufficiently large such that Sn(t,x(t))>0 for any t∈[T,∞)T.Moreover,

    holds when n is odd and either(3.1)holds or=0 when n is even.

    ProofSince x(t)is an eventually positive solution of equation(1.5),that is,there exists t1∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[t1,∞)T,it follows from Lemma 3.2 that there exists an integer 0≤κ≤n satisfying that κ+n is even such that(?1)κ+iSi(t,x(t))>0 for t∈[t1,∞)Tand κ≤i≤n.

    When n is odd,κ must be an odd integer and xΔ(t)=S1(t,x(t))/r1(t)>0 for t∈[t1,∞)T.Consequently,

    In this case,we claim that κ=n.If we were to assume that this is not the case,then we would have Sn?1(t,x(t))<0 and Sn?2(t,x(t))>0 for t∈[t1,∞)T.By(3.2),it is not difficult to get that there exists t2∈[t1,∞)Tand a constant c>0 such that x(τ(t))≥c on[t2,∞)T.From(1.5),we have

    on[t2,∞)T.If(2.3)holds,integrating the above inequality from t2to t,we obtain that for t∈[t2,∞)T,

    This is in contradiction to the fact that Sn(t,x(t))>0 for t∈[t1,∞)T.Thus,κ=n,and(3.2)holds.

    If(2.4)holds,integrating(3.3)from t to∞,we get that,for t∈[t2,∞)T,

    Then,it follows from Sn?1(t,x(t))<0 that

    Again,integrating the above inequality from t2to t,we conclude from Sn?1(t,x(t))>0 that

    which is in contradiction to the fact that Sn?2(t,x(t))>0 on[t1,∞)T.Hence,κ=n,and(3.2)holds.

    When n is even,we infer from Lemma 3.2 that κ is an even integer.Thus,S1(t,x(t))>0 or S1(t,x(t))<0,which indicates thatx(t)≥0.We claim thatx(t)0 implies that κ=n.By a similar argument as to that above,we get a result that is in contradiction to(2.3)or(2.4).This ends the proof.

    Lemma 3.4Assume that either(2.3)or(2.4)holds.Let x(t)be a solution of equation(1.5)satisfying(3.1)for t∈[T,∞)Twith some T∈[t0,∞)T.Then,for t∈[T,∞)T,we getand

    ProofWithout loss of generality,we can assume that T is sufficiently large such that x(τ(t))>0 on[T,∞)T.By(1.5),it is obvious that Sn(t,x(t))is decreasing on[T,∞)T.Then it follows that,for t∈[T,∞)T,

    This finishes the proof.

    Lemma 3.10Assume that either(2.3)or(2.4)holds.Let x(t)be a solution of equation(1.5)satisfying(3.1)for t∈[T,∞)Twith some T∈[t0,∞)T.Then,this satis fies that

    3.2 Proof of Theorem 2.1

    Suppose that equation(1.5)has a nonoscillatory solution x(t)on[t0,∞)T.Without loss of generality,we may assume that x(t)is eventually positive.Then,there is a sufficiently large T∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[T,∞)T.Moreover,by Lemma 3.3,(3.1)holds.

    When n is odd,we de fine a generalized Riccati substitution as follows:

    3.3 Proof of Theorem 2.2

    Suppose that equation(1.5)has a nonoscillatory solution x(t)on[t0,∞)T.Without loss of generality,we may assume that x(t)is eventually positive.Then there is a sufficiently large T∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[T,∞)T.Moreover,by Lemma 3.3,(3.1)holds.

    When n is odd,we proceed as in the proof of Theorem 2.1 to obtain that

    Multiplying both sides of(3.24)with t replaced by s,by Q(σ(t),σ(s))and integrating with respect to s from T?to t,where t∈[T?,∞)Twith T?∈(T0,∞)T,one gets

    By dividing Q(σ(t),T?)and taking the limsup on both sides as t→∞,we obtain a contradiction to(2.6).Therefore,every solution x(t)of(1.5)is oscillatory.

    When n is even,we can derive from Lemma 3.3 that either(3.1)holds orx(t)=0.If(3.1)holds,then we can show that equation(1.5)is oscillatory,and hence omit its proof.This completes the proof of Theorem 2.2.

    3.4 Proof of Theorem 2.3

    Suppose that equation(1.5)has a nonoscillatory solution x(t)on[t0,∞)T.Without loss of generality,we may assume that x(t)is eventually positive.Then there is a sufficiently large T∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[T,∞)T.Moreover,by Lemma 3.3,(3.1)holds.

