• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONTINUOUS TIME MIXED STATE BRANCHING PROCESSES AND STOCHASTIC EQUATIONS?

    2021-10-28 05:44:04ShukaiCHEN陳舒凱ZenghuLI李增滬

    Shukai CHEN(陳舒凱) Zenghu LI(李增滬)

    Laboratory of Mathematics and Complex Systems,School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China

    E-mail:skchen@mail.bnu.edu.cn;lizh@bnu.edu.cn

    Abstract A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equation system.From the stochastic equation system we derive the distribution of local jumps and give the exponential ergodicity in Wasserstein-type distances of the transition semigroup.Meanwhile,we study immigration structures associated with the process and prove the existence of the stationary distribution of the process with immigration.

    Key words mixed state branching process;weak convergence;stochastic equation system;Wasserstein-type distance;stationary distribution.

    1 Introduction

    Branching processes were introduced as probabilistic models describing the evolution of populations.The study of branching processes was initiated by Bienaym′e(1845)and Galton and Watson(1874),independently,and the processes were referred to as discrete time and discrete state branching processes(GW-processes).To increase speci ficity,several naturally generalized processes including continuous time discrete state branching processes(DB-processes)with or without immigration and continuous time continuous state branching processes(CB-processes)with or without immigration,were subsequently introduced and studied by researchers.

    The DB-processes are continuous time discrete state Markov processes with lifetimes that are independent and with exponentially distributed random variables.There have been many works on DB-processes,including ones pertaining to their construction,to the properties of moments,to limit theorems and so on;we refer to[1]for the details regarding these.The application of stochastic equations to branching processes has been developed in recent decades.Let N={0,1,2,···}and let?(·)=be a counting measure on N.Let X={Xt:t≥0}be a DB-process with immigration with a branching rate c>0,offspring distribution(pi:i∈N),an immigration rate η>0 and immigration distribution(qi:i∈N).The two distributions satisfy<∞.It is known that X can be obtained as a pathwise unique strong solution to the stochastic equation

    where X0is a random variable taking values in N,M(ds,dz,du)is a Poisson random measure on(0,∞)×N×(0,∞)with intensity measure cpzds?(dz)du,N(ds,dz)is a Poisson random measure on(0,∞)×N with intensity measure ηqzds?(dz),and X0,M(ds,dz,du)and N(ds,dz)are independent of each other.In particular,if η≡0,qz≡0 for all z∈N,this reduces things to the DB-process.Moreover,here and in the sequel,we understand that for any b≥a≥0,

    CB-processes were first introduced in[16],to model the random evolution of large population dynamics.Denoting the law on D([0,∞),[0,∞))by Pxfor each initial value x≥0,the branching property of processes can be described by Px+y=Px?Py.The semigroup of CB-processes with immigration(CBI-processes)(Qt)t≥0can be characterized uniquely by the Laplace transform

    and the branching mechanism φ and immigration mechanism ψ de fined on[0,∞)take the form of

    where Y0is a random variable taking values in R+,W(ds,du)is a time-space white noise with intensity measure dsdu,M(ds,dz,du)is a Poisson random measure on(0,∞)3with intensity measure dsm(dz)du,N(ds,dz)is a Poisson random measure on(0,∞)2with intensity measure dsn(dz)and(ds,dz,du)=M(ds,dz,du)?dsm(dz)du is the compensated measure of M(ds,dz,du).Moreover,Y0,W,M and N are independent of each other.We mention that the moment conditionz n(dz)<∞was removed in[13].The sample paths of Y can also be obtained as a unique strong solution to a stochastic equation driven by Brownian motions and Poisson random measures.One finds that the formulation(1.3)is nicer for analysing the flows of CBI-processes and other applications;see[6]for the speci fic construction.We refer to[3,5,6,13,23,25,30]for more on this approach and further properties of the above stochastic equations.Based on the stochastic equations established above,[14]studied the explicit expression of the distribution of jumps.[17]gave the criteria for the existence of general moments for CB-processes with or without immigration under a more general branching mechanism,where the characterization of the processes in terms of stochastic equations plays an essential role,and[18]extended those results to the processes in Lvy random environments.Some applications for finance can be found in[19].A two-type CBI-process obtained as a unique strong solution of a stochastic equation system was studied in[28,29].

    We can rewrite(1.3)without an immigration part by extending the M to a Poisson random measure denoted again by M on(0,∞)3×N with intensity dsm(dz)du?(dk)for some λ>0 as follows:

    Here,M0(ds,dz,du)=M(ds,dz,du,{k=0})and

    Recently,[9]gave another SDE-type description for one-dimensional CB-processes based on(1.4)with a<0,λ≥λ?;here λ?is the unique root of φ on(0,∞).One of the results in[9]shows that the last three integrals on the right-hand side of(1.4)are identi fied with the mass that immigrates from the skeleton construction.More precisely,the following stochastic equation system has a unique strong solution:

    Here M=R+×N,M3(ds,dz,dk)is a Poisson random measure on(0,∞)2×{N{0}}with intensity measure dsze?λzm(dz)?(dk),M4(ds,dz,dk)is a Poisson random measure on(0,∞)×M×{N{0}}with intensity measure φ′(λ)dsηz2(dz1)pz2?(dz2)?(dk),and one can see the speci fic de finitions of two distributions(ηk)k∈Nand(pk)k∈Nin[9,p.1127],so we omit them here.The authors prove that,for any y≥0,{Yt:t≥0}is a weak solution of(1.4)with initial value Y0=y if X0is Poisson distributed with parameter λy.Moreover,(1.5)–(1.6)includes the proli fic skeleton decomposition when λ=λ?;see[2]for the properties of this special decomposition.We refer to[10]for a similar construction of(1.5)–(1.6)in the setting of superprocesses.

