• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational quantum algorithms for trace norms and their applications

    2021-10-12 05:32:18ShengJieLiJinMinLiangShuQianShenandMingLi
    Communications in Theoretical Physics 2021年10期

    Sheng-Jie Li, Jin-Min Liang, Shu-Qian Shen and Ming Li

    1 College of Science, China University of Petroleum, 266580 Qingdao, China

    2 School of Mathematical Sciences,Capital Normal University, 100048 Beijing, China

    Abstract The trace norm of matrices plays an important role in quantum information and quantum computing.How to quantify it in today’s noisy intermediate scale quantum(NISQ)devices is a crucial task for information processing.In this paper, we present three variational quantum algorithms on NISQ devices to estimate the trace norms corresponding to different situations.Compared with the previous methods, our means greatly reduce the requirement for quantum resources.Numerical experiments are provided to illustrate the effectiveness of our algorithms.

    Keywords: quantum algorithm, trace norm, variational algorithm

    1.Introduction

    Quantum computing is a new ultrafast calculational model that follows the laws of quantum mechanics and regulates quantum information units for computing[1,2].A quantum computer can perform some computations with exponential speedup over any classical computer due to its intrinsic advantages.The famous quantum algorithms including Shor’s factoring algorithm [3],Grover’s search algorithm[4]and HHL algorithm[5]for linear equations most require a universal fault-tolerant quantum computer with millions of qubits [1].Most of these algorithms have deep circuit depth, and the coherence between quantum states will gradually lost due to the undesired environmental noise.Thus, the appearance of such experimental device may take many years of research.Noisy intermediate scale quantum(NISQ)technology[6,7]adopting 50–100 qubits is believed to be an high-performance alternative product.It will be available in the near future.Hence, one of the current researches focuses on the algorithms that can efficiently work on the NISQ devices.

    The class of variational quantum algorithms (VQAs)[8, 9],which is a kind of hybrid quantum–classical algorithms, is considered to be well-suited in the NISQ period.By utilizing the classical computers and NISQ devices simultaneously, VQAs solve problems that are intractable on classical computers.To be specific,VQAs adopt the classical computers to find the optimal parameters of the objective function,and quantum devices mainly compute the values of function by training the neural networks and performing measurements.In recent years, a variety VQAs have been proposed such as variational eigenvalue solver[10–14], variational quantum singular value decomposition[15,16],variational quantum diagonalization[17,18],quantum approximate optimization algorithms [19], variational ansatzbased quantum simulation [20], and quantum linear equations solver [21, 22]; see, e.g.[8, 9] for comprehensive surveys.In addition, quantum simulation is also another important application of near-term quantum computing; see, e.g.[23–27].

    Trace norms have been widely used in the field of quantum information and quantum computing.As we all know, the detection and quantification of entanglement is a fundamental issue in quantum information.Some separable criteria including CCNR [28], correlation matrix criteria [29] are based on trace norms.They can also be used to quantify entanglement[30]and non-locality [31].Meanwhile, the trace distance based on trace norms yields a natural metric on the state space, and gives a measure of the distinguish ability between two quantum states[2].In addition,a lot of quantum machine learning algorithms such as quantum anomaly detection [32], dimensionality reduction and classification [33] are also based on the trace norms.Generally speaking, the estimation of trace norms on classical computers needs to calculate all singular values [34].However, the calculation of singular values of large-scale matrices is still a tricky task for classical computers, which consumes tremendous resources especially when the matrix dimension reaches the exponential order.Thus, how to evaluate the trace norms efficiently on quantum devices is an essential task.

    VQAs for estimating the trace norms and trace distances have been presented in [35].It variationally estimates trace norms by adding an ancillary system and performing the unitary evolution on the whole system.From the perspective of near-term implementation, it will increase operation difficulty.

    The aim of this paper is to design novel VQAs for trace norms, which can be applied to the estimation of trace distance, detection and quantification of quantum entanglement.The cost of algorithms are less than the corresponding ones in[35].Finally,we simulate our algorithms to estimate the trace norms of two qubit matrix and obtain the desired result.

    The organization of the paper is as follows.In section 2,we briefly review the trace norms and introduce a proposition which is beneficial to apply optimization methods on the loss function.Then we present our VQAs for estimating trace norms which we call them the quantum variational trace norm(QVTN)algorithms.Some applications including trace distance estimation and quantification of quantum entanglement are presented in section 3.Numerical experimental simulations are reported in section 4.Then we make a summary in section 5.

