• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ADDITIVE MAPPINGS PRESERVING FREDHOLM OPERATORS WITH FIXED NULLITY OR DEFECT?

    2021-10-28 05:45:02RuihanZHANG張芮涵WeijuanSHI史維娟GuoxingJI吉國興

    Ruihan ZHANG(張芮涵)Weijuan SHI(史維娟) Guoxing JI(吉國興)

    School of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710119,China

    E-mail:ruihan@snnu.edu.cn;shiweijuan1016@163.com;gxji@snnu.edu.cn

    Abstract Let X be an in finite-dimensional real or complex Banach space,and B(X)the Banach algebra of all bounded linear operators on X.In this paper,given any non-negative integer n,we characterize the surjective additive maps on B(X)preserving Fredholm operators with fixed nullity or defect equal to n in both directions,and describe completely the structure of these maps.

    Key words Fredholm operator;additive preserver;nullity;defect

    1 Introduction

    Linear or additive preserver problems aim to characterize linear or non-linear maps on operator algebras preserving certain properties,subsets or relations.For excellent expositions on these problems,we refer the interested reader to[1–10]and the references therein.One of the most famous problems in this direction is Kaplansky’s problem[11],which asks whether every surjective unital invertibility preserving linear map between two semi-simple Banach algebras is a Jordan homomorphism.This problem was solved in some special cases of semi-simple Banach algebras.Several authors have studied linear maps which preserve the class of semi-Fredholm operators,Fredholm operators and the related operators in both directions([8,9,12–15]).It has been shown that such maps preserve the ideal of compact operators in both directions,and that the maps induced by them on the Calkin algebra are Jordan automorphisms.In[13],the authors characterized additive maps on B(X)preserving Drazin invertible operators of index n.It was shown in[14]that given an interger n≥1,if the surjective additive map Φ:B(X)→B(X)preserves the set of semi-Fredholm operators on X of non-positive index and a dimension of the kernel less than n,then Φ(T)=UTV for all T or Φ(T)=UTV for all T,where U and V are two bijective bounded linear,or conjugate linear,mappings between suitable spaces.On the other hand,it is known that the nullity and defect of an operator are fundamental and key aspects of the Fredholm theory.In this paper,combining Fredholm operators with the nullity and defect,we consider surjective additive maps that preserve the class of Fredholm operators with fixed nullity or defect,and give a complete description of these maps.

    Throughout this paper,X(resp.Y)denotes an in finite-dimensional Banach space over K=R or C.Let B(X)be the algebra of all bounded linear operators acting on X,and let Xbe the dual space of X.For an operator T,we denote the kernel and range of T by ker(T)and ran(T),respectively.We write Tfor its adjoint on the topological dual space X.Recall that an operator T is called semi-Fredholm if ran(T)is closed and either dimker(T)or codim ran(T)is finite.For such an operator T,if ran(T)is closed and dimker(T)<∞as well as codim ran(T)<∞,then T is said to be Fredholm.For a Fredholm operator T,the dimension of its kernel is said to be the nullity of T,and the codimension of its range is said to be the defect of T.

    Given any integer n≥0,we introduce the class of Fredholm operators with fixed nullity or defect:

    Denote by S(X)(resp.S(Y)),or S without any confusion,any one of the sets A(X)(resp.A(Y))or Q(X)(resp.Q(Y)).We shall say that a surjective map ?:B(X)→B(Y)preserves S in both directions if ?(T)∈S(Y)?T∈S(X).

    In this paper,we will provide a detailed characterization of a surjective additive map ? on B(X)preserving A(X)(resp.Q(X))in both directions.

    2 Main Results

    In this section,let S(X)be any one of the sets A(X)or Q(X).As usual,let x∈X and f∈Xbe nonzero.We denote by x?f the bounded linear rank one operator de fined by(x?f)z=f(z)x for all z∈X.Now,we give our main results.

    Theorem 2.1

    Let ?:B(X)→B(Y)be a surjective additive map and let n be a nonnegative integer.Then ? preserves S in both directions if and only if one of the following assertions holds:

    (i)there exist two bijective bounded linear or conjugate linear mappings A:X→Y and B:Y→X such that ?(T)=ATB for all T∈B(X);

    (ii)there exist two bijective bounded linear or conjugate linear mappings C:X→Y and D:Y→Xsuch that ?(T)=CTD for all T∈B(X).In this case,X and Y are re flexive,and every Fredholm operator on X has index 0.

