• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Representations of hypergraph states with neural networks*

    2021-10-12 05:32:22YingYang楊瑩andHuaixinCao曹懷信
    Communications in Theoretical Physics 2021年10期

    Ying Yang (楊瑩)and Huaixin Cao (曹懷信)

    1 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China

    2 School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, China

    Abstract The quantum many-body problem (QMBP) has become a hot topic in high-energy physics and condensed-matter physics.With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP,even with the most powerful computers.With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states.In this paper, we aim to explicitly construct the neural network representations of hypergraph states.We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters.Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355 (2017) 602] and formulated in [Sci.China-Phys.Mech.Astron.63 (2020) 210312].

    Keywords: hypergraph state, neural network quantum state, representation

    1.Introduction

    In quantum physics, fully understanding and characterising a complex system with a large number of interacting particles is an extremely challenging problem.Solutions within the standard framework of quantum mechanics generally require knowledge of the full quantum many-body wave function.Thus, the problem becomes one of how to solve the manybody Schr?dinger equation of a large dimension system.This is just the so-called quantum many-body problem(QMBP)in quantum physics, which has become a hot topic in highenergy physics and condensed-matter physics.When the dimension of the Hilbert space describing the system is exponentially large, it becomes very challenging to solve the QMBP, even with the most powerful computers.

    Many methods have been used to overcome this exponential difficulty and solve the QMBP, including the tensor network method (TNM) [1–3] and quantum Monte Carlo simulation (QMCS) [4].However, the TNM has difficulty dealing with high-dimensional systems [5] or systems with massive entanglement [6]; the QMCS suffers from the sign problem [7].Thus, some new methods of finding the QMBP are required.

    The approximation capabilities of artificial neural networks (ANNWs) have been investigated by many authors,including Cybenko [8], Funahashi [9], Hornik [10, 11],Kolmogorov [12], and Roux [13].It is known that ANNWs can be used in many fields, including the representation of complex correlations in multiple-variable functions or probability distributions [13], the study of artificial intelligence through the popularity of deep learning methods [14],and so on [15–19].

    Undoubtedly, the interaction between machine learning and quantum physics will benefit both fields [20, 21].For instance, in light of the idea of machine learning, Carleo and Troyer [22] found an interesting connection between the variational approach in the QMBP and learning methods based on neural network representations.They used a restricted Boltzmann machine (RBM) to describe a many-body wave function and obtained an efficient variational representation by optimizing those variational parameters with powerful learning methods.Yang et al [23] researched an approximation of an unknown ground state of a given Hamiltonian using neural network quantum states.Numerical evidence suggests that an RBM optimized by the reinforcement learning method can provide a good solution to several QMBPs [24–31].

    However,the solutions obtained are approximate but not exact.To find the exact solution of a QMBP using an ANNW,the authors of[32]introduced neural network quantum states(NNQSs) with general input observables from the mathematical point of view,and found some N-qubit states that can be represented by normalized NNQS, such as all separable pure states, Bell states, and Greenberger-Horne-Zeilinger (GHZ)states.Gao et al [33] showed that every graph state has an RBM representation(RBMR)and gave a simple construction of the RBMR for a graph state.

    Lu et al[19]theoretically proved that every hypergraph state can be represented by an RBM with a {0, 1}input and obtained the RBMRs of 2-and 3-uniform hypergraph states,which are not the NNQS introduced by [22] and formulated in [32].What we care about is whether we can construct a neural network representation of any hypergraph state using the{1,- 1}-input NNQS considered in [22] and [32].

    In this paper, we will aim to explicitly construct the neural network representations of arbitrary hypergraph states.In section 2, some notations and conclusions for NNQS with general input observables will be recalled and some related properties will be proved.In sections 3 and 4, the neural network representations for any k-uniform hypergraph state and any hypergraph state will be constructed, respectively,without stochastic optimization of the network parameters.

    2.Neural network quantum states

    Let us start with a brief introduction to some notations in the neural network architecture introduced by [22] and formulated in [32].

    LetQ1,Q2, … ,Q Nbe N quantum systems with state spaces H1, H2, … ,HNwith dimensions ofd1,d2, … ,d N, respectively.We consider the composite system Q ofQ1,Q2, …,QNwith the state space H ?H1? H2?…?HN.