    2.Results

    2.1.Theoretical basis for QVTN alogrithms

    Let A be an operator acting on a Hilbert spaceH.Then we denote by ‖A‖1the trace norm of A, i.e.the sum of all singular values of A.From [2], we can get

    wheretr denotes the trace of matrix, and the maximization ranges over all unitary operators acting onH.Obviously, the equality(1)cannot be directly applied to design VQAs,since some optimization methods cannot be used for the absolute value function.The following simple proposition gives an alternative to (1), and then VQAs can be easily constructed.

    Proposition 1.Let A be any operator acting on the Hilbert spaceH.Then

    where the optimization is over all unitary operators acting on systemH, and? denotes the conjugate transpose of matrix.

    Proof.On the one hand, by (1),

    On the other hand,by(1)there must exist a unitary operator V and a real number θ such that

    This completes the proof. □

    For any Hermitian operator A, it is easy to get

    where λi, i=1, 2, …, n, are eigenvalues of A.If A is not Hermitian, we can define the operator

    From [5],is Hermitian, andThus, in this section,the VQAs are only designed for Hermitian operators.

    Proposition 1 gives us a favorable variational form.According to this form, in the next subsections, we will present VQAs (QVTN) to estimate the trace norms of the Hermitian operator H.

    2.2.The QVTN algorithm based on state decomposition

    Assume that H acting on the Hilbert spaceH is Hermitian,then H can always be decomposed [2, 35] as

    where ri,i=1,2,…,d,are real numbers,and ρi,i=1,2,…,d, are density matrices.In fact, any Hermitian matrix can easily be decomposed into the above form; see, e.g.equation (14) in algorithm 2.Meanwhile, the calculation of generalized trace distance in section 3 also uses the decomposition as a special case of equation (8).Based on (8), the following VQA gives the estimation of the trace norm of H.

    Algorithm 1.The QVTN algorithm based on state decomposition

    1.Inputs: the decomposition (8) of H, parameterized quantum circuits U( θ)with initial parameters θ, and error tolerance ∈.2.For any ≤ i≤ d 1 , applying the Hadamard test to compute the value:() ( ( ()) ( ()))?θ=θ θρ ρ+f U U 1 2 tr tr .i i i (9)3.Compute the value of loss function:() ()θ θ= ∑=l r f .i d i i 1 1(10)4.Perform optimization process to maximize l( θ)1 , update θ.5.Repeat steps 2–4, until the loss function satisfies∣ Δ( θ)∣≤∈l1 .

    As in [16, algorithm 1], the parameterized quantum circuits is composed by single qubit rotations and two qubit CNOT gates and here the parameterθ= (θ1,θ2, … ,θ m)t,where t represents the transpose of matrix.Figure 1 is a schematic diagram of the circuits.Specifically, the parameterized circuits

    Figure 1.The parameterized quantum circuit for U(θ).The parameters are trained to optimize the loss functions.Here D denotes the circuit depth and N represents the qubit numbers.

    For j=1, 2, …, m, we consider

    where Hjis tensor product of Pauli matrices.

    Proposition 2.The loss functionl1(θ)and the gradient of it can be estimated on near-term quantum devices.

    Proof.Our loss function can be efficiently computed by the Hadamard test[36].The schematic diagram is shown in figure 3.We briefly summarize the key points of Hadamard test here.

    In the step 2 of algorithm 1,by adding an ancillary qubit,Re ( tr (ρU))for any state ρ and unitary U can be computed by quantum Hadamard test.As in figure 3, after the application of the circuit before measurement, the initial statesδin= ∣0 〉 〈 0∣?ρbecomes

    Measuring the ancillary state with the Pauli operatorσzyields the expectation value

    Thus the loss functionl1(θ)can be efficiently calculated in near-term devices by the Hadamard test.

    In addition, according to the specific calculation process in appendix, we get a fact that the derivatives of the loss functionl1(θ)are given by several terms which can be estimated by rotating the parameters of the Hadamard test circuits in figure 3.Hence, the gradient of loss functionl1(θ)can be estimated on near-term quantum devices. □

    If the decomposition of H (8) is not available, we can choose a parameter α to construct the following two states:

    For example, α can be chosen to be ∑i|hii| with hiibeing the diagonal element of H.For this case, a simplified form of algorithm 1 is given by algorithm 2.

    Algorithm 2.The QVTN algorithm based on QRAM

    1.Inputs:ρ ρ+, - , parameterized quantum circuits U( θ)with initial parameters θ, and tolerance ∈.2.Applying circuits U( θ)to compute the value:() ( ( ()) ( ()))?θ=θ θρ ρ+±±±f U U 1 4 tr tr .(14)3.Compute the value of loss function:() () () () ()θ θ α= + - -+-l αI H f I H fθ tr tr .2(15)4.Perform optimization on l( θ)2 , update θ.5.Repeat steps 2–4, until the loss function satisfies∣Δ ( θ)∣≤∈l2 .