    Note that the second case may occur.For example,Argyros and Haydon[16]have shown that there exists an in finite-dimensional Banach space X such that every operator T∈B(X)can be written as λI+K where λ is a scalar and K is a compact operator.Clearly,in such spaces,the additive map ?(T)=CTD preserves S in both directions.

    The proof of this theorem requires some auxiliary results which will be given at the end of this section.We establish these useful results as follows:

    Proposition 2.2

    Let T∈S(X)and F be a rank one operator such that T+F∈S(X).Then either T+2F∈S(X)or T?2F∈S(X).

    Proof

    Note that T is Fredholm,since T∈S(X);as such,so are T+F,T+2F and T?2F.

    (i)Suppose that T∈A(X).Note that F is a rank one operator.We know,by[17,Lemma 5],that the map λ→dimker(T+λF)is constant on Q minus at most one point.Since

    we obtain that

    It follows that either T+F∈A(X)or T+2F∈A(X).

    (ii)Suppose that T∈Q(X).We have,again by[17,Lemma 5],that the map λ→codim ran(T+λF)is constant on Q minus at most one point.Since

    we obtain

    Hence,T+2F∈Q(X)or T?2F∈Q(X).

    Recall that an operator is said to be Weyl if it is Fredholm of index zero.The following proposition can help us to establish that every surjective additive map ? preserving S in both directions is bijective and preserves rank one operators in both directions:

    Proposition 2.3

    Let T∈B(X)be a non-zero operator.Then the following assertions hold:

    (i)there exists a Weyl operator S∈S(X)such that S+2T/∈S(X);

    (ii)if dim ran(T)≥2,then there exists a Weyl operator S∈S(X)such that S+T∈S(X),S+2T/∈S(X)and S?2T/∈S(X).

    Proof

    First,suppose that ran(T)is in finite dimensional.Then codimker(T)=∞.Let x(1≤i≤2n)and y(1≤k≤2n+2)be linearly independent vectors such that the subspace generated by these vectors has trivial intersection with ker(T).It follows that the vectors Tx(1≤i≤2n)and Ty(1≤k≤2n+2)are linearly independent.Take two closed subspaces H and K of X such that

    Under the above space decomposition,the operator T can be expressed as

    where T∈B(M,N),T∈B(H,N)and T∈B(H,K).Since dimM=dimN<∞,it follows that there exists a bounded linear invertible operator U∈B(K,H).In fact,let L=span{x,Tx,y,Ty:1≤i≤2n,1≤k≤2n+2}and select E?X so that X=L⊕E.The subspace L may in turn be written as L=M⊕Mand L=N⊕N.Since L is finite-dimensional with M and N having the same dimension,it follows that the two finite-dimensional subspaces Mand Nalso have the same dimension.Then there must exist an invertible map Umapping Nonto M.Note that the subspaces K and H can be written as K=N⊕E and H=M⊕E.With respect to this decomposition,we de fine an invertible operator U:K→H as follows:

    Thus UT∈B(H).Take a λ∈C such that both λI+UTand λI±2UTare invertible.We have that both λU+Tand λU±2Tare invertible.Consider an operator S∈B(X)represented as

    where

    and S=λU.Note that Sis of finite rank and dimker(S)=codim ran(S)=n.Combining this with the invertibility of S,we get that S is Fredholm and dimker(S)=codim ran(S)=n.It follows that S is a Weyl operator and that S∈A(X)∩Q(X).Note that

    Because of the invertibility of λU+Tand λU±2T,it is known that dimker(S+T)=dimker(S+T)=n and dimker(S±2T)=dimker(S±2T)=n+1.Since

    These mean that S+T∈S and S±2T/∈S.

    Now,suppose that T is of finite rank and put

    If dim ran(T)≥2,then dimM≥2.Note that the two finite-dimensional subspaces M and dim ran(T)have the same dimension.Let M=span{x,x,···,x}.It follows that ran(T)=span{Tx,Tx,···,Tx}.With respect to the above space decomposition,the operator T is expressed in the following form:

    where Tx=Tx,1≤i≤k.