    Inspired by the formulations(1.5)–(1.6),the first objective of this paper is to construct a two-dimensional branching Markov process{(Y1(t),Y2(t)):t≥0}taking values in M obtained as a unique strong solution to a more generalized stochastic equation system than(1.5)–(1.6);the process is called the continuous time mixed state branching process(MSB-process).The speci fic form of the stochastic equation system is as follows:

    Here,a21,α≥0,a11∈R,M?1=R+×N?1,N?1=N∪{?1},B is a standard Brownian motion,N1and N2are two Poisson random measures with intensity measures dsn1(dz)du and dsn2(dz)du,respectively,and n1and n2are two Lvy measures satisfying some moment conditions.Intuitively,there exist interactions between{Y1(t):t≥0}and{Y2(t):t≥0},therefore(1.7)–(1.8)obviously generalize(1.5)–(1.6).We mention that the Brownian motion B in(1.7)can be replaced by a space-time white noise W and the process has the same law for any fixed initial value.

    In the literature on the theory of branching processes,the rescaling approach plays a valuable role in establishing the connection among those branching processes;this leads to the second purpose of this paper,and the establishment of two results.First,for a sequence of GW-processes{Xk(n):n≥0}k≥1and a positive sequence{γk}k≥1,we show that on proper conditions,{Xk():t≥0}converges as k→∞to a DB-process in distribution,wheredenotes the integral part of x.Second,for a sequence of two-type GW-processes{(Yk,1(n),Yk,2(n)):n∈N}k≥1,we prove that{(k?1Yk,1(),Yk,2()):t≥0}converges in distribution to a MSB-process under parallel conditions.The two limit theorems above are mainly inspired by[22,23,27].

    The existence of the stationary distribution and the ergodic rates are both important topics in the theory of Markov processes.Demonstration of a necessary and sufficient condition for the existence of the stationary distribution of one-dimensional CBI-processes was initiated by[31];see also[23]for a proof.The sufficient condition for the multi-type case can be found in[20].The strong Feller property and exponential ergodicity of such processes in the total variation distance were given in[24]by a coupling of CBI-processes constructed by the stochastic equation driven by time-space noises and Poisson random measures;see also[25].In a recent work,[26]considered the ergodicities and exponential ergodicities in Wasserstein and total variation distances of Dawson-Watanabe superprocesses with or without immigration;this clearly includes the multi-type CBI-process case.After constructing the MSB-processes,we also want to study the ergodic theory of such processes and prove the exponential ergodicity in the L1-Wasserstein distance by establishing upper bound estimates for the variations of the transition probabilities;this is inspired by similar results on measure-valued branching processes in[26].Moreover,by adding the immigration structures,we give a sufficient and necessary condition for the existence of the stationary distribution of MSB-processes with immigration(MSBI-processes).

    The remainder of this paper is organized as follows:in Section 2,we prove a weak convergence theorem from GW-processes to DB-processes.In Section 3,we obtain the MSB-process arising in a limit theorem of rescaled two-type GW-processes.In Section 4,we provide another construction of MSB-processes by stochastic equation systems.The analysis of distributions of jumps is given in Section 5.In Section 6,we study both the estimates for the variations and the exponential ergodicity in the L1-Wasserstein distance W1for the transition semigroup of such processes.Finally,we prove the existence of the stationary distribution of such processes with immigration in Section 7.

    2 The Construction of DB-processes

    Let{pj:j∈N}be a probability distribution on N,and denote the generating function by g(z)=on|z|≤1.Let u(z)=a(g(z)?z)for some a>0.A Markov process{Xt:t≥0}with state space N is called a DB-process with branching rate a>0 and offspring distribution{pj:j∈N}if its transition probabilities Qij(t)satisfy

    which implies the branching property of the process.Denote F(z,t)=Clearly,F=(F(·,t):t≥0)satis fies the semigroup property F(·,t+s)=F(F(·,t),s)for t,s≥0 and is the unique solution of the following differential equation:

    We call F the compound semigroup for the DB-process,and refer to[1,p.106-107]for more details.

    We now provide a sufficient condition for the weak convergence of GW-processes to the DB-process.Assume that there exists a sequence of GW-processes{Xk(n):n≥0}k≥1with parameters{gk}k≥1,and let{γk}k≥1be a sequence of positive numbers.Denote the n-step transition probability for{Xk(n):n≥1}by,and letx」be the integral part of x.One can see that

    where g°n(z)is de fined by g°n(z)=g(g°(n?1)(z)),successively with g°0(z)=z and Uk(z)=γk(gk(z)?z),0≤z≤1.For convenience,we formulate the following conditions:

    (A)γk→∞as k→∞.

    (B)The sequence Uk(z)is uniformly Lipschitz on[0,1],and converges to a continuous function u(z)as k→∞.

    Proposition 2.1(i)Suppose that(A,B)hold.Then the limit function of sequence{Uk(z)}k≥1has representation u(z)=a(g(z)?z)as k→∞for all 0≤z≤1,where a is a strictly positive constant,g(z)is a generation function and g′(1?)<∞.

    (ii)For any given u(z)=a(g(z)?z),there exists a sequence of{Uk}k≥1such that(A,B)hold with Uk(z)→u(z).

    Proof(i)The desired result is a corollary of Proposition 3.1(i),to be demonstrated later.Indeed,it suffices to consider the offspring distribution corresponding to two-type GW-processes cases satisfying vk({i,·})≡0 for all i≥1.

    De fining Uk(z)=,it is not hard to see that Uksatis fies condition(B),and converges to u(z)for all z∈[0,1].

    Lemma 2.2Suppose that(A,B)hold.Then there are constants λ,N≥0 such that Fk(z,t)∈for every t≥0,z∈[0,1]and k≥N.

    ProofLet bk:=γk((1?)?1).Under condition(B),there exists λ≥0 such that 2|bk|≤λ for all k≥1.It is not hard to obtain that

    Since γk→∞as k→∞,there is a N≥1 such that,for all k≥N,

    so for t≥0 and k≥N,

    We get the desired result by Jensen’s inequality.

    Lemma 2.3Suppose that(A,B)hold.For any c>0,we have Fk(z,t)→some F(z,t)uniformly on[0,e?c]×[0,c]as k→∞,and the limit function solves(2.2).

