• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NON-INSTANTANEOUS IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS WITH STATE DEPENDENT DELAY AND PRACTICAL STABILITY?

    2021-10-28 05:45:08RaviAGARWAL

    Ravi AGARWAL

    Department of Mathematics,Texas A&M University-Kingsville,Kingsville,TX 78363,USA Distinguished University Professor of Mathematics,Florida Institute of Technology,Melbourne,FL 32901,USA

    E-mail:Ravi.Agarwal@tamuk.edu

    Ricardo ALMEIDA

    Center for Research and Development in Mathematics and Applications,Department of Mathematics,University of Aveiro,Portugal

    E-mail:ricardo.almeida@ua.pt

    Snezhana HRISTOVA

    Department of Applied Mathematics and Modeling,University of Plovdiv Paisii Hilendarski,Plovdiv,Bulgaria

    E-mail:snehri@gmail.com

    Donal O’REGAN

    School of Mathematics,Statistics and Applied Mathematics,National University of Ireland,Galway,Ireland

    E-mail:donal.oregan@nuigalway.ie

    Abstract Nonlinear delay Caputo fractional differential equations with non-instantaneous impulses are studied and we consider the general case of delay,depending on both the time and the state variable.The case when the lower limit of the Caputo fractional derivative is fixed at the initial time,and the case when the lower limit of the fractional derivative is changed at the end of each interval of action of the impulse are studied.Practical stability properties,based on the modi fied Razumikhin method are investigated.Several examples are given in this paper to illustrate the results.

    Key words non-instantaneous impulses;Caputo fractional differential equations;practical stability

    1 Introduction

    Many evolution processes are characterized by abrupt state changes and these are modeled by impulsive differential equations.In the literature there are two popular types of impulses:instantaneous impulses(whose duration is short compared to the overall duration of the whole process)and non-instantaneous impulses(here the action starts at some points and remain active on a finite time interval).Additionally,when fractional derivatives with their memory property are involved in the equations,the impulses cause some problems connected with the lower limit of the fractional derivative.There are mainly two types of fractional differential equations with impulses in the literature:ones with fixed lower limit at the initial time and the second with a changeable lower limit at each each time of impulse.Caputo fractional differential equations with changeable lower limit at the impulsive time are studied in[16]and the explicit formulas for the solutions are given.Also,the non-instantaneous impulsive differential equations are natural generalizations of impulsive differential equations(see,for example,[3,6,7,12]).An overview of the main properties of the presence of non-instantaneous impulses to differential equations with ordinary derivatives as well as Caputo fractional derivatives is given in the book[2].

    An important qualitative problem for differential equations is stability.Often Lyapunov functions and different modi fications of the Lyapunov direct method are applied to study stability properties of solutions([4,5]).The application of Lyapunov functions to fractional differential equations requires appropriate de finition of their derivatives among the solutions of the studied fractional equations.Note there many different types of stability de fined and used to various kinds of differential equations.In[14,15]the stability properties of fractional difference equations are investigated.One type of stability useful in real world problems is the so called practical stability problem,introduced by LaSalle and Lefschetz[11],and it considers the question of whether the system state evolves within certain subsets of the state-space.For example,an equilibrium point may not be stable in the sense of Lyapunov and yet the system response may be acceptable in the vicinity of this equilibrium.

    In this paper we study nonlinear delay Caputo fractional differential equations with noninstantaneous impulses and we consider delays depending on both the time and the state variable.Some applications of state dependent delays are given in[8,13].We study two cases,one when the lower limit of the Caputo fractional derivative is fixed at the initial time,and the other when the lower limit of the fractional derivative is changed at the end of each interval of action of the impulse.Practical stability of the solutions is investigated and our arguments are based on the application of Lyapunov like functions and the modi fied Razumikhin method.We will need appropriate de finitions of the derivative of Lyapunov functions among the studied fractional equations.In our paper we use three different types of fractional derivatives of Lyapunov functions.Comparison results for nonlinear non-instantaneous impulsive fractional differential equations without any delay are used.Some sufficient conditions for practical stability and quasi practical stability are obtained.Also several examples are given to illustrate our results.

    The main contributions in this paper could be summarized:

    -non-linear Caputo fractional differential equations with non-instantaneous impulses and general delay depending on both the time and the state variable are set up in both cases:the case of a fractional derivative with fixed lower limit at the initial time and the case of a fractional derivative with changed lower limit at the end of each interval of acting of the impulse;

    -practical and quasi practical stability for studied equations are de fined;

    -both the initial conditions and the impulsive conditions are set up in appropriate way;

    -three types of the derivatives of the applied Lyapunov functions among the solutions of the studied equation are used:Caputo fractional derivative;Dini fractional derivative and Caputo fractional Dini derivative;

    -fractional modi fication of Razumikhin method is suggested and applied in the case of any of the mentioned above three types of derivatives of Lyapunov functions;

    -several sufficient conditions for practical stability are obtained for both types of the fractional derivatives-fi xed lower limit as well as changeable one.

    2 Preliminaries

    The intervals(t,s),i=0,1,2,···,k,will be the domain of the fractional differential equations,while in the intervals(s,t),i=1,2,···,k,the impulsive conditions are given.