    Put

    where Sx=2Tx,Sx=?2Tx,Sx=Tx,3≤i≤k if k>2;S:ker(T)→N is Fredholm with dimker(S)=codim ran(S)=n.Note that the subspaces ker(T)and N can be written as ker(T)= J⊕Jand N= Q⊕Q,where the subspaces J and Q are n-dimensional subspaces,respectively.Using a similar argument as to that for the existence of the invertible operators U,we obtain invertible operators U:J→Q.According to the above decomposition,we de fine an invertible operator S:ker(T)→N as follows:

    Therefore dim ker(S)=codim ran(S)=n.It follows that S is a Weyl operator and S∈A(X)∩Q(X)again.Note that(S+2T)x=0 and(S?2T)x=0.We have that x∈ker(S+2T),x∈ker(S?2T)and S+Tis invertible.Hence,

    Finally,we can get that S+T∈S and S±2T/∈S.This completes the proof of(ii).

    If dimran(T)=1,then codimker(T)=1.Under the space decomposition(2.1),we have dimM=1.Thus we can find an invertible operator S:M→ran(T)the same as before.T is similarly expressed in the following form:

    where Tx=Tx,x∈M.

    We again de fine an operator S as

    where Sx=?2Txand S:ker(T)→N is a Fredholm operator and

    Therefore,dimker(S)=codim ran(S)=n.This also implies that S is a Weyl operator and S∈A(X)∩Q(X).Note that x∈ker(S+2T).Then

    Hence,

    Therefore,S+2T/∈S.This completes the proof of(i).

    Proposition 2.4

    Let ?:B(X)→B(Y)be a surjective additive map that preserves S in both directions.Then

    (i)? is injective;

    (ii)? preserves the set of rank one operators in both directions.

    (ii)Let T∈B(X)with dim ran(T)≥2.Then it follows again by Proposition 2.3 that there exists an operator S∈S such that

    Thus

    Therefore,we obtain by Proposition 2.2 that dim ran(?(T))≥2.Since ? is bijective and ?satis fies the same properties as ?,we obtain that ? preserves the set of rank one operators in both directions.

    Let τ be a ring automorphism of K.An additive map A:X→Y is said to be τ-quasilinear if A(λx)=τ(λ)Ax for all λ∈K and x∈X.Notice that in the real case,all the quasilinear maps are linear because the identity is the only ring automorphism of R,while in the complex case,the continuous ring automorphisms are the identity and the complex conjugation.

    The following corollary is a straightforward consequence of Proposition 2.4(ii)and[18,Theorems 3.1 and 3.3]:

    Corollary 2.5

    Let ?:B(X)→B(Y)be a surjective additive map which preserves S in both directions.Then there exist a ring automorphism τ and either τ-quasilinear bijective mappings W:X→Y and G:X→Ysuch that

    or τ-quasilinear bijective mappings W:X→Yand G:X→Y such that

    Before giving the proof of the next proposition,we shall first denote by F(X)the set of all operators F∈B(X)with dim ran(F)

    Proposition 2.6

    Let ?:B(X)→B(Y)be a surjective additive map which preserves S in both directions.Then ?(I)is invertible.

    Proof

    Set S=?(I).We begin by proving that S+F/∈S for every F∈F(Y).From Corollary 2.5,we know that,for every F∈F(Y),there exists K∈F(X)such that ?(K)=F.Since

    we get that S+F=?(I+K)/∈A(X).Because I+K is Fredholm and

    we similarly obtain that S+F=?(I+K)/∈Q(X).Thus S+F/∈S.

    Next we prove that S is Fredholm.Firstly note that for every rank n idempotent operator P,I?P is Fredholm and

    It follows,by Corollary 2.5,that I?P∈S and that ?(P)is still a rank n operator.Thus S??(P)=?(I?P)∈S.This implies that S??(P)is Fredholm.Note that a finite rank perturbation of Fredholm operator is again a Fredholm operator.Then S is Fredholm.

    Suppose that S is A(X).If ? preserves A(X)in both directions,we show that S is invertible.Now,we claim that S is injective.Suppose,to the contrary,that S is not injective.We shall discuss three cases.

    Case 1

    0Let x(1≤i≤k)be linearly independent vectors,and then put

    where k

    We de fine an operator F∈B(X)by

    Clearly,F∈F(X).We also have dimker(S+F)=n.Because S is a Fredholm operator,it follows that S+F is Fredholm.Therefore S+F∈A(X),which is a contradiction.

    Case 2

    dimker(S)>n.