    When n is odd,we proceed as in the proof of Theorem 2.1 to obtain(3.24).Then,from(3.24),we obtain that

    for all s∈[T0,∞)T.Multiplying both sides of the above inequality by U(σ(t),σ(s))and integrating with respect to s from T?to σ(t),where σ(t)∈[T?,∞)Twith T?∈(T0,∞)T,we get

    In view of(3.29),(3.30)and U(σ(t),σ(t))=0,we conclude that

    which contradicts(2.7).Hence,every solution x(t)of(1.5)is oscillatory.

    When n is even,we infer from Lemma 3.3 that either(3.1)holds orx(t)=0.If(3.1)holds,then we see that equation(1.5)is oscillatory.We omit the details.This completes the proof.

    4 Applications on Particular Time Scales

    In this section,we apply Theorems 2.1–2.3 to different types of time scales.We start with the case of when T=R,and(1.5)becomes the nonlinear delay differential equation

    Applying Theorems 2.1–2.3 to equation(4.1),we get the following results:

    Corollary 4.1Suppose that either

    (i)every solution x(t)of(4.1)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.1)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.2Suppose that either the condition(4.2)or the condition(4.3)holds.Let U∈Y such that,where D={(t,s):t≥s≥t0}.Furthermore,assume that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive differentiable function a(t)such that for a sufficiently large T∈[t0,∞)R,

    where T?∈(T,∞)R.Then,

    (i)every solution x(t)of(4.1)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.1)is either oscillatory orx(t)=0 when n is even.

    Then we have,from Theorems 2.1–2.3,the following oscillation results for equation(4.4):

    Corollary 4.3Suppose that either

    holds.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t),such that,for a sufficiently large N∈N,

    where N?>N.Then,

    (i)every solution x(t)of(4.4)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.4)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.4Assume that either(4.5)or(4.6)is satis fied.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,a positive sequence a(t)and Q∈X such that,for a sufficiently large N∈N,

    where Θ1(n,k)=[?ps((n+1)p,kp)+Q((n+1)p,(k+1)p)Λ(kp)]+and N?>N.Then,

    (i)every solution x(t)of(4.4)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.4)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.5Suppose that either(4.5)or(4.6)holds.Let U∈Y such that?psU≤0 on D,where D={(n,k):n≥k≥n0}.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t)such that for a sufficiently large N∈N,

    Now,we give our oscillation results for(4.7).

    Corollary 4.6Suppose that either

    holds.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t),such that,for a sufficiently large N∈N,

    where N?>N.Then,

    (i)every solution x(t)of(4.7)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.7)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.7Assume that either(4.8)or(4.9)is satis fied.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,a positive sequence a(t)and Q∈X such that,for a sufficiently large N∈N,

    where Υ1(n,k)=[(qn+1,qk)+Q(qn+1,qk+1)Λ(qk)]+and N?>N.Then,

    (i)every solution x(t)of(4.7)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.7)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.8Suppose that either(4.8)or(4.9)holds.Let U∈Y such that?qsU≤0 on D,where D={(n,k):n≥k≥n0}.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t)such that,for a sufficiently large N∈N,

    where Υ2(n,k)=and N?>N.Then,

    (i)every solution x(t)of(4.7)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.7)is either oscillatory orx(t)=0 when n is even.

    5 Numerical Examples

    Example 5.1Let p,L,γ be positive constants,let 0<γ<1,and let the time scale be T=pZ.Consider the dynamic equation

    By Theorem 2.2,every solution x(t)of(5.2)is oscillatory when n is odd,and every solution x(t)of equation(5.1)is either oscillatory orx(t)=0 when n is even.

