• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational quantum algorithms for trace norms and their applications

    2021-10-12 05:32:18ShengJieLiJinMinLiangShuQianShenandMingLi
    Communications in Theoretical Physics 2021年10期

    Sheng-Jie Li, Jin-Min Liang, Shu-Qian Shen and Ming Li

    1 College of Science, China University of Petroleum, 266580 Qingdao, China

    2 School of Mathematical Sciences,Capital Normal University, 100048 Beijing, China

    Abstract The trace norm of matrices plays an important role in quantum information and quantum computing.How to quantify it in today’s noisy intermediate scale quantum(NISQ)devices is a crucial task for information processing.In this paper, we present three variational quantum algorithms on NISQ devices to estimate the trace norms corresponding to different situations.Compared with the previous methods, our means greatly reduce the requirement for quantum resources.Numerical experiments are provided to illustrate the effectiveness of our algorithms.

    Keywords: quantum algorithm, trace norm, variational algorithm

    1.Introduction

    Quantum computing is a new ultrafast calculational model that follows the laws of quantum mechanics and regulates quantum information units for computing[1,2].A quantum computer can perform some computations with exponential speedup over any classical computer due to its intrinsic advantages.The famous quantum algorithms including Shor’s factoring algorithm [3],Grover’s search algorithm[4]and HHL algorithm[5]for linear equations most require a universal fault-tolerant quantum computer with millions of qubits [1].Most of these algorithms have deep circuit depth, and the coherence between quantum states will gradually lost due to the undesired environmental noise.Thus, the appearance of such experimental device may take many years of research.Noisy intermediate scale quantum(NISQ)technology[6,7]adopting 50–100 qubits is believed to be an high-performance alternative product.It will be available in the near future.Hence, one of the current researches focuses on the algorithms that can efficiently work on the NISQ devices.

    The class of variational quantum algorithms (VQAs)[8, 9],which is a kind of hybrid quantum–classical algorithms, is considered to be well-suited in the NISQ period.By utilizing the classical computers and NISQ devices simultaneously, VQAs solve problems that are intractable on classical computers.To be specific,VQAs adopt the classical computers to find the optimal parameters of the objective function,and quantum devices mainly compute the values of function by training the neural networks and performing measurements.In recent years, a variety VQAs have been proposed such as variational eigenvalue solver[10–14], variational quantum singular value decomposition[15,16],variational quantum diagonalization[17,18],quantum approximate optimization algorithms [19], variational ansatzbased quantum simulation [20], and quantum linear equations solver [21, 22]; see, e.g.[8, 9] for comprehensive surveys.In addition, quantum simulation is also another important application of near-term quantum computing; see, e.g.[23–27].

    Trace norms have been widely used in the field of quantum information and quantum computing.As we all know, the detection and quantification of entanglement is a fundamental issue in quantum information.Some separable criteria including CCNR [28], correlation matrix criteria [29] are based on trace norms.They can also be used to quantify entanglement[30]and non-locality [31].Meanwhile, the trace distance based on trace norms yields a natural metric on the state space, and gives a measure of the distinguish ability between two quantum states[2].In addition,a lot of quantum machine learning algorithms such as quantum anomaly detection [32], dimensionality reduction and classification [33] are also based on the trace norms.Generally speaking, the estimation of trace norms on classical computers needs to calculate all singular values [34].However, the calculation of singular values of large-scale matrices is still a tricky task for classical computers, which consumes tremendous resources especially when the matrix dimension reaches the exponential order.Thus, how to evaluate the trace norms efficiently on quantum devices is an essential task.

    VQAs for estimating the trace norms and trace distances have been presented in [35].It variationally estimates trace norms by adding an ancillary system and performing the unitary evolution on the whole system.From the perspective of near-term implementation, it will increase operation difficulty.

    The aim of this paper is to design novel VQAs for trace norms, which can be applied to the estimation of trace distance, detection and quantification of quantum entanglement.The cost of algorithms are less than the corresponding ones in[35].Finally,we simulate our algorithms to estimate the trace norms of two qubit matrix and obtain the desired result.

    The organization of the paper is as follows.In section 2,we briefly review the trace norms and introduce a proposition which is beneficial to apply optimization methods on the loss function.Then we present our VQAs for estimating trace norms which we call them the quantum variational trace norm(QVTN)algorithms.Some applications including trace distance estimation and quantification of quantum entanglement are presented in section 3.Numerical experimental simulations are reported in section 4.Then we make a summary in section 5.