    In the paper we will use the Caputo fractional derivative of order q∈(0,1)for a function m∈C([t,t+T],R),and is given by

    and Riemann-Liouville fractional derivative of order q∈(0,1)

    and Gr¨unwald?Letnikov fractional derivative

    The point tis the lower limit of the fractional derivative.Note that,for vector valued functions,the Caputo fractional derivative is taken component-wise.

    Consider the space PCof all piecewise continuous functions φ:[?r,0]→Rwith finite number of points of discontinuity τ∈(?r,0)at which

    endowed with the norm

    where‖.‖is a norm in R.

    In the case of the presence of any kind of impulses to the fractional differential equations,the memory of the fractional derivative leads to considering two different types of equations:

    -fractional derivative with fixed lower limit at the initial time(NIFrDDE):

    where the function f:R×R×PC→R;

    -fractional derivative with changed lower limit at the end of each interval of acting of the impulse(NIFrDDE):

    Remark 2.1

    The functions Φare called impulsive functions and the intervals(s,t],k=1,2,···are called intervals of non-instantaneous impulses.

    We introduce the following assumptions:

    Remark 2.2

    Any of the assumptions A2.1 or A2.2 guarantee the delay in the argument of the unknown function in(2.2),i.e.,the function ρ determines the state-dependent delay.

    Example 2.3

    The function ρ(t,u)=t?cos(u)satis fies the assumptions A2.1 and A2.2 with r=1,i.e.,t?1≤t?cos(u)≤t.

    If any of the assumptions A2.1 or A2.1 is satis fied,then ψ∈PCand ρ(t,ψ)?t∈[?r,0].

    Remark 2.5

    Note that,for the NIFrDDE(2.1),the functions f and ρ have to be de fined for all t≥0,in spite of the fact they only appear in the fractional differential equation(see assumptions A1.1 and A2.1.With respect to the NIFrDDE(2.2),both functions are de fined only on the intervals of fractional differential equations(see assumptions A1.2 and A2.2).

    Let J?Rbe a given interval.We will use the following classes of functions

    3 De finition of Practical Stability and Lyapunov Functions

    We will consider the cases of fractional differential equations with non-instantaneous impulses(2.1)and(2.2).Following the classical concept of the idea of practical stability(see[10]),we will give a de finition for various types of practical stability of the zero solution of NIFrDDE(2.1)(respectively(2.2)).In the de finition below,we denote by x(t;t,φ)any solution of the IVP for NIFrDDE(2.1)(respectively(2.2)).

    De finition 3.1

    The zero solution of the system of NIFrDDE(2.1)(respectively(2.2))is said to be

    In connection with our stability study,we will use Lyapunov type functions:

    De finition 3.2

    ([2]) Let α<β≤∞be given numbers and??Rbe a given set.We say that the function V:[α?r,β]×?→Rbelongs to the class Λ([α?r.β],?)if

    In this paper we will use three main type derivatives of Lyapunov functions V∈Λ([t?r,t+T),?),0

    -Dini fractional derivative given t∈(t,s]∩[t,t+T),k=0,1,2,···,

    Note that,if condition(A2.2)is satis fied,then ρ(t,ψ(s))?t∈[?r,0]and ψis well de fined.

    -Caputo fractional Dini derivative given t∈(t,s]∩[t,t+T),k=0,1,2,···,

    where φ,ψ∈PC([?r,0],?).

    Expression(3.3)is equivalent to

    Remark 3.3

    The relation between the Dini fractional derivative de fined by(3.2)and the Caputo fractional Dini derivative de fined by(3.4)is given by

    Example 3.4

    Let n=1 and V(t,x)=m(t)x,where m∈C(R,R).

    Case 1

    Caputo fractional derivative:

    where x(t)=x(t;t,φ),t≥tis a solution of(2.1).

    Case 2

    Dini fractional derivative.

    where ψ∈PC([?r,0],R).

    Case 3

    Caputo fractional Dini derivative:Let ψ∈PC([?r,0],R).Then

    4 Main Results About Practical Stability

    4.1 Fixed lower limit of the fractional derivative

    Consider the initial value problem for the nonlinear system of non-instantaneous impulsive Caputo fractional differential equations with state dependent delay(2.1).We will study practical stability by the fractional extension of the Razumikhin method.In[5],some stability results for delay fractional differential equations(no impulses of any kind)are obtained,by applying the Caputo fractional derivative of the Lyapunov function and the generalized Razumikhin condition

    Remark 4.1

    Note that condition(4.1)is restrictive,but it is necessary because of the application of Caputo fractional derivative of the Lyapunov function and the fractional derivative with fixed lower limit in(2.1).

    We will give sufficient conditions for practical stability of the zero solution of NFrDDE(2.1)by applying the Caputo fractional derivative of the Lyapunov function.