    For every rank n idempotent operator P,we have that ?(P)is a rank n operator and dimker(S??(P))=n.For every rank one operator x?f,x∈X and f∈X,by Corollary 2.5,there exist a ring automorphism τ and either τ-quasilinear bijective mappings W:X→Y and G:X→Ysuch that ?(x?f)=Wx?Gf or τ-quasilinear bijective mappings W:X→Yand G:X→Y such that ?(x?f)=Gf?Wx.

    Suppose that ?(x?f)=Wx?Gf.Since S is Fredholm,we have dimker(S)<∞.Denote

    where W:X→Y,G:X→Yare τ-quasilinear bijective mappings,and ran ?(P)=span{Wx,Wx,···,Wx}.Clearly,?(P)|=0.Then,for every y∈ker(S),we have(S??(P))y=0.Note that dimker(S)>n.Then dimker(S??(P))>n,which is the desired contradiction.

    Suppose that ?(x?f)=Gf?Wx.Then,using a similar argument,we again get a contradiction.

    Case 3

    dimker(S)=n.

    This means that S∈A(X),whence I∈A(X),which is a contradiction.

    Therefore,S is injective.Next we will prove that S is surjective.

    Now suppose that S is Q(X).If ? preserves Q(X)in both directions,since S is Fredholm,we have that Sis Fredholm.Noting that codim ran(S??(P))=dimker(S??(P)),it follows that dimker(S??(P))=n for every rank n idempotent operator P.From a similar discussion to that in the above case,we get the invertibility of the operator S.That is to say,S is invertible.

    Therefore,?(I)is invertible.

    Proof of Theorem 2.1

    The“if”part is obvious.To check the“only if”part,assume that ? preserves S in both directions.Let A∈B(X)be invertible and put ψ(T)=?(AT)for all T∈B(X).It is clear that ψ has the same properties as ?.Therefore,by Proposition 2.6,ψ(I)is invertible,that is,?(A)is invertible.Thus ? preserves the set of invertible operators.Moreover,?preserves S.Then ? preserves the set of invertible operators in both directions.

    Case 1

    K=C.Let Γ(T)=(?(I))?(T)for all T∈B(X).Then Γ is a surjective additive map that preserves the invertibility of the elements in the both directions and satis fies Γ(I)=I.Therefore,by[1,Theorem 3.2],either there exists an invertible bounded linear or conjugate linear operator U:X→Y such that Γ(T)=UTUfor all T∈B(X),or there exists an invertible bounded linear or conjugate linear operator U:X→Y such that Γ(T)=UTUfor all T∈B(X),and the latter case occurs only if X and Y are re flexive.In the first case we set A=?(I)U and B=U;in the latter case we set C=?(I)U and D=U.

    Case 2

    K=R.In this case,[18,Theorem 3.1]ensures that the operators A,C in Corollary 2.5 are linear.The same proof as to that of[19,Theorem 1.1]shows that either there exist two bijective bounded linear operators U and V such that ?(T)=ATB for all T∈B(X),or there exist two bijective bounded linear operators C and D such that ?(T)=CTD for all T∈B(X).