    久久久久国产一级毛片高清牌| 亚洲国产av影院在线观看| 操美女的视频在线观看| 中文字幕av电影在线播放| a 毛片基地| 精品亚洲乱码少妇综合久久| 国产免费现黄频在线看| 少妇人妻久久综合中文| 午夜日韩欧美国产| 女人被躁到高潮嗷嗷叫费观| 一本一本久久a久久精品综合妖精| 欧美精品一区二区大全| svipshipincom国产片| 老司机影院成人| av在线app专区| 女人久久www免费人成看片| 国产精品一国产av| av在线播放精品| 另类精品久久| 中文字幕人妻丝袜一区二区| 欧美日韩福利视频一区二区| 久久99热这里只频精品6学生| 黄网站色视频无遮挡免费观看| 国产又色又爽无遮挡免| 国产精品偷伦视频观看了| 国产片内射在线| 老司机在亚洲福利影院| 91麻豆精品激情在线观看国产 | 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 中文字幕精品免费在线观看视频| 精品国产一区二区三区四区第35| 日韩人妻精品一区2区三区| 国产男人的电影天堂91| 国产精品一区二区精品视频观看| 久久亚洲精品不卡| 母亲3免费完整高清在线观看| 婷婷丁香在线五月| 亚洲午夜精品一区,二区,三区| 天天躁狠狠躁夜夜躁狠狠躁| 纵有疾风起免费观看全集完整版| 男女国产视频网站| 天堂俺去俺来也www色官网| 80岁老熟妇乱子伦牲交| 中文欧美无线码| 亚洲国产精品一区三区| 亚洲国产成人一精品久久久| 色网站视频免费| 国产麻豆69| 午夜福利视频精品| 女人被躁到高潮嗷嗷叫费观| 国产高清不卡午夜福利| 两人在一起打扑克的视频| 91精品国产国语对白视频| 欧美成人精品欧美一级黄| 国产在线视频一区二区| 亚洲熟女精品中文字幕| 免费一级毛片在线播放高清视频 | 天天添夜夜摸| 一级,二级,三级黄色视频| 久久久久国产一级毛片高清牌| 热99国产精品久久久久久7| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠久久av| 久久久国产一区二区| 中文乱码字字幕精品一区二区三区| 国产又爽黄色视频| 十八禁人妻一区二区| 黑人猛操日本美女一级片| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜一区二区| 色婷婷av一区二区三区视频| www日本在线高清视频| 午夜影院在线不卡| 免费看十八禁软件| 亚洲精品av麻豆狂野| 999久久久国产精品视频| 岛国毛片在线播放| 精品久久蜜臀av无| 国产日韩欧美视频二区| 熟女av电影| 欧美成狂野欧美在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频| 99精国产麻豆久久婷婷| 夫妻午夜视频| 欧美日韩亚洲高清精品| 欧美激情高清一区二区三区| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 色婷婷久久久亚洲欧美| 两个人免费观看高清视频| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 欧美成人精品欧美一级黄| 五月开心婷婷网| 性少妇av在线| 欧美精品亚洲一区二区| 亚洲,欧美精品.| 日本色播在线视频| 国产成人精品久久二区二区免费| 精品一品国产午夜福利视频| 国产色视频综合| 日本av手机在线免费观看| 国产欧美日韩一区二区三区在线| 大型av网站在线播放| 丰满人妻熟妇乱又伦精品不卡| 午夜两性在线视频| 国产一区二区激情短视频 | av国产久精品久网站免费入址| 国产亚洲av片在线观看秒播厂| 久久人妻熟女aⅴ| 日韩av免费高清视频| 国产精品免费视频内射| 成人免费观看视频高清| 免费久久久久久久精品成人欧美视频| 国产一级毛片在线| 国产免费福利视频在线观看| 久久午夜综合久久蜜桃| 中文字幕亚洲精品专区| 天堂中文最新版在线下载| 亚洲国产中文字幕在线视频| 美女视频免费永久观看网站| 天堂中文最新版在线下载| 国产精品 欧美亚洲| 久久精品久久久久久久性| 国产淫语在线视频| 久久久久久久国产电影| 亚洲欧美一区二区三区久久| 看十八女毛片水多多多| 免费高清在线观看日韩| 国产女主播在线喷水免费视频网站| 亚洲欧洲国产日韩| 久久人人爽av亚洲精品天堂| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 国产主播在线观看一区二区 | 精品一区在线观看国产| 又黄又粗又硬又大视频| 亚洲av成人不卡在线观看播放网 | 国产精品.