    2.Results

    2.1.Theoretical basis for QVTN alogrithms

    Let A be an operator acting on a Hilbert spaceH.Then we denote by ‖A‖1the trace norm of A, i.e.the sum of all singular values of A.From [2], we can get

    wheretr denotes the trace of matrix, and the maximization ranges over all unitary operators acting onH.Obviously, the equality(1)cannot be directly applied to design VQAs,since some optimization methods cannot be used for the absolute value function.The following simple proposition gives an alternative to (1), and then VQAs can be easily constructed.

    Proposition 1.Let A be any operator acting on the Hilbert spaceH.Then

    where the optimization is over all unitary operators acting on systemH, and? denotes the conjugate transpose of matrix.

    Proof.On the one hand, by (1),

    On the other hand,by(1)there must exist a unitary operator V and a real number θ such that

    This completes the proof. □

    For any Hermitian operator A, it is easy to get

    where λi, i=1, 2, …, n, are eigenvalues of A.If A is not Hermitian, we can define the operator

    From [5],is Hermitian, andThus, in this section,the VQAs are only designed for Hermitian operators.

    Proposition 1 gives us a favorable variational form.According to this form, in the next subsections, we will present VQAs (QVTN) to estimate the trace norms of the Hermitian operator H.

    2.2.The QVTN algorithm based on state decomposition

    Assume that H acting on the Hilbert spaceH is Hermitian,then H can always be decomposed [2, 35] as

    where ri,i=1,2,…,d,are real numbers,and ρi,i=1,2,…,d, are density matrices.In fact, any Hermitian matrix can easily be decomposed into the above form; see, e.g.equation (14) in algorithm 2.Meanwhile, the calculation of generalized trace distance in section 3 also uses the decomposition as a special case of equation (8).Based on (8), the following VQA gives the estimation of the trace norm of H.

    Algorithm 1.The QVTN algorithm based on state decomposition

    1.Inputs: the decomposition (8) of H, parameterized quantum circuits U( θ)with initial parameters θ, and error tolerance ∈.2.For any ≤ i≤ d 1 , applying the Hadamard test to compute the value:() ( ( ()) ( ()))?θ=θ θρ ρ+f U U 1 2 tr tr .i i i (9)3.Compute the value of loss function:() ()θ θ= ∑=l r f .i d i i 1 1(10)4.Perform optimization process to maximize l( θ)1 , update θ.5.Repeat steps 2–4, until the loss function satisfies∣ Δ( θ)∣≤∈l1 .

    As in [16, algorithm 1], the parameterized quantum circuits is composed by single qubit rotations and two qubit CNOT gates and here the parameterθ= (θ1,θ2, … ,θ m)t,where t represents the transpose of matrix.Figure 1 is a schematic diagram of the circuits.Specifically, the parameterized circuits

    Figure 1.The parameterized quantum circuit for U(θ).The parameters are trained to optimize the loss functions.Here D denotes the circuit depth and N represents the qubit numbers.

    For j=1, 2, …, m, we consider

    where Hjis tensor product of Pauli matrices.

    Proposition 2.The loss functionl1(θ)and the gradient of it can be estimated on near-term quantum devices.

    Proof.Our loss function can be efficiently computed by the Hadamard test[36].The schematic diagram is shown in figure 3.We briefly summarize the key points of Hadamard test here.

    In the step 2 of algorithm 1,by adding an ancillary qubit,Re ( tr (ρU))for any state ρ and unitary U can be computed by quantum Hadamard test.As in figure 3, after the application of the circuit before measurement, the initial statesδin= ∣0 〉 〈 0∣?ρbecomes

    Measuring the ancillary state with the Pauli operatorσzyields the expectation value

    Thus the loss functionl1(θ)can be efficiently calculated in near-term devices by the Hadamard test.

    In addition, according to the specific calculation process in appendix, we get a fact that the derivatives of the loss functionl1(θ)are given by several terms which can be estimated by rotating the parameters of the Hadamard test circuits in figure 3.Hence, the gradient of loss functionl1(θ)can be estimated on near-term quantum devices. □

    If the decomposition of H (8) is not available, we can choose a parameter α to construct the following two states:

    For example, α can be chosen to be ∑i|hii| with hiibeing the diagonal element of H.For this case, a simplified form of algorithm 1 is given by algorithm 2.