    ProofWe may rewrite

    By Proposition 2.1 and Lemma 2.2,for ε∈(0,1],we can take N≥1 large enough such that

    Denote the last term on the right hand of equation(2.3)by εk(t,z).Then

    and it follows that

    from which it follows that Fk(z,t)→some F(z,t),and the limit function satis fies(2.2).

    By(2.1),we see that the transition probabilities Q={Qij(t):i,j∈N,t≥0}of the DB-process{Xt:t≥0}can be determined by

    Based on Proposition 2.1 and Lemma 2.3,by similar arguments as to those of Theorem 2.9 in[25],it is not hard to see that the transition probability Q of{Xt:t≥0}is a limit of a sequence of transition probabilities{(i,j):i,j∈N,t≥0}k≥1associated with GW-processes in the sense of weak convergence under conditions(A,B);this indeed implies another construction of DB-processes by a rescaling approach.

    3 The Construction of MSB-processes

    For a two-type GW-process{Y(n)=(Y1(n),Y2(n)):n∈N},we de fine two corresponding generation functions for i=(i1,i2)∈N2and s1,s2∈[0,1]:

    For convenience,let us consider the following conditions:(A)γk→∞.

    (C)The sequence{Φk,1(λ1,λ2)}k≥1is uniformly Lipschitz in(λ1,λ2)on each bounded rectangle,and converges to a continuous function as k→∞.

    (D)The sequence{eλ2Φk,2(λ1,λ2)}k≥1is uniformly Lipschitz in(λ1,λ2)on each bounded rectangle,and converges to a continuous function as k→∞.

    By a modi fication of the proof of Lemma 2.6 and Theorem 2.7 in[25],we get(3.8).For given(Φ1,Φ2)by(3.3)–(3.4),it follows from Proposition 3.1(ii)that there is a sequence{Φk,1,Φk,2}satisfying(A,C,D),so if we let a sequence{Vk}be given by(3.1)and(3.2),the existence of the solution is immediate.The uniqueness of the solution follows by Gronwall’s inequality,and the semigroup property follows from the uniqueness of the solution.

    Proposition 3.3Suppose(Φ1,Φ2)are given by(3.3)–(3.4).For any λ∈,let t→V(t,λ)be the unique positive solution to(3.8).Then we can de fine a transition semigroup(Pt)t≥0by

    ProofGiven(Φ1,Φ2)by(3.3)–(3.4),by Proposition 3.1,there is a sequence(Φk,1,Φk,2)satisfying(A,C,D).By Proposition 3.2,for any a≥0 we have Vk(t,λ)→V(t,λ)uniformly on[0,a]3as k→∞.Take xk∈Mksatisfying xk→x as k→∞.Then,by a continuity theorem(see,e.g.,Theorem 1.18 in[23]),(3.10)de fines a probability measure on M and(xk,·)=Pt(x,·)by weak convergence.The semigroup property of the family of(Pt)t≥0follows from(3.9)and(3.10).

    De finitionA Markov process{Y(t)=(Y1(t),Y2(t)):t≥0}is called a MSB-process with state space M if it has the transition semigroup(Pt)t≥0in(3.10).

    Proposition 3.4Let(Pt)t≥0be the transition semigroup de fined by(3.10).Then we have

    with initial condition π(0,λ)=λ.

    ProofOne can see that V(t,0+)=0 for t≥0.By differentiating both sides of(3.10)with respect to λ1and λ2,we have

    and the desired assertion follows.

    By a modi fication of the proof of Theorem 2.11 in[25],one can see that the semigroup de fined by(3.10)is a Feller semigroup.Then the MSB-process has a c`adl`ag realization.Moreover,the MSB-process can also be characterized in terms of the martingale problem described as follows(see Corollary 4.4 below for the proof):for f∈C2(M),let L be an operator acting on C2(M)de fined by

    Suppose that{(Y1(t),Y2(t)):t≥0}is a non-negative cdlg process withE[Yi(0)]<∞,i=1,2.Then{(Y1(t),Y2(t)):t≥0}is a MSB-process with transition semigroup(Pt)t≥0if and only if,for every f∈C2(M),

    Theorem 3.5Assume that(A,C,D)hold,and that(Yk,1(0)/k,Yk,2(0))converges to(Y1(0),Y2(0))in distribution.Then

    in distribution on D([0,∞),M)as k→∞.

    ProofLet L be the generator of the MSB-process.For λ=(λ1,λ2)?0,x∈M,set eλ(x)=e?〈λ,x〉.We have

    Denote by D1the linear hull of{eλ,λ?0}.Then D1is an algebra which strongly separates the points of M.Let C0(M)be the space of the continuous function on M vanishing at in finity.By the Stone-Weierstrass theorem,D1is dense in C0(M)for the supremum norm.Noting that D1is invariant under Ptby(3.10),it follows from Proposition 3.3 in Chapter I of[8]that D1is the core of L.Note that{Yk,1(n)/k,Yk,2(n):n≥0}is a Markov chain with state space Mk,and the one-step transition probability is determined by

    From Corollary 8.9 in Chapter 4 of[8],we prove the desired result.

    Theorem 3.6Suppose that{(Y1(t),Y2(t)):t≥0}is any MSB-process with(Φ1,Φ2).Then,there exist a sequence of positive numbers{γk}and a sequence of two-type GW-processes{(Yk,1(n),Yk,2(n)):n∈N}with generation functions(gk,1,gk,2)such that the sequence{(k?1Yk,1(),Yk,2()):t≥0}converges in distribution on D([0,∞),M)to the process{(Y1(t),Y2(t)):t≥0}as k→∞.

    ProofBy Proposition 3.1,there exist{γk},{(gk,1,gk,2)}such that conditions(A,C,D)hold.The desired result follows from Theorem 3.5.

    4 The Construction of MSB-processes by Stochastic Equations

    Let(?,F,Ft,P)be a complete filtered probability space satisfying the usual hypotheses,let{B(t)}be a standard Brownian motion,let{N1(ds,du,dz)}be a Poisson random measure on(0,∞)2×M with intensity dsdun1(dz),and let{N2(ds,du,dz)}be a Poissonrandom measure on(0,∞)2×M?1with intensity dsdun2(dz),z=(z1,z2).Suppose that B,N1,N2are independent of each other.Let us recall the stochastic integral equation system(1.7)–(1.8)

    Proposition 4.1Suppose that{Y(t)}satis fies(1.7)–(1.8)andP{Y(0)≥0}=1.ThenP{Y(t)≥0,?t≥0}=1.