久久久| 国产精品国产三级专区第一集| 国产精品人妻久久久影院| 无限看片的www在线观看| 精品人妻在线不人妻| 久久精品亚洲av国产电影网| 美女福利国产在线| 精品视频人人做人人爽| 亚洲五月婷婷丁香| 夜夜骑夜夜射夜夜干| 久久精品熟女亚洲av麻豆精品| 婷婷色麻豆天堂久久| 校园人妻丝袜中文字幕| 亚洲第一av免费看| 欧美成狂野欧美在线观看| 精品少妇内射三级| 免费少妇av软件| 1024视频免费在线观看| 美女福利国产在线| 80岁老熟妇乱子伦牲交| 久久久精品国产亚洲av高清涩受| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看 | 国产在线观看jvid| 麻豆av在线久日| 丰满迷人的少妇在线观看| 少妇粗大呻吟视频| 亚洲七黄色美女视频| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 国产成人精品久久久久久| av一本久久久久| 亚洲国产欧美日韩在线播放| 免费观看人在逋| 久久久精品94久久精品| 久久久久久人人人人人| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 丁香六月天网| 久久九九热精品免费| 午夜福利视频精品| 久久狼人影院| 视频区图区小说| 午夜91福利影院| 午夜免费观看性视频| 日本av免费视频播放| 亚洲国产最新在线播放| 欧美激情 高清一区二区三区| 国产极品粉嫩免费观看在线| 亚洲专区国产一区二区| 女人久久www免费人成看片| 91麻豆av在线| 中文字幕制服av| 国产伦人伦偷精品视频| 国产一区二区 视频在线| 韩国精品一区二区三区| 嫁个100分男人电影在线观看 | 母亲3免费完整高清在线观看| 一级毛片女人18水好多 | 青春草亚洲视频在线观看| 狠狠精品人妻久久久久久综合| 黄频高清免费视频| 啦啦啦中文免费视频观看日本| tube8黄色片| 亚洲一区二区三区欧美精品| 一本综合久久免费| 精品少妇黑人巨大在线播放| 91麻豆av在线| 老熟女久久久| 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 久久精品国产亚洲av涩爱| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡| 国产在线视频一区二区| √禁漫天堂资源中文www| 三上悠亚av全集在线观看| 精品免费久久久久久久清纯 | 大陆偷拍与自拍| 亚洲欧洲日产国产| 女人高潮潮喷娇喘18禁视频| 麻豆国产av国片精品| 国产精品熟女久久久久浪| 久久精品国产亚洲av涩爱| 少妇的丰满在线观看| 久久精品久久久久久久性| 香蕉丝袜av| 久久人人爽av亚洲精品天堂| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 亚洲精品成人av观看孕妇| 天天添夜夜摸| 亚洲精品久久午夜乱码| 1024香蕉在线观看| 日韩av免费高清视频| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 欧美 亚洲 国产 日韩一| 在线精品无人区一区二区三| 伦理电影免费视频| 美女午夜性视频免费| 操出白浆在线播放| 亚洲成人免费电影在线观看 | 99热全是精品| 久久99一区二区三区| 精品少妇久久久久久888优播| 亚洲国产看品久久| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 51午夜福利影视在线观看| 人人澡人人妻人| 国产xxxxx性猛交| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 男女免费视频国产| 日韩免费高清中文字幕av| 一二三四社区在线视频社区8| 国产男人的电影天堂91| 极品少妇高潮喷水抽搐| 午夜av观看不卡| 亚洲午夜精品一区,二区,三区| 亚洲av电影在线进入| 成人影院久久| 人妻 亚洲 视频| 精品国产一区二区久久| 老司机靠b影院| a级毛片在线看网站| 精品国产国语对白av| 99国产精品免费福利视频| 亚洲国产中文字幕在线视频| 丝袜喷水一区| 亚洲免费av在线视频| 蜜桃国产av成人99| 男女边摸边吃奶| 我要看黄色一级片免费的| 国产精品.久久久| 黑人欧美特级aaaaaa片| 国产午夜精品一二区理论片| 少妇的丰满在线观看| 国产爽快片一区二区三区| 婷婷色麻豆天堂久久| 五月天丁香电影| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 久久久欧美国产精品| 女人精品久久久久毛片| 自线自在国产av| 香蕉国产在线看| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 少妇人妻 视频| 婷婷色综合www| 久久国产精品男人的天堂亚洲| 欧美精品一区二区大全| av天堂久久9| 欧美日韩黄片免| 啦啦啦 在线观看视频| 在线观看免费午夜福利视频| 一本久久精品| av欧美777| 国产成人影院久久av| 在线观看国产h片| 欧美亚洲日本最大视频资源| 九草在线视频观看| 亚洲欧洲国产日韩| 老司机亚洲免费影院| 91成人精品电影| 母亲3免费完整高清在线观看| 久久综合国产亚洲精品| 精品人妻1区二区| 伊人亚洲综合成人网| 欧美久久黑人一区二区| 天天影视国产精品| 免费观看a级毛片全部| 日本欧美国产在线视频| 成人亚洲精品一区在线观看| 美女福利国产在线| 90打野战视频偷拍视频| 好男人视频免费观看在线| 看免费成人av毛片| 国产高清国产精品国产三级| 宅男免费午夜| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| www.