    麻豆精品久久久久久蜜桃| 高清午夜精品一区二区三区| 免费av毛片视频| 免费看美女性在线毛片视频| 日本黄色片子视频| 亚洲无线观看免费| 国产av在哪里看| 亚洲精品乱久久久久久| 99久国产av精品国产电影| 成人亚洲精品av一区二区| 亚洲,欧美,日韩| 国产精品综合久久久久久久免费| 国产高清视频在线观看网站| 久久久色成人| 99热这里只有是精品50| 国产免费福利视频在线观看| 长腿黑丝高跟| 日韩 亚洲 欧美在线| 国产成人a区在线观看| 夫妻性生交免费视频一级片| 亚洲一级一片aⅴ在线观看| 丝袜美腿在线中文| 国产av一区在线观看免费| www.av在线官网国产| 2021天堂中文幕一二区在线观| 久久精品综合一区二区三区| 精品无人区乱码1区二区| 国产欧美日韩精品一区二区| 欧美又色又爽又黄视频| 免费大片18禁| 国产精品国产三级国产专区5o | 亚洲av成人精品一二三区| 最近中文字幕高清免费大全6| 韩国av在线不卡| 国产精品蜜桃在线观看| 成人午夜精彩视频在线观看| 你懂的网址亚洲精品在线观看 | 91精品国产九色| 高清视频免费观看一区二区 | 久久久精品欧美日韩精品| 乱系列少妇在线播放| 大又大粗又爽又黄少妇毛片口| 你懂的网址亚洲精品在线观看 | 国产激情偷乱视频一区二区| 日本五十路高清| 成年女人永久免费观看视频| 99热全是精品| 日本熟妇午夜| 99久久精品热视频| 插阴视频在线观看视频| 啦啦啦观看免费观看视频高清| 日本黄色视频三级网站网址| 国产一区二区在线av高清观看| 麻豆成人午夜福利视频| 亚洲欧美成人精品一区二区| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 18禁动态无遮挡网站| 国产午夜精品论理片| 欧美变态另类bdsm刘玥| 久久99精品国语久久久| 嫩草影院精品99| 久久久久性生活片| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| 91在线精品国自产拍蜜月| 一级av片app| 内射极品少妇av片p| 精品人妻视频免费看| 久久久久久大精品| 国产视频内射| 91狼人影院| 国产精品福利在线免费观看| 日韩成人av中文字幕在线观看| 国产精品伦人一区二区| 免费看光身美女| 少妇丰满av| av在线播放精品| 女人被狂操c到高潮| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看| 日本av手机在线免费观看| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| ponron亚洲| 久久久久久大精品| 51国产日韩欧美| 一级毛片aaaaaa免费看小| 国产精品综合久久久久久久免费| 成人漫画全彩无遮挡| 干丝袜人妻中文字幕| 国产成人一区二区在线| 国产亚洲5aaaaa淫片| 日韩精品有码人妻一区| 激情 狠狠 欧美| a级毛色黄片| 亚洲性久久影院| 少妇人妻一区二区三区视频| 能在线免费看毛片的网站| 老女人水多毛片| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 免费在线观看成人毛片| 特级一级黄色大片| 国产私拍福利视频在线观看| 在线免费十八禁| 亚洲人成网站在线观看播放| 五月伊人婷婷丁香| 国产亚洲av嫩草精品影院| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 久久综合国产亚洲精品| 国产精品伦人一区二区| 熟女电影av网| 国产精品爽爽va在线观看网站| 干丝袜人妻中文字幕| 亚洲最大成人中文| 久久这里只有精品中国| 能在线免费观看的黄片| 特级一级黄色大片| 日韩欧美三级三区| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 国产成人91sexporn| 春色校园在线视频观看| 99久久精品一区二区三区| 国产三级在线视频| 能在线免费看毛片的网站| 啦啦啦观看免费观看视频高清| 久久精品人妻少妇| 免费搜索国产男女视频| 可以在线观看毛片的网站| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 99久久精品热视频| 精品无人区乱码1区二区| 日韩国内少妇激情av| 成人国产麻豆网| 春色校园在线视频观看| 欧美人与善性xxx| 久久这里只有精品中国| 热99re8久久精品国产| 欧美激情国产日韩精品一区| 精品一区二区免费观看| 三级毛片av免费| 国产伦在线观看视频一区| 色噜噜av男人的天堂激情| 日本一二三区视频观看| 美女被艹到高潮喷水动态| 