    ProofBy equation(1.8),if Y2(0)≥0,it is not hard to see that,for all t≥0,Y2(t)≥0.Now suppose that there exists ε>0 such that τ:=inf{t>0,Y1(t)≤?ε}<∞with strictly positive probability.Then there exists t0>0,Y1(t0)=0,and on the time interval[t0,τ],tY1(t)is a strictly negative continuous function.Hence there are some t1∈[t0,τ]and δ>0 such that,for all s∈[t0,t1],?a11Y1(s)+a21Y2(s)≥δ.Then

    Moreover,for function f on R,we denote

    Theorem 4.2The pathwise uniqueness for(1.7)–(1.8)holds.

    ProofSuppose that{Y(t)}and{Y′(t)}are two solutions of(1.7)–(1.8).Let ζi(t)=Yi(t)?(t),i=1,2 for t≥0.We have

    Since{Y(t)}and{Y′(t)}have c`adl`ag sample paths,we conclude thatP{Y(t)=Y′(t),?t≥0}=1 as m→∞.

    Theorem 4.3There is a unique non-negative strong solution to(1.7)–(1.8).

    ProofSince ν1is supported on M{0},we can rewrite(1.7)–(1.8)as

    For any fixed n≥1,let Vn={z∈M?1:‖z‖≥1/n},so n1(Vn)+n2(Vn)<∞.For m≥1 and x∈M,de fine

    By the results for continuous-type stochastic equations in[15,p.169],one can show that there is a non-negative weak solution to the following stochastic equation system:

    The pathwise uniqueness holds for the above system of equations by similar arguments as to those in Theorem 4.2.Then it has a unique strong solution.By similar arguments as to those in the proof of Proposition 2.2 in[13],we can get a pathwise unique non-negative strong solution{Ym,n(t):t≥0}to(4.1)–(4.2)as follows:

    As in the proof of Lemma 4.3 in[13],one can see that the sequence{Ym,n(t):t≥0},n=1,2,···is tight in D([0,∞),M).Following the proof of Theorem 4.4 in[13],it is easy to show that any weak limit point{Ym(t):t≥0}of the sequence is a non-negative weak solution to

    By Theorem 4.2,the pathwise uniqueness holds for(4.3)–(4.4),so the system of equations has a unique strong solution.Finally,the desired result follows from a modi fication of the proof of Proposition 2.4 in[13].

    Corollary 4.4A c`adl`ag non-negative process is a MSB-process with transition semigroup(Pt)t≥0de fined by(3.8)and(3.10)if and only if it is a weak solution of(1.7)–(1.8).

    ProofSuppose that{(Y1(t),Y2(t))}t≥0is a weak solution of(1.7)–(1.8).By It?o’s formula,one can see that{(Y1(t),Y2(t))}t≥0solves the martingale problem associated with the generator L.By the arguments in Section 3,we infer that{(Y1(t),Y2(t))}t≥0is a MSB-process with a transition semigroup(Pt)t≥0de fined by(3.8)and(3.10).Conversely,suppose that{(Y1(t),Y2(t))}t≥0is a c`adl`ag realization of the MSB-process with transition semigroup(Pt)t≥0de fined by(3.8)and(3.10).Then the distributions of{(Y1(t),Y2(t))}t≥0on D([0,∞),M)can be characterized uniquely by the martingale problem.By a standard stopping time argument,we have

    where G1(t)and G2(t)are two square-integrable local martingales.Let N0(ds,dz)be the optimal random measure on[0,∞)×M?1de fined by

    It follows from[7,p.376]that

    dC1(t)=2αY1(t)dt and dC2(t)=0.Then we obtain the equation(1.7)–(1.8)on an extension of the probability space by applying martingale representation theorems;see,e.g.,[15,p.93,p.84].This completes the proof.

    5 The Distribution of Local Jumps

    For any initial time r≥0,let Y=(?,F,Fr,t,Y(t),Pr,y:t≥r,y≥0)be a Hunt realization of the MSB-process with transition semigroup(Pt)t≥0de fined by(3.8)and(3.10).Here,{Pr,y:y≥0}is a family of probability measures on(?,F,Fr,t)satisfyingPr,y{Y(r)=y}=1 for all y≥0.For any t≥r≥0 and λ∈[0,∞)2,we have

    The following theorem gives a characterization of the distribution of the local maximal jump of the MSB-process:

    6 Exponential Ergodicity in Wasserstein Distances

    In order to present our results in this section,we first introduce some notations.Given two probability measuresμand ν on M,the standard Lp-Wasserstein distance Wpfor all p≥1 is given by

    where|·|denotes the Euclidean norm and C(μ,ν)stands for the set of all coupling measures ofμand ν,i.e.,C(μ,ν)is the collection of measures on M×M havingμand ν as marginals.Denoting Pp(M)as the set of probability measures having a finite moment of order p,it is known that(Pp(M),Wp)becomes a Polish space.

    The next theorem gives the upper and lower bounds for the variations in the L1-Wasserstein distance W1of the transition probabilities of the MSB-process started from two different initial states.

    Theorem 6.1Let(Pt)t≥0be the transition semigroup de fined by(3.10).Then for all x,y∈M and t≥0,we have

    where δxPt(·):=Pt(x,·)and π(t,1)is de fined as in Proposition 3.4 with λ=(1,1).