    In the step 2 of algorithm 2,we can use swap test[37]to compute the trace of the product of a density matrix and a unitary matrix.Given a general quantum state ρ, it can be expressed as a linear combinationin the computation basis.The vector representation of ρ can be written as

    Finally,

    can be efficiently estimated via the simple swap test.

    However, the QRAM approach requires great amount of qubits to convert classical data into corresponding quantum states[40],making it not suitable in the current NISQ devices.Here we give alternative methods to efficiently obtain the state|I〉.Figure 2 shows the corresponding quantum circuit to implement |I〉, consisting of the Hadamard gate H, Pauli operator σzand CNOT gates.To our knowledge, there is no effective method to prepare |ρ〉 except QRAM.Thus, for the preparation of |ρ〉, it is worth studying new methods that are suited for the NISQ devices in the future.

    Figure 2.The preparation for state |I〉.

    2.3.The QVTN algorithm based on unitary decomposition

    Assume that the Hermitian operator H acting on the Hilbert spaceH can be written as

    where ki,i=1,2,…,n,are real numbers and Ui,i=1,2,…,n,are unitary matrices.This assumption is often employed in many physical systems such as molecules or the Fermi–Hubbard model [13, 16, 41].Based on (19), the following VQA gives the estimation of the trace norm of H.

    Algorithm 3.The QVTN algorithm based on unitary decomposition

    1.Inputs: the decomposition (19) of H, parameterized quantum circuits U( θ)with initial parameters θ, and error tolerance ∈.2.For any ≤ i≤ n 1 , applying the Hadamard test in figure 4 to compute the value:() ( ( ()) ( ()))? ?θ=θ θ+f U U U U 1 2 tr tr .i i i (20)3.Compute the value of loss function:() ()θ θ= ∑=l k f .in i i 3 1 (21)4.Perform optimization process to maximize l( θ)3 , update θ.5.Repeat steps 2–4, until the loss function satisfies∣ Δ ( θ)∣≤∈l3 .

    It is obvious that when we replace the state ρ with identity matrix I in figure 3, tr(UiU)for any unitary Uiand U can be computed by the Hadamard test.We draw a simple diagram in figure 4.Thus,the loss function l3(θ)in algorithm 3 can be efficiently calculated in near-term quantum devices.In addition,the optimization of functions l1(θ),l2(θ)and l3(θ)will be discussed in section 4.

    Recently, Wang et al [16] provide a VQA for determining the largest T singular values of a given n×n matrix M,the related loss function L(α,β)is the linear combination of Re〈ψj∣U?(α)MV(β)∣ψj〉with weight qj, j=1, 2, …, T.Hereare computational basis and U(α), V(β) are unitary circuits.We notice that this method can also give an estimation of the trace norm by calculating all singular values when T=n.Compared with it,our algorithms directly obtain an estimation of the trace norm through training parameters instead of requiring the specific information of all singular values.Thus, our methods greatly reduce the demands of quantum resources and circuits complexity.In addition, our loss functions only contain one parameter vector which are more conducive for us to find the global optimum.

    The paper [35] also have proposed a VQA for trace norms of Hermite matrix.They evaluated the trace norms due to the following formula

    Figure 3.The Hadamard test for estimating tr( ρU).

    Figure 4.The Hadamard test for estimating tr(Ui U).

    whereQR=trAQ AR, QAR=U(H ?|r〉〈r|R)U?, |r〉 is an ancillary qubit in system R,and the optimization is over all unitary matrices on composite system AR.Compared with it, our methods have the following advantages.On the one hand,our algorithms do not need purification of the quantum state which may be hard to implement in near-term quantum circuits.On the other hand, we only use an ancillary qubit to compute the value of loss function instead of participating in the unitary evolution process of the whole system.Thus, our main variational processes are only local unitary evolution which greatly reduces the difficulty of operation and resource requirements.

    3.Applications

    3.1.Estimation of generalized trace distances

    The generalized distance [42, 43] is a measure of non-Markovianity for an open system dynamics which has significant effect in digital geometry.The generalized trace distance between two states ρ and σ acting on the Hilbert spaceH is defined as

    where p1and p2are real numbers.Therefore, we design the following functions from algorithm 1 to estimate the generalized trace distances.Let

    then we choose

    as our loss function which is the linear combination of fρ(θ)and fσ(θ).

    It is of great significance because the trace distance qualifies how different the two quantum states are.

    3.2.Variational algorithms for recognizing and quantifying entanglement

    Our VQAs can also be used for recognizing and quantifying entanglement.In this section, we review the bipartite entanglement and use QVTN algorithms for recognizing and quantifying entanglement.