    Theorem 4.2

    (Practical stability for the Caputo fractional derivative) Let assumptions A1.1,A2.1,A3.1,and A4 be satis fied.Assume that there exist a number t∈[0,s)and a continuously differentiable Lyapunov function V∈Λ([t?r,∞),R),with V(t,0)=0,such that

    Proof

    Let x(t)=x(t;t,φ)be a solution of NIFrDDE(2.1),with‖φ‖<λ.De fine the function

    The function v is nondecreasing.According to condition(i),the inequalities

    hold for s∈[?r,0],i.e.,v(t)∈S.We will prove that

    Assume that(4.2)is not true.

    Case 1

    There exists a natural number p such that v(t)=v(t)∈S,for t∈[t,s],but v(t)>v(t),for t∈(s,s+ε],where ε>0 is a small enough number.Then,given t∈(s,s+ε],we get v(t)>vand V(s,x(s?0))∈S.According to condition(iii)we have

    According to the assumption,we get v(t)=0,for t∈[t,T],and v(t)>0,for t∈(T,T+ε].Then,for any t∈(T,T+ε],we obtain

    a contradiction.This proves(4.2).

    From(4.2)and condition(i),we get

    4.2 Fractional equations with changed lower limit of the derivative

    Consider the initial value problem for a nonlinear system of non-instantaneous impulsive Caputo fractional differential equations with state dependent delay(2.2).First we give comparison results(known in the literature)by Lyapunov functions for systems of fractional differential equations with state dependent delays(no impulses)

    where 0<Θ≤∞.

    Lemma 4.3

    ([1]Caputo fractional Dini derivative) Assume that

    1.The function x(t)=x(t;a,φ)∈?,??Ris a solution of(4.4),de fined for t∈[a,a+Θ],Θ>0.

    3.The function V∈Λ([a?r,a+Θ],?)and,for any point t∈[a,a+Θ]such that

    the inequality

    holds.

    Lemma 4.4

    ([1]Dini fractional derivative) Assume the conditions of Lemma 4.3 are satis fied,where inequality(4.5)is replaced by

    We study the practical stability using the following scalar comparison differential equation with non-instantaneous impulses(NIFrDE):

    We introduce the following assumptions:

    H2

    For all natural numbers k,the functions Ψ∈C([s,t]×R,R)are such that Ψ(t,0)=0,for t∈[s,t],and Ψ(t,u)≤Ψ(t,v),for u≤v,t∈[s,t].

    H3

    There exists a positive number K such that,for any k=1,2,···,the inequality|Ψ(s,u)|We will study the connection between the practical stability properties of the system NIFrDDE(2.2)and the practical stability properties of the scalar NIFrDE(4.7).

    Theorem 4.5

    (for the Caputo fractional Dini derivative) Let the following conditions be satis fied:

    1.Assumptions A1.2,A2,A3.2,A4 and H1–H3 are ful filled.

    2.There exist a point t∈[0,s),a function V∈Λ([t?r,∞),R),and

    (i)the inequality

    holds,where a,b∈K,A=b(K),and K is the number de fined in condition(H3);

    (ii)for any functions ψ,φ∈PCsuch that‖ψ‖∈Sand‖φ‖∈S,and for any point t∈(t,s),k=0,1,2,···,such that V(t+τ,ψ(τ))≤V(t,ψ(0)),for all τ∈[?r,0],the inequality

    holds;

    (iii)for any k=1,2,···,the inequality

    holds.

    3.There exists a constant λ,with 0<λ

    Then,the zero solution of(2.2)is practically stable w.r.t.(λ,A).

    Consider the solution uof(4.7)with the initial value u.According to condition 3,the inequality

    for τ∈[?r,0].According to condition 2(ii)of Theorem 4.2,we get

    with φ(0)=x(t),i.e.,condition 3 of Lemma 4.3 is satis fied with a=t,G(t,u)=g(t,u)and φ(0)=x(t),Θ=s?t.

    We will prove that

    For t=twe get

    Assume(4.9)is not true and let t=inf{t>t:V(t,x(t))≥b(A)}.

    Case 1

    Suppose that t∈(t,s),for some non-negative integer p.Then,the function x is continuous at tand V(t,x(t))Case 1.1

    Assume that p=0.From condition 2(i)and the choice of the initial function,we have

    i.e.,x(t)∈S,for t∈[t?r,t].Also,

    This contradiction proves the assumption is not true.

    Case 1.2

    Assume now that p≥1.From condition 2(i)we have

    This contradiction proves the assumption is not true.

    Case 2

    Suppose that t∈(s,t),for some natural number p.From condition 2(i)it follows that

    i.e.,x(t)∈S.Then,from condition 2(iii),we get

    From condition(H3),using the inequality V(s?0,x(s?0))

    Case 3

    Finally,suppose that t=s,for some natural number p.

    Case 3.1

    Let V(t,x(t))Case 3.2

    Let V(t,x(t))

    From(4.9)and condition 3(i)we obtain the claim in Theorem 4.5.

    Remark 4.6

    Note that,in Theorem 4.5,the condition in(ii)is similar to the Razumikhin condition and it is not as restrictive as the condition used in Theorem 4.2(we note the type of the fractional derivatives used in(2.1)and(2.2)).