    ProofThe proof is based on the same idea as that of Theorem 2.2 in[26].By Proposition 3.4,we see thatRM(y1+y2)Pt(x,dy)=〈x,π(t,1)〉.It follows from Theorem 5.10 in[4]that

    Similarly,W1(δxPt,δyPt)≥〈y?x,π(t,1)〉.Then the first inequality follows.On the other hand,for x,y∈M,let(x?y)±:=((x1?y1)±,(x2?y2)±),and x∧y:=x?(x?y)+=y?(x?y)?.Let Pt(x,y,dη1,dη2)be the image of the product measure

    under the mapping(γ0,γ1,γ2)(η1,η2):=(γ0+γ1,γ0+γ2).It is not hard to see that Pt(x,y,dη1,dη2)is a coupling of Pt(x,dη1)and Pt(y,dη2).Then

    where we have used the branching property Pt(a,·)?Pt(b,·)=Pt(a+b,·)for all a,b∈M,t≥0 in the third row.Therefore the proof is finished.

    Based on Theorem 6.1,we can establish the exponential ergodicity with respect to W1.Recalling that a 2×2 matrix H=[Hij]2×2in Corollary 5.5 is de fined as

    we have the following result:

    Theorem 6.2Assume that H11H22?H12H21>0 and H11+H22<0.Then there exist λ,?>0 such that,for any t≥0 and x,y∈M,

    ProofBy assumption,it is easy to see that

    Corollary 6.3Assume that the conditions of Theorem 6.2 hold.Then there exist a unique π∈P1(M)and ?,λ>0 such that,for any x∈M and t≥0,

    ProofBy Theorem 7.5 below,there exists a unique invariant measure.Arguing similarly as to the proof of Theorem 3.2 in[12],one can see that π∈P1(M),and the desired assertion is easily obtained by Theorem 6.2.

    7 MSBI-processes

    Suppose that Φ1,Φ2are two functions on[0,∞)2de fined as in(3.3)–(3.4),and that there exists function Ψ on[0,∞)2de fined by

    where b>0 and m is a σ-fi nite measure on M supported by M{0}such that

    A Markov process{Z(t)=(Z1(t),Z2(t)):t≥0}is called a MSBI-process on M if it has a transition semigroup()t≥0uniquely determined by

    where V(t,λ)=(V1(t,λ),V2(t,λ))takes values onand satis fies(3.8).One can see that the semigroup de fined by(7.2)is a Feller semigroup,so the MSBI-process has a cdlg realization.We can also establish a similar result as to that of Theorem 6.1 for MSBI-processes;indeed,we have the following:

    Theorem 7.1Let()t≥0be the transition semigroup de fined by(7.2).Assume that<∞.Then,for t≥0 and x,y∈M,we have

    where π(t,1)is de fined as in Proposition 3.4 with λ=(1,1).

    ProofThe proof is based on the same idea as that of Theorem 4.1 in[26].One can see that

    where the last inequality follows from Theorem 6.1.

    By a similar argument as to that of Theorem 6.2,we have

    Theorem 7.2Assume that H11H22?H12H21>0 and H11+H22<0.Then,there exist λ,?>0 such that,for any t≥0 and x,y∈M,

    7.1 The construction of MSBI-processes by stochastic equations

    We now give a construction of MSBI-processes by stochastic equations.Let us consider the stochastic equation system

    where b≥0,M(ds,dz)is a Poisson random measure on[0,∞)×M with intensity measure dsm(dz),and the other coefficients are the same as in Section 4.Furthermore,we assume that those random elements are independent of each other.By a modi fication of the proof of Section 4,as well as that in[28],we see that(7.3)–(7.4)has a unique strong solution and is a MSBI-process with branching mechanism(Φ1,Φ2)de fined by(3.3)–(3.4)and an immigration mechanism Ψ de fined by(7.1).

    7.2 Stationary distribution

    In order to characterize the stationary distribution of MSBI-processes,we need to estimate the upper and lower bounds of|V(t,λ)|for t>0,λ∈;this will play an important role in the sequel.

    Lemma 7.3Let(Yt)t≥0be a MSB-process with semigroup(Pt)t≥0satisfying(3.10).Let H=[Hij]2×2be a 2×2 matrix de fined as in Corollary 5.5.Suppose that all the eigenvalues of H have strictly negative real parts.Then there exist some strictly positive constants c1(λ)and c2where c1depends on λ such that

    ProofWe follow the same calculations as those in Proposition 3.4 to see that

    and so

    Similarly,

    By Jensen’s inequality,we deduce that,for all x=(x1,x2)∈M,

    Since all the eigenvalues of H have strictly negative real parts,there exist some strictly positive c,c2>0 such that,for all t>0,

    see,e.g.,equation(2.8)in[32],which implies that|V(t,λ)|≤|λ|ce?c2t.We finish the proof by setting c1(λ)=|λ|c.

    Lemma 7.4Under the conditions of Lemma 7.3,for every λ∈,there exist two strictly positive constants A(λ)and B(λ)such that

    Proof

    and by the comparison theorem we deduce that V2(t,λ)≥and we obtain the desired result by setting B(λ)=2θec1(λ).

    We now give our main result.

    Theorem 7.5Let(Zt)t≥0be a MSBI-process with semigroup()t≥0satisfying(7.2).Suppose that all the eigenvalues of H have strictly negative real parts.Then(x,·)converges to a probability measure π on M as t→∞for all x∈M if and only if

    ProofBy Lemma 7.3 we have|V(t,λ)|→0 as t→∞.Supposing that(Zt)t≥0has a stationary distribution π,one can see that

    ProofIt follows from Theorem 7.5 and the assumptions that there exists a unique stationary distribution π.We can easily derive thatEx[|Zt|]<∞for all t≥0 and x∈M by the assumption thatR{|z|>1}|z|m(dz)<∞.By a modi fication of the proof of Corollary 6.3,we have that π∈P1(M),and the desired result follows from Theorem 7.2.