    A bipartite state ρ is said to be separable[44,45]if it can be written as

    where 0 <pi≤1, ∑ipi=1, and{∣φi〉}iand{∣φi〉}iare pure states on subsystem A and B, respectively.Consequently, a bipartite state ρ is entangled if it cannot be decomposed into the above form.

    The realignment criterion in [46] says that a bipartite quantum state ρABinCk1?Ck2is separable, then

    where R(ρAB)is the realignment matrix of ρAB.Thus we can judge that a state ρABis entangled by calculating the trace norm ‖R(ρAB)‖1according to our QVTN algorithms.The QVTN algorithms are also useful in permutation criterion[47]and correlation matrix criteria[29]by estimating trace norms.

    As we all know the logarithmic negativity [45, 48] of a quantum state is a good entanglement measure which has wide applications in quantum information.The logarithmic negativity of a bipartite state ρABis defined as

    where TBis the partial transpose with subsystem B.So the logarithmic negativity can be efficiently estimated by our QVTN algorithms.

    4.Numerical experiments

    4.1.Optimization of the loss function

    In this section, we discuss the optimization of loss functions li(θ)for i=1,2,3,4.There are many optimization algorithms ranging from gradient-free methods to gradient-based methods.Here we choose gradient descent (GD) [49] algorithm which can be used for first-order gradient-based optimization of loss functions.

    GD algorithm is a common method to solve unconstrained optimization problems, and has a wide range of applications in optimization, statistics, and machine learning.This method is generally used to find the minimum value of the objective functions.We need to select the initial parametersproperly, and then move to the next point according to the gradient direction of the objective function.The iterative formula is as follows:

    the parameter γ is a positive learning rate which determines the step length of each iteration and hereSee the appendix for the specific process of calculating the gradient of li(θ) for i=1, 2, 3, 4.

    4.2.Numerical experiments

    In this section, we apply our algorithms 1 and 3 to estimat e the trace norm of two qubit Hermite matrix.We utilize a hardware efficient ansatz in the simulation including parameterized Ryand Rzoperations and CNOT gates.Consider the following matrix

    where σxand σzare the Pauli matrices.Our experiments apply a quantum circuit with L=2 layers with initial state|ψin〉=|0〉?|0〉.All numerical simulations and optimization are prepared via Paddle Quantum [50] on the PaddlePaddle Deep Learning Platform [51].The figure 5 plots the trace norm of matrix M via iterations.Our experiment values are presented with purple dashed line compared with theoretical result with blue points.The learning rate we set is LR=0.1.As shown in figure 5, we can see that the loss function has reached global optimum corresponding to the theoretical result.Thus, we can find the the trace norm of matrix M and obtain the associated parameter θopt.The quantum parameterized circuit after training is shown in figure 6.

    Figure 5.The trace norm of matrix M learned by our QVTN algorithms.

    Figure 6.The quantum parameterized circuit after training used in numerical simulations.

    5.Conclusions

    In conclusion, we have presented three VQAs for estimating trace norms.The algorithms 1 and 2 are based on state decomposition, and algorithm 3 is based on unitary decomposition.The advantages of our algorithms are as follows.Firstly, our algorithms do not need Hamiltonian simulation[52], phase estimation [2] and amplitude amplification [53],showing efficient availability in NISQ era.Secondly, our method directly estimate the value of the trace norms rather than their bounds.Thirdly,our main variational processes are local unitary evolution which greatly reduces the cost.

    Our algorithms have a wide range of applications in quantum information.A direct application is to calculate the trace distance that can be applied to quantify the distinction between two quantum states.Our algorithms may have further applications in quantifying the security of quantum cryptography protocols[54]and Bell non-locality[55],which have significant effects in entanglement, coherence and other quantum resources [56–58].

    Acknowledgments

    The authors thank the referees and the editor for their invaluable comments.

    Appendix.Optimization of the loss functions

    In this section, we present the detailed calculation process on the gradients of the loss functions li(θ) for i=1, 2, 3, 4.

    Consider the parameterized circuits

    where the second equality is due to the following property

    Therefore

    whereθ+j= (θ1,… ,θj+π,… ,θm)t.

    Similarly, we have

    We know, in algorithm 1, the loss function

    where, for 1 ≤i ≤d,

    So

    Hence,

    We can perform the same process to compute the gradient of l2(θ), l3(θ) and l4(θ).