    It is easy to check that the eigenvalues and corresponding eigenbasis ofS=S1?S2? … ?SNareλ k1λk2…λkN,

    respectively.We write

    which is called an input space.For parameters

    we write Ω =(a,b,W) and

    We then obtain a complex-valued function ΨS,Ω(λ k1,λk2,… ,λkN)of the input variable Lk k…kN12.We call it a neural network quantum wave function (NNQWF).It may be identical to zero.In what follows,we assume that this is not the case,that is, we assume thatfor some input variable Lk1k2…kN.We then define

    which is a nonzero vector(not necessarily normalized)of the Hilbert spaceH.We call it a neural network quantum state(NNQS) induced by the parameter Ω =(a,b,W) and the input observableS=S1?S2? … ?SN(figure 1).

    The NNQWF can be reduced to

    There is a special class of NNQSs; when1 ≤j≤N,we have

    andV(S) = {1 , -1}N.

    In this case, the NNQS (4) becomes This leads to the NNQS introduced in [22] and discussed in[34].We call such an NNQS a spin-z NNQS.

    From the definition of an NNQWF, we can easily obtain the following results.

    Proposition 1.If a hidden-layer neuronhM+1is added into an RBM with NNQWF ΨS,Ω(λ k1,λk2,… ,λkN), then the NNQWF ΨS,Ω′(λ k1,λk2,… ,λkN) of the resulting network reads

    where

    This result can be illustrated by figure 2.

    Figure 2.The network that results from adding a hidden-layer neuronhM +1 into a network with visible layersS1 , S2, …, SN and hidden layersh1 , h2, …, h M.

    Proposition 2.Supposing that ΨS,Ω′(λ k1,λk2,… ,λkN) and ΨS,Ω″(λ k1,λk2,… ,λkN)are two spin-z NNQWFs with the same input observable

    and the individual parameters

    respectively.Then

    where

    3.Neural network representations of k-uniform hypergraph states

    Generally,for a given pure state∣ψ〉 ,if an NNQS ∣ΨS,〉Ωand a normalized constant z exist, such that∣ψ〉 =z∣ΨS,Ω〉, then we say that∣ψ〉 can be represented by the NNQS ∣ΨS,〉Ω.The authors of [32] found some N-qubit states that can be represented by a normalized NNQS, such as all separable pure states, Bell states, and GHZ states.It was proved in [33] and[19] that all graph states and all hypergraph states can be represented by an RBM with a {0, 1}input.

    In this section, we aim to construct a neural network representation of any k-uniform hypergraph state by using {1, ?1}-input NNQS given by [22], rather than {0, 1}-input NNQS.

    To do this,let us start by briefly recalling the definition of the k-uniform hypergraph state, which is an extension of the concept of graph state.A k-uniform hypergraph[35]is a pairGk=(V,E) consisting of a setV= {1 , 2,… ,N} and a nonempty set E of some k-element subsets of V.The elements of V and E are called the vertices and k-hyperedges of Gk,respectively.Whene= (i1,i2,… ,i k) ∈E, we say that the verticesi1,i2, … ,i kare connected by e.

    Thus, a graph in the common sense is just a 2-uniform hypergraph.

    Given a k-uniform hypergraphGk=(V,E), the k-uniform hypergraph state∣Gk〉was defined in [35], as follows:

    where

    In fact,

    for allj1,j2,… ,jN=0, 1.Thus,

    for allj1,j2,… ,jN=0, 1.

    Here, we try to construct neural network representations for any k-uniform hypergraph state∣Gk〉, that is to fnid an NNQS∣ΨS,Ω〉such that ∣Gk〉 =z∣ΨS,Ω〉for some normalized constant z.

    First, we reduce equation (8) for a k-uniform hypergraph state by the next procedure.

    Since

    we see from (9) that

    Given that

    we obtain

    where

    Figure 3.A 3-uniform hypergraph with four vertices.

    In addition, using this simplification equation (10), the k-uniform hypergraph state obtained is similar to a spin-z NNQS equation (7), which sets the stage for our followup work.