    精品国内亚洲2022精品成人| 欧美黑人欧美精品刺激| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线观看免费| www.熟女人妻精品国产| 日韩有码中文字幕| 嫩草影院入口| 国产精品一及| 久久精品91蜜桃| 看片在线看免费视频| 高潮久久久久久久久久久不卡| 亚洲av免费高清在线观看| 搡老岳熟女国产| 国产精品亚洲一级av第二区| 久久久久久久久中文| 成人亚洲精品av一区二区| 亚洲成人久久爱视频| 亚洲五月天丁香| 99久久无色码亚洲精品果冻| 日韩av在线大香蕉| 国内揄拍国产精品人妻在线| 精品电影一区二区在线| 熟女电影av网| 小说图片视频综合网站| 又黄又爽又免费观看的视频| 国产av麻豆久久久久久久| 美女被艹到高潮喷水动态| 99精品久久久久人妻精品| 国产精品爽爽va在线观看网站| 国产精品爽爽va在线观看网站| 99在线人妻在线中文字幕| 宅男免费午夜| 999久久久精品免费观看国产| 搞女人的毛片| 中文字幕av在线有码专区| 成人亚洲精品av一区二区| 热99re8久久精品国产| 日韩亚洲欧美综合| 久久6这里有精品| 亚洲18禁久久av| 美女免费视频网站| 午夜影院日韩av| 成人国产一区最新在线观看| 国产探花极品一区二区| 久久久精品大字幕| 国产亚洲欧美98| 久久性视频一级片| 一夜夜www| 午夜激情欧美在线| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 在线十欧美十亚洲十日本专区| 成人特级黄色片久久久久久久| 亚洲国产精品sss在线观看| 午夜福利欧美成人| 成年女人永久免费观看视频| 18禁裸乳无遮挡免费网站照片| 亚洲avbb在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品乱码一区二三区的特点| 日本黄大片高清| 黄色女人牲交| 一个人免费在线观看的高清视频| 禁无遮挡网站| 国产久久久一区二区三区| 免费人成在线观看视频色| 国产探花极品一区二区| 女人高潮潮喷娇喘18禁视频| 丰满的人妻完整版| 日韩欧美一区二区三区在线观看| 久久久久久国产a免费观看| 国产精品女同一区二区软件 | 亚洲av不卡在线观看| 久久人妻av系列| 色综合婷婷激情| 激情在线观看视频在线高清| 99视频精品全部免费 在线| 国产精品影院久久| www日本黄色视频网| 亚洲精品美女久久久久99蜜臀| 香蕉丝袜av| 国产亚洲av嫩草精品影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 九色国产91popny在线| 在线十欧美十亚洲十日本专区| 欧美+亚洲+日韩+国产| 99精品欧美一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放| 桃色一区二区三区在线观看| 精品久久久久久久人妻蜜臀av| 女同久久另类99精品国产91| 国产真实伦视频高清在线观看 | 国产探花极品一区二区| 老汉色∧v一级毛片| 久久精品国产自在天天线| 有码 亚洲区| 成年人黄色毛片网站| 天堂影院成人在线观看| 又黄又粗又硬又大视频| 国内少妇人妻偷人精品xxx网站| 欧美激情久久久久久爽电影| 少妇熟女aⅴ在线视频| 久久久精品大字幕| 熟女少妇亚洲综合色aaa.| 精品人妻一区二区三区麻豆 | 一本精品99久久精品77| 免费一级毛片在线播放高清视频| 成人高潮视频无遮挡免费网站| 日韩中文字幕欧美一区二区| 午夜免费成人在线视频| 色综合亚洲欧美另类图片| 最近视频中文字幕2019在线8| 亚洲国产精品成人综合色| 别揉我奶头~嗯~啊~动态视频| 久久精品国产99精品国产亚洲性色| 性欧美人与动物交配| 国产 一区 欧美 日韩| 色综合婷婷激情| 婷婷精品国产亚洲av| 91久久精品电影网| 男人舔女人下体高潮全视频| 淫秽高清视频在线观看| 欧美日韩一级在线毛片| 99久久成人亚洲精品观看| 欧美最新免费一区二区三区 | 两个人的视频大全免费| 亚洲精品色激情综合| 久久精品91无色码中文字幕| 成人18禁在线播放| 黄色日韩在线| 色噜噜av男人的天堂激情| 欧美性猛交╳xxx乱大交人| 男人和女人高潮做爰伦理| 中文在线观看免费www的网站| 成人国产综合亚洲| 欧美三级亚洲精品| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 日本一本二区三区精品| 白带黄色成豆腐渣| 国产精品影院久久| 亚洲无线在线观看| 亚洲成av人片免费观看| 国产69精品久久久久777片| 午夜久久久久精精品| 高清在线国产一区| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久亚洲av鲁大| 国产成年人精品一区二区| 国产亚洲精品久久久com| 国产成人a区在线观看| 三级国产精品欧美在线观看| www.999成人在线观看| 在线观看日韩欧美| 9191精品国产免费久久| 天堂网av新在线| 成人亚洲精品av一区二区| 99久国产av精品| 很黄的视频免费| 欧美成人免费av一区二区三区| 99热精品在线国产| 日韩欧美在线乱码| 中文资源天堂在线| 18+在线观看网站| 熟妇人妻久久中文字幕3abv| 99久久99久久久精品蜜桃| 亚洲欧美日韩高清在线视频| 日本在线视频免费播放| 精品人妻一区二区三区麻豆 | 国产精品日韩av在线免费观看| 波多野结衣高清作品| 欧美性猛交黑人性爽| 色综合站精品国产| 男女之事视频高清在线观看| 日韩高清综合在线| 1024手机看黄色片| 亚洲av免费高清在线观看| 18美女黄网站色大片免费观看| 天美传媒精品一区二区| 一个人免费在线观看电影| 99在线人妻在线中文字幕| 琪琪午夜伦伦电影理论片6080| 国产黄色小视频在线观看| 久久久久久久精品吃奶| 亚洲av免费高清在线观看| 无人区码免费观看不卡| 狂野欧美白嫩少妇大欣赏| 一进一出抽搐动态| 国产成人aa在线观看| 亚洲欧美精品综合久久99| 日本黄色片子视频| 亚洲第一欧美日韩一区二区三区| 亚洲av电影不卡..