男人舔奶头视频| 日韩成人av中文字幕在线观看| 日本黄色片子视频| 国产亚洲精品av在线| 国产一区二区在线观看日韩| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 久久热精品热| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| www日本黄色视频网| 色播亚洲综合网| 国产精品麻豆人妻色哟哟久久 | 亚洲欧洲日产国产| 日本三级黄在线观看| 国产女主播在线喷水免费视频网站 | 日韩欧美三级三区| 久久精品夜色国产| 高清视频免费观看一区二区 | 最后的刺客免费高清国语| 最近最新中文字幕大全电影3| 日韩,欧美,国产一区二区三区 | 国产中年淑女户外野战色| 国产激情偷乱视频一区二区| 午夜福利高清视频| 精品久久国产蜜桃| 91精品国产九色| 亚洲中文字幕日韩| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 久久久亚洲精品成人影院| 美女xxoo啪啪120秒动态图| 国产在线一区二区三区精 | 最后的刺客免费高清国语| 麻豆一二三区av精品| 欧美日韩精品成人综合77777| 一本久久精品| 成人高潮视频无遮挡免费网站| 我的女老师完整版在线观看| 久久精品国产99精品国产亚洲性色| 三级男女做爰猛烈吃奶摸视频| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 日韩精品青青久久久久久| 日日摸夜夜添夜夜爱| 久久久精品大字幕| 黄片无遮挡物在线观看| 最后的刺客免费高清国语| 亚洲av电影在线观看一区二区三区 | 校园人妻丝袜中文字幕| 免费一级毛片在线播放高清视频| 亚洲伊人久久精品综合 | 成年女人看的毛片在线观看| 日本爱情动作片www.在线观看| 别揉我奶头 嗯啊视频| 91久久精品电影网| 久久久久九九精品影院| 大香蕉久久网| 欧美性猛交╳xxx乱大交人| 国产在视频线在精品| 午夜福利在线在线| 中文乱码字字幕精品一区二区三区 | 国产精品99久久久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 欧美另类亚洲清纯唯美| 午夜福利在线在线| 国产精品久久久久久精品电影小说 | 国产av不卡久久| 国产精品美女特级片免费视频播放器| 在线观看66精品国产| 中文字幕熟女人妻在线| 青春草视频在线免费观看| 久久国产乱子免费精品| 国产麻豆成人av免费视频| 国产精品一区二区在线观看99 | 欧美成人a在线观看| 秋霞伦理黄片| 亚洲精品乱久久久久久| 亚洲图色成人| 成人三级黄色视频| 午夜激情福利司机影院| 国产成人精品久久久久久| 国产黄色小视频在线观看| 亚洲在线观看片| 日本午夜av视频| 国产人妻一区二区三区在| 色综合色国产| 舔av片在线| 真实男女啪啪啪动态图| 亚洲av成人精品一二三区| 久久精品国产亚洲网站| 22中文网久久字幕| 99久久精品国产国产毛片| 少妇熟女aⅴ在线视频| 有码 亚洲区| 亚洲精品一区蜜桃| 黄片wwwwww| 国产精品一区www在线观看| 成年版毛片免费区| 综合色丁香网| 亚洲国产日韩欧美精品在线观看| 变态另类丝袜制服| 观看免费一级毛片| av国产免费在线观看| 在线免费十八禁| av天堂中文字幕网| 免费搜索国产男女视频| 亚洲欧美日韩东京热| 精品久久久久久久久av| 十八禁国产超污无遮挡网站| 免费播放大片免费观看视频在线观看 | 精品久久久噜噜| 边亲边吃奶的免费视频| 嫩草影院精品99| 高清在线视频一区二区三区 | 少妇人妻精品综合一区二区| 免费观看在线日韩| 国语对白做爰xxxⅹ性视频网站| 伊人久久精品亚洲午夜| 一级二级三级毛片免费看| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 日韩欧美国产在线观看| 亚洲美女视频黄频| 99热这里只有精品一区| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 波多野结衣高清无吗| 免费观看的影片在线观看| 国产毛片a区久久久久| 国产精品爽爽va在线观看网站| 久久久久久久亚洲中文字幕| 日韩大片免费观看网站 | 亚洲精品久久久久久婷婷小说 | 九九在线视频观看精品| 美女内射精品一级片tv| 大香蕉久久网| 成人午夜高清在线视频| 不卡视频在线观看欧美| av在线天堂中文字幕| 国产探花在线观看一区二区| 爱豆传媒免费全集在线观看| 国产又黄又爽又无遮挡在线| 精品久久久久久电影网 | 国产精品人妻久久久影院| 免费黄网站久久成人精品| av播播在线观看一区| 成人av在线播放网站| 精品不卡国产一区二区三区| 18禁在线无遮挡免费观看视频| 欧美+日韩+精品| 欧美性猛交黑人性爽| 又黄又爽又刺激的免费视频.