熟女人妻精品国产| 国产淫语在线视频| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 啦啦啦在线观看免费高清www| 日本91视频免费播放| 少妇人妻久久综合中文| 新久久久久国产一级毛片| bbb黄色大片| 欧美成人精品欧美一级黄| 两性夫妻黄色片| 精品少妇一区二区三区视频日本电影| 最新的欧美精品一区二区| 97人妻天天添夜夜摸| 男女免费视频国产| 女性被躁到高潮视频| 国产成人精品在线电影| av国产久精品久网站免费入址| 色94色欧美一区二区| 啦啦啦在线免费观看视频4| 男女床上黄色一级片免费看| 啦啦啦中文免费视频观看日本| 在线精品无人区一区二区三| 免费在线观看日本一区| 九草在线视频观看| 热re99久久国产66热| 性高湖久久久久久久久免费观看| 热re99久久国产66热| 五月开心婷婷网| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 91九色精品人成在线观看| 精品久久久久久久毛片微露脸 | 丁香六月欧美| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 国产无遮挡羞羞视频在线观看| 久久国产精品大桥未久av| 两人在一起打扑克的视频| 日本欧美国产在线视频| 99国产精品免费福利视频| 国产成人欧美在线观看 | 亚洲,欧美精品.| 成人国语在线视频| 日韩中文字幕欧美一区二区 | 好男人视频免费观看在线| 久久天堂一区二区三区四区| 亚洲国产av新网站| 国产亚洲av高清不卡| 久久国产精品大桥未久av| 国产人伦9x9x在线观看| av在线app专区| 香蕉国产在线看| 午夜激情av网站| 夫妻性生交免费视频一级片| 亚洲自偷自拍图片 自拍| 精品国产一区二区三区久久久樱花| 亚洲国产最新在线播放| 成在线人永久免费视频| 亚洲欧美清纯卡通| 99国产精品一区二区蜜桃av | 国产一区二区三区av在线| 亚洲精品国产区一区二| 亚洲av成人精品一二三区| 日韩制服丝袜自拍偷拍| 亚洲精品乱久久久久久| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久小说| 亚洲国产精品成人久久小说| 国产精品.久久久| 成人三级做爰电影| 在线 av 中文字幕| 深夜精品福利| 99热国产这里只有精品6| 午夜福利影视在线免费观看| 国产一卡二卡三卡精品| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 免费高清在线观看日韩| 欧美另类一区| 久久精品国产a三级三级三级| 汤姆久久久久久久影院中文字幕| 亚洲欧美清纯卡通| 啦啦啦 在线观看视频| 成人国语在线视频| 性色av一级| 国产免费福利视频在线观看| 校园人妻丝袜中文字幕| 国产主播在线观看一区二区 | 国产片特级美女逼逼视频| 尾随美女入室| 国产亚洲欧美精品永久| 每晚都被弄得嗷嗷叫到高潮| 日韩人妻精品一区2区三区| 欧美人与性动交α欧美软件| 五月开心婷婷网| 久久国产精品人妻蜜桃| 亚洲精品久久成人aⅴ小说| 免费不卡黄色视频| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 最近手机中文字幕大全| videosex国产| 黄色a级毛片大全视频| 另类亚洲欧美激情| 777米奇影视久久| 乱人伦中国视频| 观看av在线不卡| 国产精品一二三区在线看| 国产精品久久久久久人妻精品电影 | 女人精品久久久久毛片| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 日本黄色日本黄色录像| 日韩中文字幕视频在线看片| 三上悠亚av全集在线观看| 十八禁人妻一区二区| 黄片播放在线免费| 91精品伊人久久大香线蕉| 国产又色又爽无遮挡免| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 欧美日韩成人在线一区二区| 久久精品亚洲熟妇少妇任你| 国产在线免费精品| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看 | 亚洲人成电影免费在线| 黄片播放在线免费| 精品人妻在线不人妻| 在线av久久热| 精品亚洲乱码少妇综合久久| 国产成人一区二区三区免费视频网站 | 久久国产精品人妻蜜桃| 少妇粗大呻吟视频| 久久性视频一级片| 97精品久久久久久久久久精品| 交换朋友夫妻互换小说| 