在线观看| 成人鲁丝片一二三区免费| 欧美日韩福利视频一区二区| 亚洲人成电影免费在线| 久久精品91无色码中文字幕| 日韩欧美精品免费久久 | 一区福利在线观看| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美| 中国美女看黄片| 特大巨黑吊av在线直播| www日本在线高清视频| 3wmmmm亚洲av在线观看| 夜夜爽天天搞| 亚洲第一电影网av| 婷婷精品国产亚洲av| 高清日韩中文字幕在线| 18禁美女被吸乳视频| 一本一本综合久久| 欧美黄色淫秽网站| 精品一区二区三区av网在线观看| 国产精品99久久久久久久久| 欧美又色又爽又黄视频| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 少妇熟女aⅴ在线视频| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久 | 99热6这里只有精品| 99久久精品一区二区三区| 成年版毛片免费区| 每晚都被弄得嗷嗷叫到高潮| 欧美bdsm另类| 久久久国产精品麻豆| 毛片女人毛片| 最新美女视频免费是黄的| 亚洲成av人片在线播放无| 国产老妇女一区| 哪里可以看免费的av片| 97超级碰碰碰精品色视频在线观看| 久久精品国产亚洲av涩爱 | 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 久久久久国内视频| 国产精品一区二区免费欧美| 日本黄色视频三级网站网址| 十八禁网站免费在线| 最近在线观看免费完整版| 制服人妻中文乱码| 日韩中文字幕欧美一区二区| 哪里可以看免费的av片| 久久久久九九精品影院| 国内精品久久久久久久电影| 免费观看精品视频网站| 亚洲最大成人中文| av中文乱码字幕在线| 亚洲国产欧美人成| 国产亚洲精品久久久com| 国产成人啪精品午夜网站| 免费人成在线观看视频色| 亚洲专区国产一区二区| 黄色女人牲交| 最后的刺客免费高清国语| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利在线在线| 国产精品三级大全| 最近在线观看免费完整版| xxx96com| 欧美日韩精品网址| 国产高清激情床上av| 国产高清视频在线观看网站| 久久九九热精品免费| 久久久精品大字幕| 成人特级黄色片久久久久久久| 国产91精品成人一区二区三区| www.www免费av| 两个人看的免费小视频| 亚洲电影在线观看av| 99精品欧美一区二区三区四区| 国产亚洲精品久久久com| 国产 一区 欧美 日韩| 欧美三级亚洲精品| 久久精品影院6| 免费看十八禁软件| 久久伊人香网站| 免费av不卡在线播放| 美女黄网站色视频| 精品日产1卡2卡| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 一区二区三区国产精品乱码| 久久99热这里只有精品18| 99热6这里只有精品| av福利片在线观看| 制服丝袜大香蕉在线| 国产 一区 欧美 日韩| 日韩欧美精品v在线| 欧美色视频一区免费| 国产精品一区二区三区四区免费观看 | 国产午夜精品论理片| 国产精品免费一区二区三区在线| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇仑乱视频hdxx| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区| 亚洲精品国产精品久久久不卡| 精品久久久久久成人av| 美女大奶头视频| 精品无人区乱码1区二区| 国产一级毛片七仙女欲春2| 老鸭窝网址在线观看| 熟妇人妻久久中文字幕3abv| 亚洲av一区综合| 色综合婷婷激情| 床上黄色一级片| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 亚洲第一电影网av| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 色在线成人网| 少妇的丰满在线观看| 波多野结衣高清无吗| 午夜精品久久久久久毛片777| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看吧| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频,在线免费观看| 天堂av国产一区二区熟女人妻| 亚洲18禁久久av| 国产综合懂色| 国产成年人精品一区二区| 级片在线观看| 亚洲,欧美精品.| 高清在线国产一区| 18禁国产床啪视频网站| 日韩欧美国产在线观看| 香蕉av资源在线| svipshipincom国产片| 一a级毛片在线观看| 中出人妻视频一区二区| 中文字幕人成人乱码亚洲影| 亚洲人成网站在线播| 欧美在线黄色| 亚洲国产中文字幕在线视频| 国产免费av片在线观看野外av| 欧美另类亚洲清纯唯美| 亚洲片人在线观看| 亚洲不卡免费看| 午夜a级毛片| 午夜福利成人在线免费观看| 一区福利在线观看| 国产av一区在线观看免费| 最新中文字幕久久久久| 亚洲国产精品久久男人天堂| 欧美午夜高清在线| xxx96com| 亚洲熟妇熟女久久| 午夜视频国产福利| a级毛片a级免费在线| 美女被艹到高潮喷水动态| 哪里可以看免费的av片| 午夜视频国产福利| 黄色视频,在线免费观看| 亚洲午夜理论影院| 日本免费a在线| 91在线观看av| 搡老妇女老女人老熟妇| 老熟妇乱子伦视频在线观看| 久久精品91无色码中文字幕| 一区二区三区激情视频| 国产淫片久久久久久久久 | 成人三级黄色视频| 精品午夜福利视频在线观看一区| av欧美777| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 久久伊人香网站| 国产免费av片在线观看野外av| 在线播放国产精品三级| 美女黄网站色视频| 免费观看精品视频网站| 九九热线精品视视频播放| 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清| 熟妇人妻久久中文字幕3abv| 日韩av在线大香蕉| 在线观看免费视频日本深夜| 国产亚洲av嫩草精品影院| 国产一区二区三区视频了| 精品欧美国产一区二区三| 日韩欧美 国产精品| 欧美日韩福利视频一区二区| 人人妻,人人澡人人爽秒播| 日本撒尿小便嘘嘘汇集6| 免费看a级黄色片| 首页视频小说图片口味搜索| 中文字幕人成人乱码亚洲影| 尤物成人国产欧美一区二区三区| 亚洲av美国av| 亚洲av中文字字幕乱码综合| 偷拍熟女少妇极品色| 欧美绝顶高潮抽搐喷水| 亚洲精华国产精华精| 九九在线视频观看精品| 久久久色成人| 国产精品影院久久| 亚洲欧美精品综合久久99| 色噜噜av男人的天堂激情| 久久伊人香网站| 色吧在线观看| 国产激情欧美一区二区| 久久久精品欧美日韩精品| 国产精品99久久久久久久久| 99国产精品一区二区蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片| 亚洲 欧美 日韩 在线 免费| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看| 