    Theorem 4.7

    (for the Dini fractional derivative) Let the conditions of Theorem 4.5 be satis fied but replace condition 2(ii)by:

    2(ii)for any function ψ∈PCwith‖ψ‖∈S,and any point t∈(t,s),k=0,1,2,···,such that V(t+τ,ψ(τ))≤V(t,ψ(0)),for τ∈[?r,0],the inequality

    holds.Then,the zero solution of(2.2)is practically stable w.r.t.(λ,A).

    The proof of Theorem 4.7 is similar to that in Theorem 4.5 where instead of Lemma 4.3 we apply Lemma 4.4.

    Theorem 4.8

    Let the following conditions be satis fied:

    1.Assumptions A1.2,A2,A3.2,A4 and H1–H3 are ful filled.

    2.There exist a point t∈[0,s)and a function V∈Λ([t?r,∞),R)such that

    (i)the inequality

    holds,where a,b∈K;

    (ii)for any function ψ∈PCand any point t∈(t,s),k=0,1,2,···,such that V(t+τ,ψ(τ))≤V(t,ψ(0)),for τ∈[?r,0],the inequality

    holds;

    (iii)for any k=1,2,···,the inequality

    holds.

    3.There exist positive constants λ,T with 0<λ

    Then,the zero solution of(2.2)is practically quasi stable w.r.t.(λ,B,T).

    Proof

    Choose the initial function φ∈PCwith‖φ‖<λ,and consider the solution x(t)=x(t;t,φ)of system(2.2)for the initial time tde fined in condition 2.Let

    From the choice of the initial function φ and the properties of the function b,applying condition 2(i),we get

    Consider the solution u(t)=u(t;t,u)of(4.7).Therefore,the function u satis fies

    for t≥t+T.

    In the case of the application of the Dini fractional derivative we obtain:

    Theorem 4.9

    Let the conditions of Theorem 4.8 be satis fied with replacing the condition 2(ii)by:

    2(ii)for any function ψ∈PCwith‖ψ‖∈S,and any point t∈(t,s),k=0,1,2,···,such that V(t+τ,ψ(τ))≤V(t,ψ(0)),for τ∈[?r,0],the inequality

    holds.

    Then,the zero solution of(2.2)is practically quasi stable w.r.t.(λ,B,T).

    The proof of Theorem 4.9 is similar to that in Theorem 4.8,where instead of Lemma 4.3,we apply Lemma 4.4.

    Remark 4.10

    Note that condition(H3)of Theorems 4.5,4.8,and 4.9,could be replaced by the condition:

    For all k=1,2,···,the functions Ψsatisfy Ψ(t,u)≤u,for t∈[s,t]and u∈R.

    Remark 4.11

    The point tin the conditions of all the above Theorems is from the interval[0,s)but one can modify the proofs so it can be from any interval[t,s),k=1,2,···.

    4.3 Some examples

    We will consider several particular examples and apply our results to illustrate the practical stability properties.

    Example 4.12

    (constant delay) Let s=2k+1,t=2k,for k=0,1,2,···,and r=1.Consider the IVP for the nonlinear system of non-instantaneous impulsive fractional differential equations with constant delay:

    where x,y∈R,a,b∈(?1,1)are given constants.In this particular case,

    and the conditions A2.1 and A2.2 are satis fied.Therefore,

    For any t∈(2k+1,2k+2],k=0,1,2,···,x,y∈R,we have

    Consider the IVP for the scalar fractional differential equation with non-instantaneous impulses

    It has a solution(see Figure 1)

    Figure 1 Example 4.12.Graph of the solution of(4.13)for different initial values

    then

    Let,for example,q=0.5 and the initial functions φ(s)=φ(s)=0.2(1+sin(s)),s∈[?1,0],i.e.,

    The solution of the system(4.11)with these particular initial functions φ(s)=φ(s)=0.2(1+sin(s)),s∈[?1,0]is shown in Figure 2.

    Figure 2 Example 4.12.Graph of the solution of(4.11)

    Figure 3 Example 4.12.Graph of the solution of(4.11)for large impulsive functions

    Now,let change the impulsive functions in(4.11)to other ones,for example,let the impulsive conditions of the system(4.11)be changed by

    Note the impulsive functions?tx and ty do not satisfy the conditions of Theorems 4.5,4.7,and 4.8,and as can be seen from Figure 3,the system(4.11)is not practically stable.Thus,condition(iii)is not only sufficient but also it is necessary to assure the practical stability for the system.

    Example 4.13

    (variable time delay) Let s=2k+1,t=2k for k=0,1,2,···,and r=1.Consider the initial value problem for the nonlinear system of non-instantaneous impulsive fractional differential equations with time variable delay:

    where x,y∈R.

    In this partial case,

    and the assumptions A2.1 and A2.2 are satis fied,with r=1(see Figure 4).

    Figure 4 Example 4.13.Graph of the delay in(4.16)

    Therefore,

    and

    Let V(t,x,y)=1.5(x+2y).Similar to Example 4.12 and(4.12)and(4.13),we prove the validity of Conditions 2(ii)and 2(iii)of Theorem 4.5 and the comparison scalar equation is also(4.14).According to Theorem 4.5,the solution of the system(4.16)is practically stable.