    韩国av在线不卡| 我的老师免费观看完整版| 色综合色国产| 久久久久国产网址| 白带黄色成豆腐渣| 国产熟女欧美一区二区| 欧美日韩一区二区视频在线观看视频在线 | 久久热精品热| 亚洲精品一区av在线观看| 国产不卡一卡二| 亚洲综合色惰| 欧美激情久久久久久爽电影| 大型黄色视频在线免费观看| 一a级毛片在线观看| 国产精品国产三级国产av玫瑰| 波多野结衣高清作品| 国产一区二区在线av高清观看| 搡老妇女老女人老熟妇| 日本爱情动作片www.在线观看 | 日日摸夜夜添夜夜添av毛片| 人妻制服诱惑在线中文字幕| 亚洲中文字幕日韩| 亚洲av五月六月丁香网| 国产熟女欧美一区二区| 久久热精品热| 一a级毛片在线观看| 国产精品人妻久久久影院| 色综合站精品国产| 日韩av在线大香蕉| 亚洲精品久久国产高清桃花| 99在线视频只有这里精品首页| 美女高潮的动态| 一卡2卡三卡四卡精品乱码亚洲| 色尼玛亚洲综合影院| 国产精品野战在线观看| 欧美国产日韩亚洲一区| 亚洲人成网站在线观看播放| 真实男女啪啪啪动态图| 色5月婷婷丁香| 免费av观看视频| 黄色日韩在线| 国产伦精品一区二区三区四那| 国产精品一区二区三区四区免费观看 | 亚洲美女视频黄频| 国产男人的电影天堂91| 深爱激情五月婷婷| videossex国产| 成人午夜高清在线视频| 亚洲四区av| av女优亚洲男人天堂| 久久草成人影院| 十八禁国产超污无遮挡网站| 久久久欧美国产精品| 亚洲国产精品合色在线| 日本黄大片高清| 国内精品美女久久久久久| 91av网一区二区| 精品一区二区免费观看| 九九热线精品视视频播放| av卡一久久| 国产黄色视频一区二区在线观看 | 国产免费一级a男人的天堂| 国产精品无大码| 日本精品一区二区三区蜜桃| 一个人免费在线观看电影| 欧美成人一区二区免费高清观看| 非洲黑人性xxxx精品又粗又长| 一级黄片播放器| 日本黄色片子视频| 国产高清三级在线| 搞女人的毛片| 两个人的视频大全免费| 色噜噜av男人的天堂激情| 国产一区二区在线av高清观看| 亚洲五月天丁香| 99热全是精品| 国产在视频线在精品| 久久久久免费精品人妻一区二区| 熟女电影av网| 美女大奶头视频| 精品午夜福利在线看| 最近中文字幕高清免费大全6| 国产淫片久久久久久久久| 蜜桃久久精品国产亚洲av| 人人妻人人看人人澡| 国内精品美女久久久久久| 婷婷六月久久综合丁香| 免费不卡的大黄色大毛片视频在线观看 | 乱人视频在线观看| 久久久国产成人免费| 亚洲成a人片在线一区二区| av在线老鸭窝| 欧美激情久久久久久爽电影| 神马国产精品三级电影在线观看| 亚洲av免费在线观看| 亚洲av熟女| 日韩 亚洲 欧美在线| 精品久久久久久久久久久久久| 国产成人一区二区在线| 国产免费一级a男人的天堂| 深夜a级毛片| 男女做爰动态图高潮gif福利片| 国产成人福利小说| 高清毛片免费观看视频网站| 亚洲欧美精品综合久久99| 国产精品人妻久久久久久| 一个人看的www免费观看视频| 久久人人精品亚洲av| 免费高清视频大片| 欧美性感艳星| 久久九九热精品免费| 秋霞在线观看毛片| 99热这里只有是精品50| 国语自产精品视频在线第100页| 亚洲精品一区av在线观看| 久久精品影院6| 久久久久国内视频| 如何舔出高潮| 日本撒尿小便嘘嘘汇集6| 赤兔流量卡办理| 日产精品乱码卡一卡2卡三| 久久久久久久午夜电影| 高清毛片免费观看视频网站| 性色avwww在线观看| 久久精品国产99精品国产亚洲性色| 日本在线视频免费播放| 小蜜桃在线观看免费完整版高清| 国产在线男女| 婷婷亚洲欧美| 看十八女毛片水多多多| 人人妻人人澡欧美一区二区| 亚洲精品国产成人久久av| 久久国内精品自在自线图片| 亚洲久久久久久中文字幕| 18+在线观看网站| 久久久久国产网址| 嫩草影视91久久| 综合色av麻豆| av女优亚洲男人天堂| 男女那种视频在线观看| av福利片在线观看| 亚洲精品日韩av片在线观看| 成人特级av手机在线观看| 久久国内精品自在自线图片| 99久久成人亚洲精品观看| 人妻制服诱惑在线中文字幕| 日韩人妻高清精品专区| 国产一区亚洲一区在线观看| 两个人视频免费观看高清| 久久精品夜色国产| 国产av一区在线观看免费| 精品久久久久久久人妻蜜臀av| 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 午夜老司机福利剧场| 高清毛片免费看| 国产成人freesex在线 | 一进一出抽搐动态| 国产成人a区在线观看| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线在线| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 