| 久久这里只有精品中国| 久久精品国产亚洲av天美| 深夜a级毛片| 免费在线观看成人毛片| 国产极品天堂在线| 午夜激情福利司机影院| 在线观看av片永久免费下载| 在线免费十八禁| av.在线天堂| 美女内射精品一级片tv| 国产精品一区二区在线观看99 | 国产精品嫩草影院av在线观看| 国产精品1区2区在线观看.| 搡老妇女老女人老熟妇| 亚洲,欧美,日韩| 国产高清国产精品国产三级 | 卡戴珊不雅视频在线播放| 色5月婷婷丁香| 丰满乱子伦码专区| 波多野结衣巨乳人妻| 亚洲av成人av| 老师上课跳d突然被开到最大视频| 亚洲欧洲国产日韩| 国产在线一区二区三区精 | 久久精品久久久久久久性| 日韩一本色道免费dvd| 亚洲国产色片| 久久久久久九九精品二区国产| 亚洲最大成人手机在线| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区在线观看99 | 亚洲国产精品成人久久小说| 国产爱豆传媒在线观看| 国产黄色视频一区二区在线观看 | 国产单亲对白刺激| 久久国产乱子免费精品| 建设人人有责人人尽责人人享有的 | 亚洲国产欧美人成| 午夜视频国产福利| 亚洲最大成人av| 国产在线男女| 亚洲最大成人av| 欧美变态另类bdsm刘玥| 乱人视频在线观看| 色5月婷婷丁香| 舔av片在线| 亚洲精华国产精华液的使用体验| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 日韩欧美在线乱码| 国产精品女同一区二区软件| 国产成人freesex在线| 视频中文字幕在线观看| 九草在线视频观看| 免费搜索国产男女视频| 小说图片视频综合网站| 性色avwww在线观看| 99视频精品全部免费 在线| 成人无遮挡网站| 一级黄色大片毛片| 亚洲四区av| 国产免费福利视频在线观看| 国产精品一区www在线观看| 成人毛片a级毛片在线播放| 一本久久精品| 人妻夜夜爽99麻豆av| 老司机影院成人| 国产午夜福利久久久久久| 99久久精品国产国产毛片| 午夜福利在线观看免费完整高清在| 插阴视频在线观看视频| 三级国产精品欧美在线观看| 简卡轻食公司| 亚洲精品自拍成人| 美女高潮的动态| 深夜a级毛片| 99久国产av精品| 婷婷色综合大香蕉| 久久久久久久久久久丰满| 美女国产视频在线观看| 久久人妻av系列| 亚州av有码| 亚洲在线自拍视频| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 日韩成人伦理影院| 嫩草影院新地址| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 国产老妇女一区| 国语对白做爰xxxⅹ性视频网站| 国产熟女欧美一区二区| 午夜精品在线福利| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 亚洲av成人精品一二三区| 精品久久久久久久久久久久久| 免费av毛片视频| 男女那种视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 精品一区二区三区人妻视频| 欧美xxxx性猛交bbbb| 婷婷色麻豆天堂久久 | www.色视频.com| 又爽又黄a免费视频| 免费不卡的大黄色大毛片视频在线观看 | 免费av观看视频| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 久久午夜福利片| av.在线天堂| 麻豆成人午夜福利视频| 国产亚洲5aaaaa淫片| 国产一级毛片在线| 久久99热这里只有精品18| 国产 一区 欧美 日韩| 中文精品一卡2卡3卡4更新| 一级毛片aaaaaa免费看小| 亚洲精品国产成人久久av| 人人妻人人看人人澡| 我要看日韩黄色一级片| 精品酒店卫生间| 美女内射精品一级片tv| 插逼视频在线观看| 成人av在线播放网站| 91久久精品国产一区二区三区| 中文欧美无线码| 在线观看美女被高潮喷水网站| 天堂av国产一区二区熟女人妻| av天堂中文字幕网| 一夜夜www| 联通29元200g的流量卡| 菩萨蛮人人尽说江南好唐韦庄 | ponron亚洲| 熟女人妻精品中文字幕| 日日啪夜夜撸| 如何舔出高潮| 国产私拍福利视频在线观看| 黄色欧美视频在线观看| 日本黄色视频三级网站网址| 亚洲精品色激情综合| 桃色一区二区三区在线观看| 亚洲成色77777| 一级毛片电影观看 | 国产高清三级在线| 国产一级毛片七仙女欲春2| 五月玫瑰六月丁香| 