    Besides, the wave function of the k-uniform hypergraph state∣Gk〉is given by (11).By writing

    where

    we get

    Next, we try to construct an NNQWFΨS,Ω(λj1,λj2, … ,λjN), such that

    for some constant z, where

    Case 1.k = 1.LetE= {(m1) , (m2), … ,(ms)},∣E∣=s.From the discussion above, we can easily find that the wave function of the 1-uniform hypergraph state∣G〉1is

    Let Ω1=(a,b,W), where

    The NNQWF with these parameters then reads

    and so

    This implies that any 1-uniform hypergraph state∣G〉1can be represented by a spin-z NNQS.

    To construct the NNQWF ΨS,Ω(λ k1,λk2,… ,λkN) ,we first represent the function

    as some small NNQWFs for each (i1,i2,… ,i k) ∈E, and then proceed to construct the NNQWF that we needed.

    Step 1.Noting that

    we first write each factor

    as an NNQWF.To do this, form= 2, 3,… ,k-1 andwe write

    where

    This shows that

    for anym= 2, 3,… ,k-1.This implies that the function

    Step 2.To represent

    as an NNQWF for each (i1,i2,… ,i k) ∈E, we write

    where

    This implies that

    Step 3.Furthermore, using equations (15) and (16), the right-hand side of equation (14) becomes

    To label the elements of E, we write

    Whenet= (i1,i2,… ,ik), we let

    and label the set

    as

    wherep= 1, 2;q= 1, 2,… ,kand define

    and let

    Using proposition 2, we have

    for everyet= (i1,i2,… ,ik).

    Step 4.Furthermore, we let

    forp= 1, 2;q= 1, 2,… ,N, and

    fort= 1, 2,… , ∣E∣ ,s= 1, 2,… ,2k-k-1.We write

    and

    Using proposition 2, we obtain:

    Let

    Using equations (17) and (19) then yields that

    We have constructed now an NNQWF ΨS,Ω(λj1,λj2,… ,λjN) that satisfies equation (14).This leads to the following conclusion.

    Theorem 1.Any k-uniform hypergraph state∣Gk〉can be represented by a spin-z NNQS (7) given a neural network with a{1,- 1}input.

    Example 1.Consider a hypergraph G with three vertices and a 3-hyperedgee1=(1 , 2, 3)which is represented by the lefthand side of figure 4.In this case, the wave function of the 3-uniform hypergraph state ∣G〉 reads

    Figure 4.Neural network representation of the hypergraph state which corresponds to a hypergraph consisting of three vertices 1, 2, 3, Si =i =1, 2, 3.

    which is a constant multiple of the NNQWF

    with the parameter Ω1=(a1,b1,W1) where

    That is,

    where

    The neural network that generatesis given on the right-hand side of figure 4.

    Example 2.Neural network representation of k-uniform hypergraph state corresponding to a given k-uniform hypergraph.The representation process is shown in figure 5 below.In this case, the parameters are

    wherex=y= arctan,

    with

    Figure 5.Neural network representation of k-uniform hypergraph states.The first figure is a hypergraph representation of a 3-uniform hypergraph state.The second one i s an idea of the process;it shows a neural network representation of the 3-uniform hypergraph state,where E ={(1 , 2, 3) , (2 , 3, 4)}, Si =i = 1,… ,8.

    Remark 1.We see from Example 1 and Example 2 that the number of visible-layer neurons is equal to the number of vertices of the k-uniform hypergraph, and the number of hidden-layer neurons is ∣E∣ (2k+1- 2k-2).This is a general rule for the neural network representation of any k-uniform hypergraph state.

    4.Neural network representations of hypergraph states

    A hypergraph is a generalization of the concept of a k-uniform hypergraph state, defined as follows.

    A hypergraph [35] is a pairG=(V,E) consisting of a setV= {1 , 2,… ,N} and a nonempty set E of subsets of V.The elements of V and E are called the vertices and hyperedges of G,respectively.Whene= (i1,i2,… ,i k) ∈E,we say that the verticesi1,i2, … ,i kare connected by e.Hence, E is a set of any k-hyperedges, where k is no longer fixed but may range from 1 to N.