    Let for example q=0.5 and the initial functions φ(s)=φ(s)=0.2(1+sin(s)),s∈[?1,0],i.e.,

    The solution of the system(4.16)for these particular initial functions is shown in Figure 5.

    Figure 5 Example 4.13.Graph of the solution of(4.16)with time variable delay

    Figure 6 Example 4.13.Graph of the solution of(4.16)with large impulsive functions

    Similar to Example 4.12,we change the impulsive functions in(4.16)by othr ones.For example,let the impulsive conditions of the system(4.16)be changed by

    The impulsive functions?tx and ty do not satisfy the conditions of Theorems 4.5,4.7,and 4.8,and as can be seen from Figure 6 the system(4.16)is not practically stable.Therefore,condition(iii)for the impulsive functions is not only sufficient but also it is necessary to assure the practical stability for the system.

    Example 4.14

    (state dependent delay) Let s=2k+1,t=2k for k=0,1,2,···,and r=1.Consider the initial value problem for the nonlinear system of non-instantaneous impulsive fractional differential equations with time variable delay

    where x,y∈R,r>0 is a small constant,a,b∈(?1,1)are given constants,

    Then,the assumptions A2.1 and A2.2 are satis fied.Therefore,

    Similar as in Example 4.12,applying inequality(4.19),we get inequalities(4.12),(4.13)and the comparison scalar equation(4.14).According to Theorem 4.5,the solution of the system(4.18)is practically stable.