    Algorithm 2.The QVTN algorithm based on QRAM

    1.Inputs:ρ ρ+, - , parameterized quantum circuits U( θ)with initial parameters θ, and tolerance ∈.2.Applying circuits U( θ)to compute the value:() ( ( ()) ( ()))?θ=θ θρ ρ+±±±f U U 1 4 tr tr .(14)3.Compute the value of loss function:() () () () ()θ θ α= + - -+-l αI H f I H fθ tr tr .2(15)4.Perform optimization on l( θ)2 , update θ.5.Repeat steps 2–4, until the loss function satisfies∣Δ ( θ)∣≤∈l2 .

    In the step 2 of algorithm 2,we can use swap test[37]to compute the trace of the product of a density matrix and a unitary matrix.Given a general quantum state ρ, it can be expressed as a linear combinationin the computation basis.The vector representation of ρ can be written as

    Finally,

    can be efficiently estimated via the simple swap test.

    However, the QRAM approach requires great amount of qubits to convert classical data into corresponding quantum states[40],making it not suitable in the current NISQ devices.Here we give alternative methods to efficiently obtain the state|I〉.Figure 2 shows the corresponding quantum circuit to implement |I〉, consisting of the Hadamard gate H, Pauli operator σzand CNOT gates.To our knowledge, there is no effective method to prepare |ρ〉 except QRAM.Thus, for the preparation of |ρ〉, it is worth studying new methods that are suited for the NISQ devices in the future.

    Figure 2.The preparation for state |I〉.

    2.3.The QVTN algorithm based on unitary decomposition

    Assume that the Hermitian operator H acting on the Hilbert spaceH can be written as

    where ki,i=1,2,…,n,are real numbers and Ui,i=1,2,…,n,are unitary matrices.This assumption is often employed in many physical systems such as molecules or the Fermi–Hubbard model [13, 16, 41].Based on (19), the following VQA gives the estimation of the trace norm of H.

    Algorithm 3.The QVTN algorithm based on unitary decomposition

    1.Inputs: the decomposition (19) of H, parameterized quantum circuits U( θ)with initial parameters θ, and error tolerance ∈.2.For any ≤ i≤ n 1 , applying the Hadamard test in figure 4 to compute the value:() ( ( ()) ( ()))? ?θ=θ θ+f U U U U 1 2 tr tr .i i i (20)3.Compute the value of loss function:() ()θ θ= ∑=l k f .in i i 3 1 (21)4.Perform optimization process to maximize l( θ)3 , update θ.5.Repeat steps 2–4, until the loss function satisfies∣ Δ ( θ)∣≤∈l3 .

    It is obvious that when we replace the state ρ with identity matrix I in figure 3, tr(UiU)for any unitary Uiand U can be computed by the Hadamard test.We draw a simple diagram in figure 4.Thus,the loss function l3(θ)in algorithm 3 can be efficiently calculated in near-term quantum devices.In addition,the optimization of functions l1(θ),l2(θ)and l3(θ)will be discussed in section 4.

    Recently, Wang et al [16] provide a VQA for determining the largest T singular values of a given n×n matrix M,the related loss function L(α,β)is the linear combination of Re〈ψj∣U?(α)MV(β)∣ψj〉with weight qj, j=1, 2, …, T.Hereare computational basis and U(α), V(β) are unitary circuits.We notice that this method can also give an estimation of the trace norm by calculating all singular values when T=n.Compared with it,our algorithms directly obtain an estimation of the trace norm through training parameters instead of requiring the specific information of all singular values.Thus, our methods greatly reduce the demands of quantum resources and circuits complexity.In addition, our loss functions only contain one parameter vector which are more conducive for us to find the global optimum.

    The paper [35] also have proposed a VQA for trace norms of Hermite matrix.They evaluated the trace norms due to the following formula

    Figure 3.The Hadamard test for estimating tr( ρU).

    Figure 4.The Hadamard test for estimating tr(Ui U).

    whereQR=trAQ AR, QAR=U(H ?|r〉〈r|R)U?, |r〉 is an ancillary qubit in system R,and the optimization is over all unitary matrices on composite system AR.Compared with it, our methods have the following advantages.On the one hand,our algorithms do not need purification of the quantum state which may be hard to implement in near-term quantum circuits.On the other hand, we only use an ancillary qubit to compute the value of loss function instead of participating in the unitary evolution process of the whole system.Thus, our main variational processes are only local unitary evolution which greatly reduces the difficulty of operation and resource requirements.