    Given a mathematical hypergraphG=(V,E) [35], one can construct the corresponding hypergraph state as follows[35]:

    where

    Here, we try to construct neural network representations for any hypergraph state ∣G〉 , that is, we try to find an NNQS∣ΨS,Ω〉such that ∣G〉 =z∣ΨS,Ω〉for some normalized constant z.

    At first,we reduce equation(20)for the hypergraph state using equation (11) and obtain that

    whereλji1,… ,λji1, ∣ψj1〉 ,… , ∣ψjN〉,are shown in equation (6).We see that the simplified equation(21)is simpler and easier to use.Given a hypergraph, we can use this expression to obtain a hypergraph state associated with it very quickly.For example, for the hypergraph in figure 6, the corresponding hypergraph state is

    Figure 6.A hypergraph.

    In addition,through this simplification equation(21),the hypergraph state obtained is similar to the spin-z NNQS equation, (7), which sets the stage for our follow-up work.

    Besides, we can obtain that the wave function of hypergraph state ∣G〉 is

    Next, we try to construct an NNQWFλjN), such that

    for some constant z.

    When k = 1, we let

    We can then see from section 3 that

    When k = 2,…,N, we let

    i.e.Ekis the set of superedges of k vertices.Using equations (12), (14), (17) and (19), we then find that a parameter Ωk=(ak,bk,Wk) exists, such that

    where∣Ek∣is the cardinality of the set Ek.

    Furthermore, we have

    Using proposition 2,we can obtain that there exists a set of parameters Ω, such that

    Put

    thus

    This leads to the following conclusion.

    Theorem 2.Any hypergraph state can be represented as a spin-z NNQS (7) given a neural network with a{1,- 1}input.

    5.Conclusions

    In this paper, we have constructed a neural network representation for any hypergraph state.Our method constructively shows that all hypergraph states can be precisely represented by appropriate neural networks as proposed in [Science 355(2017) 602] and formulated in [Sci.China-Phys.Mech.Astron.63(2020) 210312].The results obtained will provide a theoretical foundation for seeking approximate representations of hypergraph states and solving the quantum manybody problem using machine-learning methods.