2021少妇久久久久久久久久久| 亚洲久久久久久中文字幕| 99久久九九国产精品国产免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 观看美女的网站| 国产在视频线在精品| 2021天堂中文幕一二区在线观| 午夜福利视频1000在线观看| 免费看光身美女| av又黄又爽大尺度在线免费看 | 欧美三级亚洲精品| 亚洲人与动物交配视频| 日本色播在线视频| 又爽又黄a免费视频| 国产成人精品婷婷| 国产亚洲精品av在线| 女人十人毛片免费观看3o分钟| 亚洲成人av在线免费| 午夜精品在线福利| av在线观看视频网站免费| 18禁动态无遮挡网站| 亚洲国产精品专区欧美| 国产精品电影一区二区三区| 我要看日韩黄色一级片| 99久久九九国产精品国产免费| 午夜福利视频1000在线观看| 汤姆久久久久久久影院中文字幕 | 亚洲人成网站高清观看| 九九热线精品视视频播放| 久久久久久久久久成人| 最后的刺客免费高清国语| 国产成人精品久久久久久| 久久精品夜色国产| 日韩精品有码人妻一区| 夜夜爽夜夜爽视频| 青青草视频在线视频观看| 国产精品.久久久| 99久久精品国产国产毛片| 日韩精品青青久久久久久| 国产v大片淫在线免费观看| 七月丁香在线播放| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 最近中文字幕2019免费版| 成人性生交大片免费视频hd| 深夜a级毛片| 精品久久久久久久久久久久久| 国产国拍精品亚洲av在线观看| 尾随美女入室| 日韩欧美精品免费久久| 国产乱人视频| 欧美极品一区二区三区四区| 亚洲国产欧洲综合997久久,| 欧美人与善性xxx| 一区二区三区乱码不卡18| 久久久久久九九精品二区国产| 免费看日本二区| 高清日韩中文字幕在线| 国产亚洲精品av在线| 日韩av在线大香蕉| 国内精品美女久久久久久| 国产乱来视频区| 亚洲国产精品sss在线观看| 美女高潮的动态| 亚洲自拍偷在线| 又爽又黄a免费视频| 床上黄色一级片| 一级毛片aaaaaa免费看小| 久久人人爽人人爽人人片va| 国产免费男女视频| 毛片女人毛片| 黄片无遮挡物在线观看| 中文在线观看免费www的网站| 久久久久久大精品| 国产黄片美女视频| 简卡轻食公司| 3wmmmm亚洲av在线观看| 黄色欧美视频在线观看| 两个人视频免费观看高清| 国产午夜福利久久久久久| 女人被狂操c到高潮| 亚洲av免费在线观看| 麻豆成人av视频| 国产精华一区二区三区| 日韩欧美精品v在线| 男女那种视频在线观看| 深爱激情五月婷婷| 国产精品久久久久久久电影| 99热这里只有是精品在线观看| www.色视频.com| 中文字幕av在线有码专区| 卡戴珊不雅视频在线播放| 永久免费av网站大全| 中文字幕亚洲精品专区| 国产一区二区在线av高清观看| 国产精品国产高清国产av| 熟女人妻精品中文字幕| 草草在线视频免费看| 天堂av国产一区二区熟女人妻| 毛片一级片免费看久久久久| 国产乱人视频| av黄色大香蕉| 免费大片18禁| 永久网站在线| 国产精品久久久久久久久免| 高清av免费在线| 国产精品国产高清国产av| 亚洲人与动物交配视频| 久久久久久伊人网av| 国产成人一区二区在线| 国产亚洲av嫩草精品影院| 欧美日韩在线观看h| 国产日韩欧美在线精品| 岛国在线免费视频观看| 国产精品综合久久久久久久免费| 亚洲人成网站在线播| 国产精品日韩av在线免费观看| 亚洲色图av天堂| 国产真实乱freesex| 热99在线观看视频| 91精品一卡2卡3卡4卡| 男插女下体视频免费在线播放| 亚洲精品日韩av片在线观看| 成人综合一区亚洲| 69av精品久久久久久| 国产乱人视频| 国产综合懂色| 午夜亚洲福利在线播放| 一区二区三区高清视频在线| 内地一区二区视频在线| 中文字幕熟女人妻在线| 国产免费福利视频在线观看| 18禁动态无遮挡网站| a级毛片免费高清观看在线播放| .国产精品久久| 日本黄色片子视频| 国产国拍精品亚洲av在线观看| 网址你懂的国产日韩在线| 国产中年淑女户外野战色| 高清日韩中文字幕在线| 国产精品乱码一区二三区的特点| 久99久视频精品免费| 九九久久精品国产亚洲av麻豆| 久久亚洲国产成人精品v| 国产亚洲精品久久久com| 精华霜和精华液先用哪个| 国产激情偷乱视频一区二区| 一区二区三区免费毛片| 亚洲成人精品中文字幕电影| 久久精品熟女亚洲av麻豆精品 | 国产黄色视频一区二区在线观看 | kizo精华| 午夜精品在线福利| 搡女人真爽免费视频火全软件| 欧美日本视频| 好男人在线观看高清免费视频| 午夜a级毛片| 91精品一卡2卡3卡4卡| 中文乱码字字幕精品一区二区三区 |