    3.Applications

    3.1.Estimation of generalized trace distances

    The generalized distance [42, 43] is a measure of non-Markovianity for an open system dynamics which has significant effect in digital geometry.The generalized trace distance between two states ρ and σ acting on the Hilbert spaceH is defined as

    where p1and p2are real numbers.Therefore, we design the following functions from algorithm 1 to estimate the generalized trace distances.Let

    then we choose

    as our loss function which is the linear combination of fρ(θ)and fσ(θ).

    It is of great significance because the trace distance qualifies how different the two quantum states are.

    3.2.Variational algorithms for recognizing and quantifying entanglement

    Our VQAs can also be used for recognizing and quantifying entanglement.In this section, we review the bipartite entanglement and use QVTN algorithms for recognizing and quantifying entanglement.

    A bipartite state ρ is said to be separable[44,45]if it can be written as

    where 0 <pi≤1, ∑ipi=1, and{∣φi〉}iand{∣φi〉}iare pure states on subsystem A and B, respectively.Consequently, a bipartite state ρ is entangled if it cannot be decomposed into the above form.

    The realignment criterion in [46] says that a bipartite quantum state ρABinCk1?Ck2is separable, then

    where R(ρAB)is the realignment matrix of ρAB.Thus we can judge that a state ρABis entangled by calculating the trace norm ‖R(ρAB)‖1according to our QVTN algorithms.The QVTN algorithms are also useful in permutation criterion[47]and correlation matrix criteria[29]by estimating trace norms.

    As we all know the logarithmic negativity [45, 48] of a quantum state is a good entanglement measure which has wide applications in quantum information.The logarithmic negativity of a bipartite state ρABis defined as

    where TBis the partial transpose with subsystem B.So the logarithmic negativity can be efficiently estimated by our QVTN algorithms.

    4.Numerical experiments

    4.1.Optimization of the loss function

    In this section, we discuss the optimization of loss functions li(θ)for i=1,2,3,4.There are many optimization algorithms ranging from gradient-free methods to gradient-based methods.Here we choose gradient descent (GD) [49] algorithm which can be used for first-order gradient-based optimization of loss functions.

    GD algorithm is a common method to solve unconstrained optimization problems, and has a wide range of applications in optimization, statistics, and machine learning.This method is generally used to find the minimum value of the objective functions.We need to select the initial parametersproperly, and then move to the next point according to the gradient direction of the objective function.The iterative formula is as follows:

    the parameter γ is a positive learning rate which determines the step length of each iteration and hereSee the appendix for the specific process of calculating the gradient of li(θ) for i=1, 2, 3, 4.

    4.2.Numerical experiments

    In this section, we apply our algorithms 1 and 3 to estimat e the trace norm of two qubit Hermite matrix.We utilize a hardware efficient ansatz in the simulation including parameterized Ryand Rzoperations and CNOT gates.Consider the following matrix

    where σxand σzare the Pauli matrices.Our experiments apply a quantum circuit with L=2 layers with initial state|ψin〉=|0〉?|0〉.All numerical simulations and optimization are prepared via Paddle Quantum [50] on the PaddlePaddle Deep Learning Platform [51].The figure 5 plots the trace norm of matrix M via iterations.Our experiment values are presented with purple dashed line compared with theoretical result with blue points.The learning rate we set is LR=0.1.As shown in figure 5, we can see that the loss function has reached global optimum corresponding to the theoretical result.Thus, we can find the the trace norm of matrix M and obtain the associated parameter θopt.The quantum parameterized circuit after training is shown in figure 6.

    Figure 5.The trace norm of matrix M learned by our QVTN algorithms.

    Figure 6.The quantum parameterized circuit after training used in numerical simulations.

    5.Conclusions

    In conclusion, we have presented three VQAs for estimating trace norms.The algorithms 1 and 2 are based on state decomposition, and algorithm 3 is based on unitary decomposition.The advantages of our algorithms are as follows.Firstly, our algorithms do not need Hamiltonian simulation[52], phase estimation [2] and amplitude amplification [53],showing efficient availability in NISQ era.Secondly, our method directly estimate the value of the trace norms rather than their bounds.Thirdly,our main variational processes are local unitary evolution which greatly reduces the cost.