    ORCID iDs

    男人舔女人的私密视频| 久久精品91无色码中文字幕| 亚洲成a人片在线一区二区| 国内精品久久久久精免费| 曰老女人黄片| 欧美在线黄色| 最近最新中文字幕大全免费视频| 欧美中文日本在线观看视频| 啦啦啦韩国在线观看视频| 国产精品免费视频内射| 午夜a级毛片| 欧美激情高清一区二区三区| 99热6这里只有精品| 亚洲天堂国产精品一区在线| 国产精品99久久99久久久不卡| 亚洲自拍偷在线| 啦啦啦 在线观看视频| 精品久久久久久久末码| 熟女少妇亚洲综合色aaa.| 成人欧美大片| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 1024手机看黄色片| 精品第一国产精品| 日韩精品中文字幕看吧| 亚洲片人在线观看| 在线观看午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 白带黄色成豆腐渣| 久久99热这里只有精品18| 天天添夜夜摸| 丝袜美腿诱惑在线| 999精品在线视频| 一边摸一边做爽爽视频免费| 国内少妇人妻偷人精品xxx网站 | 欧美黄色淫秽网站| 成人手机av| 日韩av在线大香蕉| 亚洲aⅴ乱码一区二区在线播放 | 成人手机av| 后天国语完整版免费观看| av福利片在线| 亚洲成国产人片在线观看| 亚洲一区高清亚洲精品| 在线看三级毛片| 成人亚洲精品av一区二区| 男女那种视频在线观看| 精品久久久久久久久久免费视频| 亚洲中文日韩欧美视频| 香蕉久久夜色| 亚洲一区二区三区不卡视频| 日韩国内少妇激情av| 午夜激情av网站| 国产亚洲精品久久久久久毛片| 丝袜在线中文字幕| 黄色 视频免费看| 中文亚洲av片在线观看爽| 国产亚洲av高清不卡| 国产午夜福利久久久久久| 亚洲精品国产区一区二| 国产av在哪里看| 欧美在线黄色| 男人舔女人下体高潮全视频| 国产精品久久久久久精品电影 | 精品久久久久久久久久免费视频| 可以在线观看毛片的网站| 国产激情偷乱视频一区二区| 精品久久久久久久人妻蜜臀av| 好看av亚洲va欧美ⅴa在| 一二三四在线观看免费中文在| 麻豆成人av在线观看| 亚洲中文日韩欧美视频| 搞女人的毛片| 熟女电影av网| 成人av一区二区三区在线看| 亚洲美女黄片视频| 在线永久观看黄色视频| 黄色女人牲交| 19禁男女啪啪无遮挡网站| cao死你这个sao货| 母亲3免费完整高清在线观看| 91国产中文字幕| 久99久视频精品免费| e午夜精品久久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁黄网站禁片午夜丰满| 久久久国产成人精品二区| 日本撒尿小便嘘嘘汇集6| 狂野欧美激情性xxxx| 美女扒开内裤让男人捅视频| 欧美国产日韩亚洲一区| 丁香六月欧美| 一本大道久久a久久精品| 亚洲成人免费电影在线观看| 国产精品综合久久久久久久免费| 久久久久亚洲av毛片大全| 在线观看一区二区三区| 成人亚洲精品一区在线观看| 丝袜人妻中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲一区高清亚洲精品| 黄片播放在线免费| 在线十欧美十亚洲十日本专区| 国产乱人伦免费视频| ponron亚洲| 一区福利在线观看| 亚洲熟妇熟女久久| 免费搜索国产男女视频| 国产精品美女特级片免费视频播放器 | 91麻豆av在线| 亚洲在线自拍视频| 美国免费a级毛片| 欧美三级亚洲精品| 亚洲欧美日韩无卡精品| 国产蜜桃级精品一区二区三区| 天堂√8在线中文| 18禁美女被吸乳视频| a级毛片在线看网站| 欧美黑人巨大hd| 欧美黄色淫秽网站| 黄色丝袜av网址大全| 淫妇啪啪啪对白视频| 黑人操中国人逼视频| 999久久久精品免费观看国产| 国产av在哪里看| 99精品欧美一区二区三区四区| 国产av不卡久久| 一个人观看的视频www高清免费观看 | 婷婷丁香在线五月| 日本一本二区三区精品| 男女之事视频高清在线观看| 丝袜人妻中文字幕| 精品无人区乱码1区二区| e午夜精品久久久久久久| 亚洲一区高清亚洲精品| 亚洲第一电影网av| 亚洲av成人一区二区三| 久久国产精品影院| 亚洲成人久久性| 国内揄拍国产精品人妻在线 | 亚洲性夜色夜夜综合| 精品久久久久久久末码| 欧美丝袜亚洲另类 | 亚洲国产精品合色在线| 999久久久国产精品视频| 国产在线观看jvid| 国产一区二区在线av高清观看| 99久久无色码亚洲精品果冻| 久久九九热精品免费| 成年人黄色毛片网站| 成人三级做爰电影| 精品国内亚洲2022精品成人| 欧美日本视频| 亚洲欧美精品综合一区二区三区| 麻豆久久精品国产亚洲av| 免费无遮挡裸体视频| 神马国产精品三级电影在线观看 | 国产免费av片在线观看野外av| 琪琪午夜伦伦电影理论片6080| 午夜免费激情av| 天堂影院成人在线观看| 黑人巨大精品欧美一区二区mp4| 丰满的人妻完整版| 