国产精品久久电影中文字幕| 内射极品少妇av片p| 天天躁夜夜躁狠狠久久av| 亚洲18禁久久av| 国模一区二区三区四区视频| 亚洲人成网站在线播| 欧美绝顶高潮抽搐喷水| 午夜影院日韩av| 久久久久久大精品| 久99久视频精品免费| 精品国内亚洲2022精品成人| 亚洲成人av在线免费| 村上凉子中文字幕在线| 精品午夜福利在线看| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 国产单亲对白刺激| 亚洲,欧美,日韩| av中文乱码字幕在线| 久久久精品94久久精品| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站高清观看| 熟女电影av网| 亚洲精品色激情综合| 国产成人影院久久av| 又爽又黄a免费视频| 一个人看的www免费观看视频| 久久亚洲精品不卡| 少妇猛男粗大的猛烈进出视频 | 国产真实乱freesex| 国产色婷婷99| 日本黄大片高清| 听说在线观看完整版免费高清| 国产黄色视频一区二区在线观看 | 男女之事视频高清在线观看| 丝袜美腿在线中文| 蜜桃久久精品国产亚洲av| 黄色配什么色好看| 色在线成人网| 久久综合国产亚洲精品| 男人狂女人下面高潮的视频| 男女那种视频在线观看| 黄色配什么色好看| 日韩精品有码人妻一区| 欧美在线一区亚洲| 亚洲人成网站在线播| 亚洲经典国产精华液单| 99久久精品热视频| 午夜老司机福利剧场| 男女那种视频在线观看| 午夜影院日韩av| 插阴视频在线观看视频| 亚洲成av人片在线播放无| 一a级毛片在线观看| 最近在线观看免费完整版| 国产精品99久久久久久久久| 久久精品国产清高在天天线| 秋霞在线观看毛片| 三级男女做爰猛烈吃奶摸视频| 久久久精品94久久精品| 成年av动漫网址| 国产爱豆传媒在线观看| 日日摸夜夜添夜夜爱| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看| 日韩欧美在线乱码| 久久精品国产自在天天线| 亚洲av熟女| 晚上一个人看的免费电影| 99久久九九国产精品国产免费| 国内揄拍国产精品人妻在线| 中国美女看黄片| 中文字幕人妻熟人妻熟丝袜美| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 99riav亚洲国产免费| 内地一区二区视频在线| 国产精品久久久久久久电影| 欧美不卡视频在线免费观看| 天堂√8在线中文| 精品午夜福利视频在线观看一区| 国产高清不卡午夜福利| 国产精品免费一区二区三区在线| 成人av在线播放网站| 午夜免费男女啪啪视频观看 | 两个人的视频大全免费| 淫秽高清视频在线观看| 女的被弄到高潮叫床怎么办| 免费看光身美女| 丰满的人妻完整版| 亚洲高清免费不卡视频| 大又大粗又爽又黄少妇毛片口| 国产三级中文精品| 一级毛片久久久久久久久女| 99久国产av精品| 日韩在线高清观看一区二区三区| 亚洲激情五月婷婷啪啪| 夜夜爽天天搞| 最近最新中文字幕大全电影3| 精品熟女少妇av免费看| 高清日韩中文字幕在线| 久久久国产成人免费| 中国美白少妇内射xxxbb| eeuss影院久久| 在线观看午夜福利视频| 99热精品在线国产| 日产精品乱码卡一卡2卡三| 成人午夜高清在线视频| 国产又黄又爽又无遮挡在线| 日韩一本色道免费dvd| 九九热线精品视视频播放| 国产精品久久久久久久久免| 国产白丝娇喘喷水9色精品| 久久久久久久久久黄片| 亚洲国产精品成人久久小说 | 成年女人毛片免费观看观看9| 欧美人与善性xxx| 高清日韩中文字幕在线| 国产中年淑女户外野战色| 精品少妇黑人巨大在线播放 | 男女视频在线观看网站免费| 尤物成人国产欧美一区二区三区| 成人av一区二区三区在线看| 18禁在线播放成人免费| 久久久久久久久久久丰满| 日韩,欧美,国产一区二区三区 | 高清毛片免费观看视频网站| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区视频9| 有码 亚洲区| 六月丁香七月| 午夜爱爱视频在线播放| 成年免费大片在线观看| 老司机福利观看| 亚洲av电影不卡..