    Our algorithms have a wide range of applications in quantum information.A direct application is to calculate the trace distance that can be applied to quantify the distinction between two quantum states.Our algorithms may have further applications in quantifying the security of quantum cryptography protocols[54]and Bell non-locality[55],which have significant effects in entanglement, coherence and other quantum resources [56–58].

    Acknowledgments

    The authors thank the referees and the editor for their invaluable comments.

    Appendix.Optimization of the loss functions

    In this section, we present the detailed calculation process on the gradients of the loss functions li(θ) for i=1, 2, 3, 4.

    Consider the parameterized circuits

    where the second equality is due to the following property

    Therefore

    whereθ+j= (θ1,… ,θj+π,… ,θm)t.

    Similarly, we have

    We know, in algorithm 1, the loss function

    where, for 1 ≤i ≤d,

    So

    Hence,

    We can perform the same process to compute the gradient of l2(θ), l3(θ) and l4(θ).

    男女视频在线观看网站免费 | 成人永久免费在线观看视频| 黄色成人免费大全| 2021天堂中文幕一二区在线观| 久久这里只有精品中国| 少妇裸体淫交视频免费看高清 | 亚洲色图av天堂| 日本免费一区二区三区高清不卡| 19禁男女啪啪无遮挡网站| 一个人免费在线观看的高清视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产精品久久男人天堂| 午夜福利视频1000在线观看| 国产高清有码在线观看视频 | 国产精品,欧美在线| 亚洲专区中文字幕在线| 老汉色∧v一级毛片| 此物有八面人人有两片| 亚洲国产看品久久| 一区福利在线观看| 波多野结衣高清作品| 亚洲七黄色美女视频| 欧美色视频一区免费| 日韩高清综合在线| 精品无人区乱码1区二区| 又爽又黄无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 蜜桃久久精品国产亚洲av| 一个人免费在线观看电影 | 天天添夜夜摸| 色播亚洲综合网| www.www免费av| 亚洲五月天丁香| 国产成人aa在线观看| 久久精品国产99精品国产亚洲性色| 人妻久久中文字幕网| 精品日产1卡2卡| www.精华液| 夜夜躁狠狠躁天天躁| 亚洲av片天天在线观看| 精品不卡国产一区二区三区| 国产成人系列免费观看| 十八禁网站免费在线| 久久久久久久午夜电影| 精品久久久久久久末码| 给我免费播放毛片高清在线观看| e午夜精品久久久久久久| 男男h啪啪无遮挡| 男人舔女人的私密视频| 免费观看人在逋| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 欧美+亚洲+日韩+国产| 久久香蕉国产精品| 国产视频内射| 欧美不卡视频在线免费观看 | 久久午夜综合久久蜜桃| 欧美日韩黄片免| 波多野结衣高清作品| 真人一进一出gif抽搐免费| 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 露出奶头的视频| 精品无人区乱码1区二区| 韩国av一区二区三区四区| 亚洲乱码一区二区免费版| 最近视频中文字幕2019在线8| 亚洲人成伊人成综合网2020| www日本在线高清视频| 色噜噜av男人的天堂激情| 欧美成人性av电影在线观看| 级片在线观看| 亚洲专区中文字幕在线| 18禁美女被吸乳视频| 免费看日本二区| 超碰成人久久| 国产又色又爽无遮挡免费看| 欧美性猛交黑人性爽| 欧美成人性av电影在线观看| 国产精品爽爽va在线观看网站| 国产精品自产拍在线观看55亚洲| 欧洲精品卡2卡3卡4卡5卡区| 