久久久久久久精品吃奶| 精品久久久久久成人av| 久久久久国产精品人妻aⅴ院| 在线视频色国产色| 免费观看人在逋| x7x7x7水蜜桃| 日日摸夜夜添夜夜添小说| 一区二区三区高清视频在线| 欧美黄色片欧美黄色片| 波多野结衣高清作品| 最近最新中文字幕大全免费视频| 桃色一区二区三区在线观看| 亚洲 欧美一区二区三区| 在线观看66精品国产| 国产精品久久久av美女十八| 女性生殖器流出的白浆| 两性夫妻黄色片| 伦理电影免费视频| 在线观看66精品国产| 婷婷六月久久综合丁香| 国产黄色小视频在线观看| e午夜精品久久久久久久| 中文资源天堂在线| 少妇粗大呻吟视频| 精品国产美女av久久久久小说| 99国产精品一区二区蜜桃av| 性欧美人与动物交配| 精品国产国语对白av| 少妇粗大呻吟视频| 久久久水蜜桃国产精品网| 国产av又大| xxx96com| 亚洲三区欧美一区| 黄片小视频在线播放| a在线观看视频网站| 中文在线观看免费www的网站 | 欧美一区二区精品小视频在线| 哪里可以看免费的av片| 午夜精品在线福利| 看免费av毛片| 999久久久国产精品视频| 19禁男女啪啪无遮挡网站| 日本一区二区免费在线视频| 精品高清国产在线一区| 日韩免费av在线播放| 岛国视频午夜一区免费看| 禁无遮挡网站| 日韩大尺度精品在线看网址| 亚洲国产高清在线一区二区三 | 久9热在线精品视频| 男男h啪啪无遮挡| 人人妻,人人澡人人爽秒播| 嫩草影院精品99| 99久久国产精品久久久| 久久青草综合色| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 麻豆国产av国片精品| 91老司机精品| 999精品在线视频| 国产一区二区在线av高清观看| 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 久久国产精品男人的天堂亚洲| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 欧美乱色亚洲激情| 国产在线观看jvid| 日日干狠狠操夜夜爽| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 美女大奶头视频| 夜夜爽天天搞| 50天的宝宝边吃奶边哭怎么回事| 伊人久久大香线蕉亚洲五| 免费观看人在逋| 老司机午夜福利在线观看视频| 香蕉久久夜色| 欧美又色又爽又黄视频| 国产精品九九99| 男人操女人黄网站| 丁香六月欧美| 久久久久久九九精品二区国产 | 人成视频在线观看免费观看| 99久久99久久久精品蜜桃| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 中文字幕人妻熟女乱码| 香蕉久久夜色| 亚洲第一av免费看| 丝袜人妻中文字幕| 日日夜夜操网爽| 国产成人系列免费观看| 国产精品久久视频播放| 免费在线观看日本一区| 亚洲精品在线观看二区| 性色av乱码一区二区三区2| 级片在线观看| 男人舔女人的私密视频| 亚洲av熟女| 日本一本二区三区精品| 婷婷精品国产亚洲av在线| а√天堂www在线а√下载| 校园春色视频在线观看| 久热爱精品视频在线9| 一二三四社区在线视频社区8| bbb黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 在线永久观看黄色视频| 精品欧美国产一区二区三| 国产1区2区3区精品| 精品久久久久久,| 中国美女看黄片| 一级毛片女人18水好多| 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 99久久国产精品久久久| 无限看片的www在线观看| 国产一区在线观看成人免费| 国产亚洲av嫩草精品影院| 成人精品一区二区免费| 亚洲片人在线观看| 亚洲成av人片免费观看| 中文字幕高清在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 91成年电影在线观看| 精品欧美一区二区三区在线| 国产精品99久久99久久久不卡| 国产精品二区激情视频| bbb黄色大片| 国产成+人综合+亚洲专区| 一级a爱片免费观看的视频| 一边摸一边抽搐一进一小说| 成人欧美大片| 久久国产乱子伦精品免费另类| 男女之事视频高清在线观看| 性欧美人与动物交配| 少妇 在线观看| 久久久久久大精品| 久久久久国产一级毛片高清牌| 又黄又爽又免费观看的视频| 亚洲美女黄片视频| 亚洲黑人精品在线| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 久久人妻福利社区极品人妻图片| 中文在线观看免费www的网站 | 日韩精品免费视频一区二区三区| 欧美人与性动交α欧美精品济南到| 91在线观看av| 他把我摸到了高潮在线观看| av福利片在线| 女人爽到高潮嗷嗷叫在线视频| 丁香欧美五月| 