在线观看| 亚洲人成网站在线播| 99久久成人亚洲精品观看| 一本精品99久久精品77| 精品人妻一区二区三区麻豆 | 国产精品免费一区二区三区在线| 免费电影在线观看免费观看| 国产精品,欧美在线| 美女黄网站色视频| 国产黄a三级三级三级人| 18禁在线无遮挡免费观看视频 | 欧美不卡视频在线免费观看| 国产一区二区三区av在线 | 日韩制服骚丝袜av| 成人午夜高清在线视频| 啦啦啦啦在线视频资源| 亚洲性久久影院| 欧美又色又爽又黄视频| 丰满乱子伦码专区| 久久午夜福利片| av专区在线播放| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 日韩,欧美,国产一区二区三区 | 亚洲av中文字字幕乱码综合| 国产一区二区在线观看日韩| 久久午夜亚洲精品久久| 久久久久国产网址| 免费不卡的大黄色大毛片视频在线观看 | 成人性生交大片免费视频hd| 国产色婷婷99| 国产一区二区在线观看日韩| 精品欧美国产一区二区三| 波多野结衣巨乳人妻| 亚洲精品成人久久久久久| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 女人十人毛片免费观看3o分钟| 亚洲在线自拍视频| 少妇人妻一区二区三区视频| 给我免费播放毛片高清在线观看| 91狼人影院| 亚州av有码| 成年女人毛片免费观看观看9| 国内精品美女久久久久久| 精品免费久久久久久久清纯| 淫妇啪啪啪对白视频| 国产 一区精品| 午夜精品在线福利| 亚洲性久久影院| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 精品熟女少妇av免费看| 99国产精品一区二区蜜桃av| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 婷婷精品国产亚洲av| 综合色av麻豆| 老女人水多毛片| 亚洲美女黄片视频| 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 欧美国产日韩亚洲一区| 久久精品国产自在天天线| 可以在线观看的亚洲视频| 黄色日韩在线| 免费大片18禁| 精品人妻一区二区三区麻豆 | 午夜影院日韩av| 欧美日韩乱码在线| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 九九久久精品国产亚洲av麻豆| 高清毛片免费观看视频网站| 精品一区二区三区av网在线观看| 12—13女人毛片做爰片一| 色综合站精品国产| 国产黄色视频一区二区在线观看 | 欧美日韩在线观看h| 观看美女的网站| 精品午夜福利视频在线观看一区| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 一个人观看的视频www高清免费观看| 干丝袜人妻中文字幕| 精品少妇黑人巨大在线播放 | а√天堂www在线а√下载| 又爽又黄无遮挡网站| 搡老熟女国产l中国老女人| 人人妻人人澡欧美一区二区| 国产高清有码在线观看视频| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av在线| 国产精品久久视频播放| 免费av观看视频| 丰满人妻一区二区三区视频av| 国产视频内射| 日本与韩国留学比较| 一级毛片我不卡| 欧美日本视频| 精品乱码久久久久久99久播| 欧美3d第一页| 色哟哟哟哟哟哟| 亚洲欧美日韩卡通动漫| 亚洲中文日韩欧美视频| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 欧美日本亚洲视频在线播放| 精品人妻熟女av久视频| 成人亚洲欧美一区二区av| av在线天堂中文字幕| av在线亚洲专区| 男女之事视频高清在线观看| 成年版毛片免费区| 一级毛片我不卡| 精品一区二区三区视频在线观看免费| 国产淫片久久久久久久久| 国产爱豆传媒在线观看| 97人妻精品一区二区三区麻豆| 免费看av在线观看网站| 搡老岳熟女国产| 免费黄网站久久成人精品| 99久久精品热视频| 亚洲人成网站高清观看| 精品久久久久久久久av| 91在线观看av| 91在线精品国自产拍蜜月| 国产白丝娇喘喷水9色精品| 亚洲精品久久国产高清桃花| 国内精品美女久久久久久| 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 极品教师在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 免费av不卡在线播放| 欧美激情在线99| 在线a可以看的网站| 最近手机中文字幕大全| 悠悠久久av| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 精品久久久久久成人av| 国产私拍福利视频在线观看| 99久久精品一区二区三区| 淫秽高清视频在线观看| 久久久久国产网址| 亚洲精品国产av成人精品 | 成人鲁丝片一二三区免费| 看非洲黑人一级黄片| 亚洲图色成人| 十八禁网站免费在线| 国产av麻豆久久久久久久| 