    亚洲欧美日韩卡通动漫| 精华霜和精华液先用哪个| 国产女主播在线喷水免费视频网站 | 人妻系列 视频| 国产一级毛片在线| 久久久久性生活片| 99热这里只有是精品在线观看| 男女视频在线观看网站免费| 日本爱情动作片www.在线观看| 综合色av麻豆| 日本爱情动作片www.在线观看| 亚洲精品影视一区二区三区av| 久久国内精品自在自线图片| 国模一区二区三区四区视频| av国产久精品久网站免费入址| 欧美成人a在线观看| 一二三四中文在线观看免费高清| 97热精品久久久久久| 好男人在线观看高清免费视频| 日韩一区二区三区影片| 少妇的逼水好多| 国产高潮美女av| 91aial.com中文字幕在线观看| 91午夜精品亚洲一区二区三区| 久久99蜜桃精品久久| 午夜福利网站1000一区二区三区| 2022亚洲国产成人精品| 亚洲成人精品中文字幕电影| av免费观看日本| 伊人久久国产一区二区| 国产免费视频播放在线视频 | 精品一区二区三卡| 久久久a久久爽久久v久久| 秋霞伦理黄片| 国产成人午夜福利电影在线观看| 国产成人精品福利久久| 国产午夜福利久久久久久| 国产三级在线视频| 亚洲av成人精品一二三区| 国产精品三级大全| 美女xxoo啪啪120秒动态图| 欧美激情在线99| 视频中文字幕在线观看| 性色avwww在线观看| 少妇熟女欧美另类| 中文乱码字字幕精品一区二区三区 | 简卡轻食公司| 亚洲av免费高清在线观看| 久久草成人影院| videos熟女内射| 国产精品不卡视频一区二区| 人妻制服诱惑在线中文字幕| 国产一级毛片七仙女欲春2| 日韩欧美 国产精品| av在线观看视频网站免费| 国产一区二区三区av在线| 日韩不卡一区二区三区视频在线| 18禁在线播放成人免费| 欧美zozozo另类| 国产精品久久久久久av不卡| 禁无遮挡网站| 秋霞在线观看毛片| 久久草成人影院| 国产高清三级在线| 亚洲国产日韩欧美精品在线观看| 国产成人精品久久久久久| 美女大奶头视频| 国产精品一区二区三区四区久久| 少妇裸体淫交视频免费看高清| 免费观看无遮挡的男女| 国产亚洲精品久久久com| 特大巨黑吊av在线直播| 国产色婷婷99| 日本三级黄在线观看| 日韩 亚洲 欧美在线| 校园人妻丝袜中文字幕| 日韩av免费高清视频| 亚洲欧美精品专区久久| 成人亚洲精品一区在线观看 | 又粗又硬又长又爽又黄的视频| 国产成人精品久久久久久| 国产伦理片在线播放av一区| 中文字幕免费在线视频6| 日日干狠狠操夜夜爽| 我的女老师完整版在线观看| 免费看a级黄色片| 草草在线视频免费看| 欧美精品国产亚洲| 69av精品久久久久久| 国产精品美女特级片免费视频播放器| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 可以在线观看毛片的网站| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 一级av片app| 国产午夜精品一二区理论片| 伦精品一区二区三区| 免费看不卡的av| 丝袜喷水一区| 国产综合懂色| 亚洲人成网站在线观看播放| 久久久久久久久久人人人人人人| 久久99精品国语久久久| 日韩欧美三级三区| 天美传媒精品一区二区| 国产片特级美女逼逼视频| 国产91av在线免费观看| 熟女电影av网| 国产视频首页在线观看| 亚洲精品国产av蜜桃| 最近中文字幕2019免费版| 日韩大片免费观看网站| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| 99久久精品一区二区三区| 国产成人a∨麻豆精品| 欧美性猛交╳xxx乱大交人| av卡一久久| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区| 日日啪夜夜撸| 成人特级av手机在线观看| 久久久久九九精品影院| 国产精品一二三区在线看| 春色校园在线视频观看| 中文字幕制服av| 人人妻人人看人人澡| 亚洲在久久综合| 大话2 男鬼变身卡| 七月丁香在线播放| 天美传媒精品一区二区| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 久久久久免费精品人妻一区二区| 人妻夜夜爽99麻豆av| 七月丁香在线播放| 国产成人a∨麻豆精品| 国产美女午夜福利| 免费少妇av软件| 久久久久久久久久人人人人人人| 精品人妻视频免费看| 一级片'在线观看视频| 亚洲最大成人手机在线| 国产91av在线免费观看| 国产伦理片在线播放av一区| 人妻夜夜爽99麻豆av| 亚洲国产av新网站| 亚洲av电影在线观看一区二区三区 | 看免费成人av毛片| 免费观看a级毛片全部| 久久99热这里只有精品18| 欧美另类一区| 日韩亚洲欧美综合| 高清毛片免费看| 丝瓜视频免费看黄片| 男女视频在线观看网站免费| 国产久久久一区二区三区| 伦精品一区二区三区| 日日啪夜夜撸| 日韩大片免费观看网站| 欧美另类一区| 婷婷色av中文字幕| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| 中国国产av一级| 久久久色成人| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 亚洲18禁久久av| 欧美日韩国产mv在线观看视频 | 色吧在线观看| 日韩av在线大香蕉| 久久久久久久国产电影| 天天一区二区日本电影三级| 国产精品福利在线免费观看| 淫秽高清视频在线观看| 国产美女午夜福利| av专区在线播放| 国产精品综合久久久久久久免费| 国产精品人妻久久久影院| 亚洲va在线va天堂va国产| 亚洲av在线观看美女高潮| 白带黄色成豆腐渣| 男人舔女人下体高潮全视频| 国产av国产精品国产| 久久草成人影院| 不卡视频在线观看欧美| 亚洲精品日韩av片在线观看| 久久精品久久精品一区二区三区| 91久久精品国产一区二区成人| 日韩av不卡免费在线播放| 99热网站在线观看| 最近中文字幕高清免费大全6| 中文字幕制服av| 国产精品一区二区三区四区免费观看| 中文字幕av成人在线电影| 在线观看一区二区三区| 日日摸夜夜添夜夜爱| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 成年女人看的毛片在线观看| 日韩精品有码人妻一区| 久久精品久久精品一区二区三区| 禁无遮挡网站| 