婷婷色综合www| 99国产综合亚洲精品| 91精品伊人久久大香线蕉| 国产欧美亚洲国产| 高潮久久久久久久久久久不卡| 熟女av电影| 国产精品欧美亚洲77777| 国产xxxxx性猛交| 精品久久蜜臀av无| 亚洲国产毛片av蜜桃av| 桃花免费在线播放| 亚洲av成人不卡在线观看播放网 | 女人精品久久久久毛片| 丝瓜视频免费看黄片| 在线观看免费午夜福利视频| 国产无遮挡羞羞视频在线观看| 亚洲人成电影观看| 久久国产精品影院| 电影成人av| 黄色视频在线播放观看不卡| 天天操日日干夜夜撸| 在线 av 中文字幕| 亚洲国产精品一区二区三区在线| 欧美人与性动交α欧美软件| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 国产一区二区激情短视频 | 亚洲自偷自拍图片 自拍| 国产有黄有色有爽视频| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 国产成人a∨麻豆精品| 精品人妻熟女毛片av久久网站| 黄色a级毛片大全视频| 熟女av电影| 欧美日韩视频高清一区二区三区二| 黄片小视频在线播放| 亚洲国产精品一区三区| 黄片小视频在线播放| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 91老司机精品| 捣出白浆h1v1| 中文字幕av电影在线播放| 岛国毛片在线播放| 男男h啪啪无遮挡| 精品久久久久久久毛片微露脸 | 久久午夜综合久久蜜桃| 国产精品国产av在线观看| 成人影院久久| 国产伦理片在线播放av一区| 亚洲情色 制服丝袜| 男人添女人高潮全过程视频| 美女主播在线视频| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| netflix在线观看网站| 一本一本久久a久久精品综合妖精| 黄色a级毛片大全视频| 国产一区二区三区综合在线观看| 国精品久久久久久国模美| 亚洲av日韩精品久久久久久密 | 欧美av亚洲av综合av国产av| 各种免费的搞黄视频| 巨乳人妻的诱惑在线观看| 婷婷丁香在线五月| 国产精品香港三级国产av潘金莲 | 国产精品久久久人人做人人爽| √禁漫天堂资源中文www| 久久天堂一区二区三区四区| 在线观看国产h片| 欧美黑人欧美精品刺激| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 成人免费观看视频高清| 国产免费一区二区三区四区乱码| videosex国产| 天天躁日日躁夜夜躁夜夜| 黑丝袜美女国产一区| 又黄又粗又硬又大视频| 久久99一区二区三区| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 韩国高清视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产av蜜桃| 一区二区av电影网| 女人高潮潮喷娇喘18禁视频| 国产一区亚洲一区在线观看| 成人午夜精彩视频在线观看| 欧美精品av麻豆av| 99国产精品免费福利视频| av国产精品久久久久影院| 亚洲av电影在线进入| 99国产精品一区二区三区| 久久久亚洲精品成人影院| 一级黄色大片毛片| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 亚洲伊人久久精品综合| 亚洲国产毛片av蜜桃av| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 麻豆乱淫一区二区| 这个男人来自地球电影免费观看| a级毛片黄视频| 大话2 男鬼变身卡| www日本在线高清视频| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 男女下面插进去视频免费观看| av电影中文网址| 99精国产麻豆久久婷婷| 不卡av一区二区三区| 交换朋友夫妻互换小说| 久久久久国产精品人妻一区二区| 1024视频免费在线观看| 秋霞在线观看毛片| 青草久久国产| 免费看av在线观看网站| 欧美成狂野欧美在线观看| 美女视频免费永久观看网站| 久久这里只有精品19| 日韩电影二区| 国产日韩一区二区三区精品不卡| 人妻一区二区av| 男男h啪啪无遮挡| 欧美激情高清一区二区三区| 在线 av 中文字幕| 母亲3免费完整高清在线观看| 国产精品国产三级国产专区5o| 女警被强在线播放| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 国产欧美亚洲国产| 欧美人与性动交α欧美软件| 亚洲一区二区三区欧美精品| 妹子高潮喷水视频| 精品高清国产在线一区| 国产免费现黄频在线看| av不卡在线播放| 母亲3免费完整高清在线观看| 欧美日韩亚洲高清精品| 国产熟女午夜一区二区三区| 国产爽快片一区二区三区| 狂野欧美激情性xxxx| 久久久欧美国产精品| 日本av手机在线免费观看|