看免费av毛片| 动漫黄色视频在线观看| 亚洲真实伦在线观看| 国产一区二区激情短视频| 亚洲人成电影免费在线| 国产精品电影一区二区三区| 午夜福利18| 国产黄色小视频在线观看| 欧美一级毛片孕妇| 日韩中文字幕欧美一区二区| 九九热线精品视视频播放| 亚洲人成伊人成综合网2020| 亚洲色图av天堂| 久久天堂一区二区三区四区| bbb黄色大片| 中文资源天堂在线| av欧美777| a级毛片在线看网站| 亚洲欧洲精品一区二区精品久久久| 精品国产亚洲在线| 亚洲人成77777在线视频| 欧美黄色淫秽网站| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| 久久性视频一级片| 亚洲av片天天在线观看| 在线视频色国产色| 亚洲一码二码三码区别大吗| 久久久精品大字幕| 97碰自拍视频| 亚洲av熟女| 国产精品永久免费网站| 999精品在线视频| 亚洲精品粉嫩美女一区| 婷婷丁香在线五月| 日本黄大片高清| 国产亚洲欧美在线一区二区| 可以免费在线观看a视频的电影网站| 欧美不卡视频在线免费观看 | 国产1区2区3区精品| 久久久久亚洲av毛片大全| 国产亚洲精品久久久久5区| 蜜桃久久精品国产亚洲av| 亚洲中文字幕日韩| 成在线人永久免费视频| 黄色丝袜av网址大全| 精品国产超薄肉色丝袜足j| 九色成人免费人妻av| xxxwww97欧美| 久久香蕉精品热| 波多野结衣高清作品| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 精品久久蜜臀av无| 女同久久另类99精品国产91| 亚洲人成77777在线视频| 色综合欧美亚洲国产小说| 在线观看66精品国产| 五月玫瑰六月丁香| 久久草成人影院| 变态另类成人亚洲欧美熟女| 久久久久久大精品| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯| 国产aⅴ精品一区二区三区波| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 激情在线观看视频在线高清| 丁香欧美五月| 99riav亚洲国产免费| 亚洲第一欧美日韩一区二区三区| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 国产激情久久老熟女| 久久精品91蜜桃| 91成年电影在线观看| 欧美一级毛片孕妇| 日韩免费av在线播放| 少妇裸体淫交视频免费看高清 | 啦啦啦免费观看视频1| 又大又爽又粗| 欧美日本视频| 岛国视频午夜一区免费看| 精品欧美国产一区二区三| 99久久99久久久精品蜜桃| 中文字幕人成人乱码亚洲影| 亚洲色图 男人天堂 中文字幕| 亚洲午夜理论影院| 国产精品,欧美在线| 午夜激情福利司机影院| 777久久人妻少妇嫩草av网站| 99精品欧美一区二区三区四区| 1024手机看黄色片| 日日摸夜夜添夜夜添小说| 18禁观看日本| 欧美性猛交╳xxx乱大交人| 国产69精品久久久久777片 | 亚洲欧美日韩东京热| 精品一区二区三区视频在线观看免费| 久久午夜综合久久蜜桃| 动漫黄色视频在线观看| 欧美黑人精品巨大| 国产av又大| 中文字幕久久专区| 精品人妻1区二区| av在线天堂中文字幕| 亚洲免费av在线视频| 欧美精品啪啪一区二区三区| 国产精品久久久久久精品电影| 香蕉国产在线看| 免费在线观看日本一区| 神马国产精品三级电影在线观看 | 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 亚洲成人精品中文字幕电影| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 一区福利在线观看| 日韩高清综合在线| 一级毛片女人18水好多| ponron亚洲| 亚洲人成77777在线视频| 婷婷丁香在线五月| 麻豆成人av在线观看| 精品乱码久久久久久99久播| 黄片大片在线免费观看| 最近最新中文字幕大全电影3| 国产一级毛片七仙女欲春2| 天堂√8在线中文| 99精品久久久久人妻精品| 怎么达到女性高潮| 日本黄色视频三级网站网址| 丰满人妻一区二区三区视频av | 国产精品国产高清国产av| 日韩精品免费视频一区二区三区| 欧美在线一区亚洲| 国产高清videossex| 亚洲 欧美 日韩 在线 免费| 国产精品日韩av在线免费观看| xxxwww97欧美| 免费无遮挡裸体视频| av欧美777| 最近最新免费中文字幕在线| √禁漫天堂资源中文www| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 一本久久中文字幕| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 亚洲国产欧美人成| 欧美3d第一页| 岛国在线观看网站| 香蕉av资源在线| 国产欧美日韩一区二区精品| 在线a可以看的网站| 91成年电影在线观看| 制服人妻中文乱码| 色噜噜av男人的天堂激情| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 