国产在线一区二区三区精| 91精品一卡2卡3卡4卡| 久久久久国产网址| 久久精品人妻少妇| 久久久久久久久久人人人人人人| 91午夜精品亚洲一区二区三区| 亚洲内射少妇av| 99久久精品国产国产毛片| 亚洲人成网站高清观看| 肉色欧美久久久久久久蜜桃 | 国产精品美女特级片免费视频播放器| 久久久久久久国产电影| 免费看光身美女| av播播在线观看一区| 一区二区三区四区激情视频| 欧美高清性xxxxhd video| 看十八女毛片水多多多| 亚洲精品乱久久久久久| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 精品久久久精品久久久| 日韩视频在线欧美| 午夜福利高清视频| 国产精品日韩av在线免费观看| 少妇人妻精品综合一区二区| 赤兔流量卡办理| 亚洲欧美日韩卡通动漫| 麻豆av噜噜一区二区三区| 免费无遮挡裸体视频| 草草在线视频免费看| 最近视频中文字幕2019在线8| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 欧美三级亚洲精品| 热99在线观看视频| av卡一久久| 熟妇人妻不卡中文字幕| 国内精品一区二区在线观看| av免费观看日本| 午夜福利视频精品| 亚洲图色成人| 三级男女做爰猛烈吃奶摸视频| 黄片wwwwww| 亚洲欧美日韩卡通动漫| 欧美极品一区二区三区四区| 岛国毛片在线播放| 又大又黄又爽视频免费| 在线观看美女被高潮喷水网站| 亚洲成人久久爱视频| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 午夜激情久久久久久久| 国产精品嫩草影院av在线观看| 高清在线视频一区二区三区| www.av在线官网国产| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩卡通动漫| 精品久久久久久成人av| 成人亚洲精品一区在线观看 | 激情 狠狠 欧美| 久久精品国产亚洲网站| 熟妇人妻久久中文字幕3abv| 中文欧美无线码| 中国国产av一级| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 日韩伦理黄色片| 国产精品久久久久久av不卡| 最近最新中文字幕大全电影3| 日本-黄色视频高清免费观看| 亚洲精品色激情综合| 国产在视频线精品| 午夜久久久久精精品| 国内精品一区二区在线观看| 久久久久精品久久久久真实原创| 亚洲aⅴ乱码一区二区在线播放| 九九爱精品视频在线观看| 99re6热这里在线精品视频| 哪个播放器可以免费观看大片| 国产黄色小视频在线观看| 久久草成人影院| .国产精品久久| 日本wwww免费看| 亚洲欧美一区二区三区国产| 成人欧美大片| 久久久久久九九精品二区国产| 青青草视频在线视频观看| 高清毛片免费看| www.av在线官网国产| 精品一区二区免费观看| 久久国内精品自在自线图片| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久 | 国产精品美女特级片免费视频播放器| 永久免费av网站大全| 亚洲精品国产av成人精品| 国产黄片美女视频| 男女视频在线观看网站免费| 久久久久免费精品人妻一区二区| 亚洲综合色惰| 免费看a级黄色片| 汤姆久久久久久久影院中文字幕 | 国产精品综合久久久久久久免费| av又黄又爽大尺度在线免费看| 青春草亚洲视频在线观看| 97热精品久久久久久| 久久精品夜色国产| av在线老鸭窝| 搞女人的毛片| 亚洲精品成人久久久久久| 欧美一区二区亚洲| 中文字幕亚洲精品专区| 三级男女做爰猛烈吃奶摸视频| 一边亲一边摸免费视频| 干丝袜人妻中文字幕| 国产男女超爽视频在线观看| 欧美精品国产亚洲| 欧美丝袜亚洲另类| 免费大片黄手机在线观看| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 麻豆成人av视频| 免费高清在线观看视频在线观看| 国产一区二区在线观看日韩| 国产亚洲最大av| 三级毛片av免费| 国产精品不卡视频一区二区| 久久久久久久久久成人| 九九久久精品国产亚洲av麻豆| 国产老妇伦熟女老妇高清| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆| 好男人在线观看高清免费视频| 特级一级黄色大片| 亚洲18禁久久av| 亚洲精品国产av蜜桃| 纵有疾风起免费观看全集完整版 | 国产激情偷乱视频一区二区| 精品一区在线观看国产| 国产精品不卡视频一区二区| 久久综合国产亚洲精品| 免费看光身美女| 少妇裸体淫交视频免费看高清| 国产精品不卡视频一区二区| 免费看美女性在线毛片视频| 亚洲在久久综合| 超碰av人人做人人爽久久| 中文资源天堂在线| 天堂√8在线中文| 男女那种视频在线观看| 亚洲国产欧美在线一区| 可以在线观看毛片的网站| 国产av不卡久久| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产高清在线一区二区三| 能在线免费看毛片的网站| 久久亚洲国产成人精品v| 亚洲av免费在线观看| 如何舔出高潮| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 高清毛片免费看| 亚洲成人av在线免费| 国产精品一区二区三区四区久久| 国产人妻一区二区三区在| 国产午夜精品论理片| 亚洲美女视频黄频| 国产美女午夜福利| 国产精品.