亚洲第一欧美日韩一区二区三区| 久久久成人免费电影| 日韩欧美在线二视频| 村上凉子中文字幕在线| 熟女人妻精品中文字幕| 精品不卡国产一区二区三区| 国产一区二区三区在线臀色熟女| 国产色爽女视频免费观看| 男女做爰动态图高潮gif福利片| e午夜精品久久久久久久| 国产精品亚洲一级av第二区| 我要搜黄色片| 成人精品一区二区免费| 深夜精品福利| 亚洲精品乱码久久久v下载方式 | xxxwww97欧美| 国产一区二区三区视频了| 久久天躁狠狠躁夜夜2o2o| 亚洲无线观看免费| 久久精品综合一区二区三区| 九色国产91popny在线| 国产伦精品一区二区三区视频9 | 网址你懂的国产日韩在线| 国内毛片毛片毛片毛片毛片| 国产激情偷乱视频一区二区| 亚洲av一区综合| 老司机在亚洲福利影院| 精品欧美国产一区二区三| 亚洲精品亚洲一区二区| 天堂√8在线中文| 日韩欧美在线乱码| 69av精品久久久久久| 国产精品亚洲一级av第二区| 国产成人aa在线观看| 一区福利在线观看| 国产淫片久久久久久久久 | 国产主播在线观看一区二区| 高潮久久久久久久久久久不卡| 淫秽高清视频在线观看| 少妇高潮的动态图| 精品欧美国产一区二区三| 午夜福利在线在线| 内地一区二区视频在线| 亚洲精品美女久久久久99蜜臀| 欧美高清成人免费视频www| 日日干狠狠操夜夜爽| 小说图片视频综合网站| 国产美女午夜福利| 国产一区二区在线观看日韩 | 变态另类成人亚洲欧美熟女| 久久久精品欧美日韩精品| 最近最新免费中文字幕在线| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| 欧美另类亚洲清纯唯美| 日韩欧美精品v在线| 欧美色欧美亚洲另类二区| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 51国产日韩欧美| 国产乱人视频| 在线免费观看不下载黄p国产 | 国产av一区在线观看免费| 搡女人真爽免费视频火全软件 | 国产真实乱freesex| 欧美日韩综合久久久久久 | 免费看光身美女| 国产精品女同一区二区软件 | 青草久久国产| 日本黄大片高清| 国产淫片久久久久久久久 | 国产午夜福利久久久久久| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 亚洲欧美日韩高清专用| 每晚都被弄得嗷嗷叫到高潮| 美女 人体艺术 gogo| 亚洲真实伦在线观看| 成年免费大片在线观看| 久久国产乱子伦精品免费另类| 国产单亲对白刺激| 免费看a级黄色片| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色| 成人三级黄色视频| 成熟少妇高潮喷水视频| 色噜噜av男人的天堂激情| 蜜桃久久精品国产亚洲av| 久久亚洲精品不卡| 亚洲av电影不卡..在线观看| 国产真人三级小视频在线观看| 亚洲欧美激情综合另类| 欧美一区二区精品小视频在线| 黄色片一级片一级黄色片| 欧美av亚洲av综合av国产av| 成年免费大片在线观看| 精品人妻1区二区| 久9热在线精品视频| 国产极品精品免费视频能看的| 中亚洲国语对白在线视频| 国产亚洲精品av在线| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区| 免费大片18禁| 亚洲成av人片在线播放无| 18禁在线播放成人免费| 欧美激情久久久久久爽电影| 欧美日韩乱码在线| 欧美日本视频| 国产精品自产拍在线观看55亚洲| 亚洲成av人片在线播放无| 听说在线观看完整版免费高清| 国产精品一区二区三区四区免费观看 | 伊人久久大香线蕉亚洲五| 亚洲国产色片| 老熟妇仑乱视频hdxx| 俺也久久电影网| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 身体一侧抽搐| 亚洲国产色片| 人妻夜夜爽99麻豆av| 日韩亚洲欧美综合| 婷婷精品国产亚洲av在线| 亚洲人与动物交配视频| 欧美一区二区精品小视频在线| 国产精品美女特级片免费视频播放器| 动漫黄色视频在线观看| 国产美女午夜福利| 色在线成人网| av片东京热男人的天堂| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 国产伦精品一区二区三区视频9 | 欧美一区二区精品小视频在线| 久99久视频精品免费| 久久香蕉精品热| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 非洲黑人性xxxx精品又粗又长| 日本免费一区二区三区高清不卡| 国产97色在线日韩免费| 九九久久精品国产亚洲av麻豆| 黄色丝袜av网址大全| 男女床上黄色一级片免费看| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 亚洲最大成人中文| 欧美成人a在线观看| 在线天堂最新版资源| 在线观看免费午夜福利视频| 国产野战对白在线观看| 51国产日韩欧美| 麻豆久久精品国产亚洲av| 精品熟女少妇八av免费久了| 91久久精品电影网| 美女 人体艺术 gogo| 久久国产乱子伦精品免费另类| www.熟女人妻精品国产| АⅤ资源中文在线天堂| 午夜日韩欧美国产| 制服丝袜大香蕉在线| 国产精品一区二区三区四区免费观看 | 热99在线观看视频| 人妻丰满熟妇av一区二区三区| 偷拍熟女少妇极品色| 又紧又爽又黄一区二区| 热99re8久久精品国产| 亚洲成人精品中文字幕电影| 亚洲久久久久久中文字幕| 久久久久久久久大av| 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 一个人看的www免费观看视频| 桃红色精品国产亚洲av| 国产高潮美女av| 女警被强在线播放| 欧美日本亚洲视频在线播放| 亚洲精品456在线播放app | 成人亚洲精品av一区二区| www.色视频.com| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| 看免费av毛片| 亚洲性夜色夜夜综合| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 国产精品影院久久| 法律面前人人平等表现在哪些方面| 国产免费av片在线观看野外av| 国产在线精品亚洲第一网站| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱色亚洲激情| 岛国在线免费视频观看| 日韩中文字幕欧美一区二区| 一级黄片播放器| 国产精品香港三级国产av潘金莲|