亚洲av熟女| 久久久久久久久中文| 丰满人妻一区二区三区视频av | 久久久久久久精品吃奶| 国产成+人综合+亚洲专区| 亚洲男人天堂网一区| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 天天一区二区日本电影三级| 久久中文字幕人妻熟女| 男男h啪啪无遮挡| 欧美黄色片欧美黄色片| 亚洲第一电影网av| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 国产视频一区二区在线看| 一个人免费在线观看电影 | 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站| 国产精品一区二区精品视频观看| 大型av网站在线播放| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 亚洲男人的天堂狠狠| 国产三级中文精品| 在线观看日韩欧美| 日本黄大片高清| 1024视频免费在线观看| 老司机在亚洲福利影院| 国产成人精品无人区| 国产成人精品久久二区二区免费| www.999成人在线观看| 国产精品永久免费网站| 啦啦啦免费观看视频1| 非洲黑人性xxxx精品又粗又长| 亚洲成人免费电影在线观看| 大型av网站在线播放| 好看av亚洲va欧美ⅴa在| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 国产蜜桃级精品一区二区三区| 久久久国产成人精品二区| 日本免费一区二区三区高清不卡| 别揉我奶头~嗯~啊~动态视频| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 亚洲自偷自拍图片 自拍| 欧美性猛交黑人性爽| 50天的宝宝边吃奶边哭怎么回事| 美女高潮喷水抽搐中文字幕| 日本一本二区三区精品| 国产私拍福利视频在线观看| 欧美大码av| 国产主播在线观看一区二区| 精品日产1卡2卡| 村上凉子中文字幕在线| 久久久久性生活片| 亚洲真实伦在线观看| 免费在线观看黄色视频的| 一区二区三区激情视频| 禁无遮挡网站| 久久精品91蜜桃| 日本 欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 淫秽高清视频在线观看| 精品久久久久久久人妻蜜臀av| 岛国视频午夜一区免费看| 高清在线国产一区| 他把我摸到了高潮在线观看| 日韩欧美国产在线观看| 国产精品免费一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| av欧美777| 91麻豆av在线| av国产免费在线观看| 欧美丝袜亚洲另类 | 长腿黑丝高跟| 啦啦啦观看免费观看视频高清| 亚洲激情在线av| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 狂野欧美激情性xxxx| 男女午夜视频在线观看| 最新在线观看一区二区三区| 国产野战对白在线观看| 久久久国产成人精品二区| 女人高潮潮喷娇喘18禁视频| 久久久久久亚洲精品国产蜜桃av| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 男人舔奶头视频| 亚洲精品久久国产高清桃花| 人妻丰满熟妇av一区二区三区| 国产又黄又爽又无遮挡在线| 精品国产超薄肉色丝袜足j| 在线免费观看的www视频| 最新在线观看一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 欧美丝袜亚洲另类 | 日本熟妇午夜| 亚洲精品色激情综合| 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av| 国产亚洲欧美在线一区二区| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| а√天堂www在线а√下载| 国产av麻豆久久久久久久| 一级a爱片免费观看的视频| 麻豆国产av国片精品| 日韩精品中文字幕看吧| 亚洲无线在线观看| 亚洲国产精品久久男人天堂| 久久久久久九九精品二区国产 | 搡老熟女国产l中国老女人| 国产精品免费一区二区三区在线| 成人国语在线视频| 麻豆久久精品国产亚洲av| 久久中文字幕一级| 欧美中文综合在线视频| 日韩欧美 国产精品| 精品国产乱码久久久久久男人| 一本精品99久久精品77| 好男人电影高清在线观看| 色综合站精品国产| 在线播放国产精品三级| 国内精品久久久久精免费| 国产精品综合久久久久久久免费| 国产精品久久久久久人妻精品电影| 日本三级黄在线观看| 国产男靠女视频免费网站| 成人av在线播放网站| 亚洲成av人片在线播放无| 1024香蕉在线观看| 两人在一起打扑克的视频| 亚洲成人免费电影在线观看| 久久中文字幕一级| 欧美久久黑人一区二区| 嫩草影视91久久| 又大又爽又粗| 搞女人的毛片| 久久精品影院6| 国内久久婷婷六月综合欲色啪| 女人高潮潮喷娇喘18禁视频| 午夜精品在线福利| 亚洲av五月六月丁香网| a级毛片a级免费在线| 