一本一本综合久久| 熟妇人妻久久中文字幕3abv| 久久婷婷人人爽人人干人人爱| 日韩一卡2卡3卡4卡2021年| 黄色成人免费大全| 国产三级黄色录像| 成人国语在线视频| 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 国产麻豆成人av免费视频| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 久久久国产成人精品二区| 日韩中文字幕欧美一区二区| 午夜福利免费观看在线| 99热这里只有精品一区 | www.www免费av| 色播在线永久视频| 在线观看一区二区三区| 午夜福利视频1000在线观看| 91在线观看av| 美女高潮喷水抽搐中文字幕| 中文字幕人妻熟女乱码| 一级a爱视频在线免费观看| 欧美性猛交黑人性爽| √禁漫天堂资源中文www| 老熟妇仑乱视频hdxx| 啪啪无遮挡十八禁网站| 日日爽夜夜爽网站| 丰满的人妻完整版| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品久久久久久毛片| 久久香蕉国产精品| 色综合欧美亚洲国产小说| 999久久久精品免费观看国产| av在线天堂中文字幕| www.熟女人妻精品国产| 村上凉子中文字幕在线| 一本久久中文字幕| 一级毛片高清免费大全| 成人三级黄色视频| 禁无遮挡网站| 91九色精品人成在线观看| 亚洲精品色激情综合| 91麻豆av在线| 国产一区二区三区视频了| 久久中文字幕人妻熟女| 亚洲国产中文字幕在线视频| 日韩欧美 国产精品| 亚洲一码二码三码区别大吗| 国产在线精品亚洲第一网站| 国产精品影院久久| 视频在线观看一区二区三区| 亚洲午夜理论影院| 国产一卡二卡三卡精品| 桃色一区二区三区在线观看| 亚洲国产精品合色在线| 久久久国产精品麻豆| 亚洲欧洲精品一区二区精品久久久| 久久久久久人人人人人| 一个人观看的视频www高清免费观看 | 久久午夜综合久久蜜桃| 精品人妻1区二区| a在线观看视频网站| 亚洲国产精品合色在线| 午夜福利免费观看在线| xxx96com| 午夜a级毛片| av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 日日干狠狠操夜夜爽| 国产激情欧美一区二区| 久久狼人影院| 麻豆国产av国片精品| 看黄色毛片网站| 精品国产一区二区三区四区第35| 一本一本综合久久| 在线观看66精品国产| 性色av乱码一区二区三区2| 麻豆一二三区av精品| 91麻豆精品激情在线观看国产| 亚洲成国产人片在线观看| 国产视频一区二区在线看| 香蕉丝袜av| 国产精品电影一区二区三区| 日本 av在线| 很黄的视频免费| 精品一区二区三区视频在线观看免费| 亚洲一码二码三码区别大吗| 波多野结衣巨乳人妻| 精品国产美女av久久久久小说| 欧美中文日本在线观看视频| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 色播在线永久视频| 深夜精品福利| 婷婷丁香在线五月| 免费在线观看影片大全网站| 亚洲五月天丁香| 亚洲一区二区三区不卡视频| 19禁男女啪啪无遮挡网站| 国产片内射在线| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 免费无遮挡裸体视频| 欧美性猛交黑人性爽| 黄色a级毛片大全视频| 日韩欧美一区二区三区在线观看| 99久久综合精品五月天人人| 亚洲 国产 在线| 禁无遮挡网站| 国产精品99久久99久久久不卡| 51午夜福利影视在线观看| 亚洲午夜理论影院| 哪里可以看免费的av片| 亚洲天堂国产精品一区在线| 午夜免费成人在线视频| 国产熟女午夜一区二区三区| 国产精品99久久99久久久不卡| 性色av乱码一区二区三区2| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 法律面前人人平等表现在哪些方面| 身体一侧抽搐| a在线观看视频网站| 免费在线观看视频国产中文字幕亚洲| 久久久久久大精品| 成人一区二区视频在线观看| 久久中文看片网| 中文在线观看免费www的网站 | 久久久国产精品麻豆| 可以在线观看毛片的网站| 中文字幕人妻丝袜一区二区| 国产久久久一区二区三区| 欧美日韩黄片免| 久久午夜亚洲精品久久| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 亚洲一区二区三区不卡视频| 欧美性猛交╳xxx乱大交人| 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 岛国视频午夜一区免费看| 欧洲精品卡2卡3卡4卡5卡区| 国产三级在线视频| 亚洲人成电影免费在线| 日韩欧美 国产精品| 欧美人与性动交α欧美精品济南到| 欧美成人午夜精品| 十八禁人妻一区二区| 手机成人av网站| 香蕉丝袜av| 香蕉久久夜色| 