久久久| av播播在线观看一区| 久久国内精品自在自线图片| 久久亚洲国产成人精品v| 一级毛片 在线播放| 美女高潮的动态| 人妻夜夜爽99麻豆av| 免费观看无遮挡的男女| 成人欧美大片| 日韩大片免费观看网站| 亚洲精品456在线播放app| 亚洲精品aⅴ在线观看| 18禁在线播放成人免费| 一个人观看的视频www高清免费观看| 可以在线观看毛片的网站| 国产精品一及| 嘟嘟电影网在线观看| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 成人一区二区视频在线观看| 国产一区亚洲一区在线观看| 特大巨黑吊av在线直播| 男的添女的下面高潮视频| 免费观看无遮挡的男女| 久久久久免费精品人妻一区二区| 欧美bdsm另类| 亚洲av不卡在线观看| 国产精品福利在线免费观看| 人妻少妇偷人精品九色| 熟女电影av网| av在线天堂中文字幕| 免费黄网站久久成人精品| av播播在线观看一区| 成人性生交大片免费视频hd| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| 亚洲av中文字字幕乱码综合| 97超视频在线观看视频| 狠狠精品人妻久久久久久综合| 国产黄色免费在线视频| 毛片女人毛片| 国产黄片美女视频| 免费看美女性在线毛片视频| 欧美潮喷喷水| 在线免费观看的www视频| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 午夜精品在线福利| 成人亚洲欧美一区二区av| 视频中文字幕在线观看| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 免费黄网站久久成人精品| 免费看a级黄色片| 好男人在线观看高清免费视频| 你懂的网址亚洲精品在线观看| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 成人美女网站在线观看视频| 成人国产麻豆网| 建设人人有责人人尽责人人享有的 | 久久久久久久久久成人| 精品久久国产蜜桃| 在线观看人妻少妇| 中文乱码字字幕精品一区二区三区 | 日韩电影二区| 亚洲美女视频黄频| 国产视频内射| 国产精品综合久久久久久久免费| 久久国内精品自在自线图片| av福利片在线观看| 一级a做视频免费观看| 国产高清三级在线| 少妇丰满av| 国产一区亚洲一区在线观看| 简卡轻食公司| 三级国产精品欧美在线观看| 午夜免费激情av| 国产精品一区二区三区四区免费观看| 深爱激情五月婷婷| 少妇的逼水好多| 久久精品综合一区二区三区| 国产探花在线观看一区二区| 在线免费观看的www视频| 久久精品国产鲁丝片午夜精品| 伦理电影大哥的女人| 日韩人妻高清精品专区| 午夜免费激情av| 免费大片黄手机在线观看| 少妇裸体淫交视频免费看高清| 国产精品嫩草影院av在线观看| 国产黄片美女视频| 天美传媒精品一区二区| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品专区欧美| 欧美3d第一页| 午夜日本视频在线| 日韩 亚洲 欧美在线| 午夜福利网站1000一区二区三区| 春色校园在线视频观看| 国产精品1区2区在线观看.| 最近中文字幕高清免费大全6| 欧美激情国产日韩精品一区| 国产精品日韩av在线免费观看| 欧美+日韩+精品| 性插视频无遮挡在线免费观看| 成人亚洲欧美一区二区av| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 有码 亚洲区| 免费看光身美女| 最近手机中文字幕大全| 国产亚洲5aaaaa淫片| 九九爱精品视频在线观看| 国产成年人精品一区二区| 人人妻人人看人人澡| 亚洲国产精品成人综合色| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说 | 国产在视频线在精品| 少妇人妻一区二区三区视频| 国产精品一二三区在线看| 久久精品人妻少妇| av女优亚洲男人天堂| 国产av码专区亚洲av| 美女内射精品一级片tv| 看十八女毛片水多多多| 日韩av在线大香蕉| 看十八女毛片水多多多| 欧美成人a在线观看| 亚洲成色77777| 亚洲精品影视一区二区三区av| 黄色配什么色好看| 亚洲va在线va天堂va国产| 国产黄色免费在线视频| 亚洲av在线观看美女高潮| 男女边吃奶边做爰视频| 岛国毛片在线播放| 国产人妻一区二区三区在| 日韩中字成人| 成人综合一区亚洲| 听说在线观看完整版免费高清| 国产精品1区2区在线观看.| 熟女人妻精品中文字幕| 男人舔女人下体高潮全视频| 欧美潮喷喷水| 一个人观看的视频www高清免费观看| 国产高潮美女av| 女的被弄到高潮叫床怎么办| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av涩爱| 亚洲四区av| 亚洲熟女精品中文字幕| 国产成人精品一,二区| 一个人免费在线观看电影| 亚洲第一区二区三区不卡| 国产亚洲一区二区精品| 七月丁香在线播放| 亚洲性久久影院| 春色校园在线视频观看| 亚洲欧美日韩无卡精品| 一级爰片在线观看| 日本爱情动作片www.在线观看| 国内精品美女久久久久久| 亚洲精品中文字幕在线视频 | 女的被弄到高潮叫床怎么办| 日韩av免费高清视频| www.av在线官网国产| 午夜爱爱视频在线播放| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 91久久精品国产一区二区成人| 午夜福利高清视频| 99久久人妻综合| 成人特级av手机在线观看| 国产精品1区2区在线观看.| 亚洲精品第二区| 高清日韩中文字幕在线| 亚洲国产日韩欧美精品在线观看| 一区二区三区乱码不卡18| 国产亚洲5aaaaa淫片| 国产色爽女视频免费观看| 天美传媒精品一区二区| 一区二区三区高清视频在线| 亚洲不卡免费看| 丰满乱子伦码专区| 大陆偷拍与自拍| 韩国高清视频一区二区三区| 亚洲18禁久久av| 黄色一级大片看看| 97精品久久久久久久久久精品| 亚洲国产精品专区欧美| 国产伦一二天堂av在线观看| 日韩亚洲欧美综合| 最新中文字幕久久久久| 国产精品人妻久久久久久| 亚洲欧美清纯卡通| 亚洲欧美日韩无卡精品| 欧美潮喷喷水| videossex国产| 亚洲真实伦在线观看| 国产成人精品一,二区| 女人十人毛片免费观看3o分钟| 91久久精品电影网| 久久精品国产亚洲av天美| 国产精品爽爽va在线观看网站| 夜夜看夜夜爽夜夜摸| 特大巨黑吊av在线直播| 一级毛片电影观看| 夜夜看夜夜爽夜夜摸| 亚洲国产成人一精品久久久| 亚洲精品国产成人久久av| 在线天堂最新版资源| 亚洲精品456在线播放app| 国产精品三级大全| 老司机影院毛片| 简卡轻食公司| 亚洲av男天堂| 亚洲最大成人中文| 97精品久久久久久久久久精品| 日韩大片免费观看网站| 久久久久国产网址| 国产精品一区www在线观看| 精品久久久久久电影网| 亚洲无线观看免费| 中文乱码字字幕精品一区二区三区 | 韩国av在线不卡| 97超视频在线观看视频| 少妇高潮的动态图| 秋霞在线观看毛片| 欧美精品国产亚洲| 三级男女做爰猛烈吃奶摸视频| 婷婷色av中文字幕| 久久精品综合一区二区三区| 肉色欧美久久久久久久蜜桃 | 久久99热这里只有精品18|