国产精品精品国产色婷婷| 亚洲最大成人中文| 亚洲精品国产av成人精品 | 一级av片app| 国产精品av视频在线免费观看| 又爽又黄a免费视频| 国产欧美日韩精品亚洲av| 午夜免费男女啪啪视频观看 | 久久精品91蜜桃| 麻豆成人午夜福利视频| 日韩欧美精品v在线| 亚洲久久久久久中文字幕| 国产精品免费一区二区三区在线| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 欧美区成人在线视频| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 精品无人区乱码1区二区| 午夜福利18| 韩国av在线不卡| 大型黄色视频在线免费观看| 乱系列少妇在线播放| 久久精品91蜜桃| 亚洲精品久久国产高清桃花| av福利片在线观看| 中国美女看黄片| 一个人看的www免费观看视频| 日日干狠狠操夜夜爽| 久久久久久久久久成人| 深爱激情五月婷婷| 色5月婷婷丁香| 激情 狠狠 欧美| 看黄色毛片网站| 久久精品影院6| 成人美女网站在线观看视频| 99热只有精品国产| 乱码一卡2卡4卡精品| 亚洲综合色惰| 老女人水多毛片| 亚洲一级一片aⅴ在线观看| 观看免费一级毛片| 亚洲18禁久久av| 国产色婷婷99| 国产精品三级大全| 亚洲中文日韩欧美视频| or卡值多少钱| 亚洲,欧美,日韩| 国产欧美日韩一区二区精品| 在线天堂最新版资源| 一本久久中文字幕| 国产成人精品久久久久久| 国产淫片久久久久久久久| 国产 一区精品| 国产色爽女视频免费观看| 哪里可以看免费的av片| 天天一区二区日本电影三级| 国产精品嫩草影院av在线观看| 蜜臀久久99精品久久宅男| 亚洲第一电影网av| 久久久久久久午夜电影| h日本视频在线播放| 人妻少妇偷人精品九色| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清在线视频| 一级毛片电影观看 | 亚洲不卡免费看| 国产av不卡久久| 国产成人freesex在线 | 深夜a级毛片| 亚洲人成网站高清观看| 日韩成人av中文字幕在线观看 | 久久人人爽人人片av| 国产精品av视频在线免费观看| 天堂av国产一区二区熟女人妻| 狠狠狠狠99中文字幕| 不卡一级毛片| 特大巨黑吊av在线直播| 国产男人的电影天堂91| 看免费成人av毛片| 欧美色视频一区免费| 黄片wwwwww| 一级毛片aaaaaa免费看小| 丝袜美腿在线中文| 大型黄色视频在线免费观看| 欧美国产日韩亚洲一区| 噜噜噜噜噜久久久久久91| 欧美日韩综合久久久久久| 久久精品夜色国产| 日日撸夜夜添| 日韩成人伦理影院| 久久九九热精品免费| 日本色播在线视频| 99精品在免费线老司机午夜| 女人十人毛片免费观看3o分钟| 老熟妇仑乱视频hdxx| 九九爱精品视频在线观看| 亚洲精品国产成人久久av| 亚洲成人av在线免费| 国产精品一二三区在线看| 九九久久精品国产亚洲av麻豆| 18+在线观看网站| 插阴视频在线观看视频| 亚洲欧美日韩无卡精品| 亚洲av成人精品一区久久| 91在线精品国自产拍蜜月| ponron亚洲| 色尼玛亚洲综合影院| 嫩草影院精品99| 免费观看在线日韩| 人妻久久中文字幕网| 精品久久国产蜜桃| 人人妻人人澡人人爽人人夜夜 | 欧美一区二区精品小视频在线| 欧美高清性xxxxhd video| 欧美性猛交黑人性爽| 国产精品亚洲一级av第二区| 成年免费大片在线观看| 十八禁网站免费在线| 亚洲av五月六月丁香网| 久久人人爽人人片av| 精品乱码久久久久久99久播| 国产精品乱码一区二三区的特点| 亚洲成人久久爱视频| 久久久久久伊人网av| 久久精品国产亚洲av涩爱 | 午夜免费男女啪啪视频观看 | 国产三级在线视频| 国产精品一区二区免费欧美| 天美传媒精品一区二区| 两个人的视频大全免费| 久久久久久久久久久丰满| 超碰av人人做人人爽久久| 12—13女人毛片做爰片一| 直男gayav资源| 亚洲av一区综合| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片| 亚洲精品国产成人久久av| 成人特级黄色片久久久久久久| 老司机福利观看| 亚洲最大成人av| 夜夜看夜夜爽夜夜摸| 亚洲av电影不卡..在线观看| a级毛片a级免费在线| 国产极品精品免费视频能看的| 国产精品久久电影中文字幕| 欧美性猛交╳xxx乱大交人| 寂寞人妻少妇视频99o| 午夜精品国产一区二区电影 | 亚洲国产精品成人综合色| 男女啪啪激烈高潮av片| 国产色爽女视频免费观看| 日日摸夜夜添夜夜爱| 国产男靠女视频免费网站| 99精品在免费线老司机午夜| 日韩欧美精品免费久久|