亚洲av电影在线进入| 国产成人av激情在线播放| 亚洲精品色激情综合| 欧美久久黑人一区二区| 深夜精品福利| 我的亚洲天堂| 深夜精品福利| 欧美久久黑人一区二区| 在线永久观看黄色视频| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| 正在播放国产对白刺激| 精品乱码久久久久久99久播| 欧美大码av| 美女大奶头视频| 中文字幕人妻熟女乱码| 日本熟妇午夜| 亚洲久久久国产精品| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 日日干狠狠操夜夜爽| 国产精品电影一区二区三区| 丁香欧美五月| 久久午夜亚洲精品久久| 久久精品亚洲精品国产色婷小说| 午夜福利一区二区在线看| 在线观看日韩欧美| 曰老女人黄片| 亚洲av成人av| 亚洲一区高清亚洲精品| 亚洲成人免费电影在线观看| 久久香蕉国产精品| 亚洲avbb在线观看| 久久久久久免费高清国产稀缺| 久久中文字幕人妻熟女| 国产人伦9x9x在线观看| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 一区二区三区国产精品乱码| 午夜福利一区二区在线看| 精品熟女少妇八av免费久了| 欧美日韩精品网址| 国产一区二区激情短视频| 亚洲男人的天堂狠狠| 国产一区二区三区视频了| 黄色视频,在线免费观看| 一本精品99久久精品77| 国产av在哪里看| 99riav亚洲国产免费| 国产成+人综合+亚洲专区| 亚洲成av片中文字幕在线观看| 熟女少妇亚洲综合色aaa.| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频 | 欧美一级毛片孕妇| 丁香欧美五月| 狂野欧美激情性xxxx| 美女大奶头视频| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 男人舔奶头视频| 久久久国产成人免费| 少妇粗大呻吟视频| 啪啪无遮挡十八禁网站| 国产精品香港三级国产av潘金莲| 欧美黄色淫秽网站| 97人妻精品一区二区三区麻豆 | 国产97色在线日韩免费| 无遮挡黄片免费观看| 美女高潮到喷水免费观看| 国产av一区在线观看免费| 日韩欧美三级三区| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 日本一区二区免费在线视频| 中文亚洲av片在线观看爽| 日本一区二区免费在线视频| 99国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 级片在线观看| 欧美黑人精品巨大| 国产av一区在线观看免费| 国产私拍福利视频在线观看| 国产精品永久免费网站| 亚洲成人国产一区在线观看| 欧美一级毛片孕妇| 国产蜜桃级精品一区二区三区| 制服人妻中文乱码| 国产一区在线观看成人免费| www.熟女人妻精品国产| 在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 91麻豆精品激情在线观看国产| 欧美色视频一区免费| 在线观看免费视频日本深夜| 久久人妻福利社区极品人妻图片| 日日爽夜夜爽网站| 听说在线观看完整版免费高清| 91麻豆av在线| 一区福利在线观看| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| 亚洲欧洲精品一区二区精品久久久| 最好的美女福利视频网| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜| 美女 人体艺术 gogo| 最好的美女福利视频网| x7x7x7水蜜桃| 美女午夜性视频免费| 中出人妻视频一区二区| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 午夜免费成人在线视频| 午夜福利成人在线免费观看| av中文乱码字幕在线| 国产精品久久电影中文字幕| 欧美激情 高清一区二区三区| 精品久久久久久久久久久久久 | 69av精品久久久久久| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 亚洲专区国产一区二区| 国产av又大| 日韩中文字幕欧美一区二区| 18禁黄网站禁片午夜丰满| 日本免费一区二区三区高清不卡| 久久久精品国产亚洲av高清涩受| 欧美在线黄色| 少妇的丰满在线观看| 久久精品aⅴ一区二区三区四区| 色综合欧美亚洲国产小说| 亚洲激情在线av| 中文字幕av电影在线播放| 女性生殖器流出的白浆| 亚洲最大成人中文| 久久中文字幕一级| 黄色成人免费大全| 麻豆成人午夜福利视频| 一进一出抽搐gif免费好疼| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 午夜免费激情av| 久久久久亚洲av毛片大全|