99热这里只有是精品50| 美女午夜性视频免费| 美女 人体艺术 gogo| 亚洲最大成人中文| 亚洲精品国产精品久久久不卡| 欧美中文综合在线视频| 午夜免费成人在线视频| 久久午夜亚洲精品久久| 亚洲午夜精品一区,二区,三区| 色综合站精品国产| 成人18禁高潮啪啪吃奶动态图| 日本五十路高清| 日韩高清综合在线| 久久精品亚洲精品国产色婷小说| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| 人人妻,人人澡人人爽秒播| 亚洲成av人片免费观看| 国产在线精品亚洲第一网站| av在线播放免费不卡| 成人av在线播放网站| 日本黄色视频三级网站网址| 岛国在线免费视频观看| 久久久精品大字幕| 亚洲成人中文字幕在线播放| 午夜激情福利司机影院| 夜夜看夜夜爽夜夜摸| 岛国在线免费视频观看| 亚洲av中文字字幕乱码综合| avwww免费| 久99久视频精品免费| 国产亚洲精品久久久久久毛片| 听说在线观看完整版免费高清| 国产精品一区二区免费欧美| 日韩精品免费视频一区二区三区| 又爽又黄无遮挡网站| 最好的美女福利视频网| bbb黄色大片| 欧美日韩黄片免| 大型av网站在线播放| 欧美日本视频| 天堂√8在线中文| 国内久久婷婷六月综合欲色啪| 男女午夜视频在线观看| 亚洲欧美日韩高清专用| 又黄又粗又硬又大视频| 久久久水蜜桃国产精品网| 亚洲国产精品久久男人天堂| 午夜视频精品福利| 99国产精品一区二区蜜桃av| 午夜久久久久精精品| 女人高潮潮喷娇喘18禁视频| 亚洲成av人片免费观看| 国产黄片美女视频| 亚洲av电影在线进入| 一本精品99久久精品77| 亚洲真实伦在线观看| av超薄肉色丝袜交足视频| 不卡av一区二区三区| 久久久久久久久久黄片| 99久久国产精品久久久| 1024视频免费在线观看| 最近在线观看免费完整版| 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久久久久| 啦啦啦免费观看视频1| 好男人在线观看高清免费视频| www日本在线高清视频| or卡值多少钱| 久久热在线av| 一区福利在线观看| 欧美色欧美亚洲另类二区| av天堂在线播放| 久久香蕉激情| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 美女午夜性视频免费| 在线观看免费日韩欧美大片| 国产成人精品久久二区二区免费| 日本精品一区二区三区蜜桃| 特大巨黑吊av在线直播| 少妇粗大呻吟视频| 久久久久国内视频| 成人高潮视频无遮挡免费网站| 叶爱在线成人免费视频播放| 中文字幕av在线有码专区| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 欧美色欧美亚洲另类二区| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器 | 国产av不卡久久| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩无卡精品| 国产成人一区二区三区免费视频网站| 色哟哟哟哟哟哟| 日韩大码丰满熟妇| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 精品久久久久久久人妻蜜臀av| 国产蜜桃级精品一区二区三区| 欧美丝袜亚洲另类 | 成人手机av| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 全区人妻精品视频| 一级作爱视频免费观看| 三级国产精品欧美在线观看 | 一本一本综合久久| 午夜两性在线视频| 久久性视频一级片| 亚洲中文字幕一区二区三区有码在线看 | 黄色视频不卡| 午夜日韩欧美国产| 亚洲人成77777在线视频| 国产亚洲精品av在线| 久久精品综合一区二区三区| 中文字幕高清在线视频| 久久久久久国产a免费观看| 国产精品电影一区二区三区| 两个人免费观看高清视频| 性欧美人与动物交配| 麻豆久久精品国产亚洲av| tocl精华| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 搞女人的毛片| 久久人妻福利社区极品人妻图片| 在线观看舔阴道视频| 国产精品爽爽va在线观看网站| 黄色毛片三级朝国网站| 国产蜜桃级精品一区二区三区| 国产高清videossex| 少妇被粗大的猛进出69影院| 国产久久久一区二区三区| 男女下面进入的视频免费午夜| 欧美成人免费av一区二区三区| 搡老岳熟女国产| 成人三级做爰电影| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 美女午夜性视频免费| www.熟女人妻精品国产| 淫秽高清视频在线观看| 黑人巨大精品欧美一区二区mp4| 久久这里只有精品19| 免费av毛片视频| 久久精品国产综合久久久| 这个男人来自地球电影免费观看| 亚洲全国av大片| 最新在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 色av中文字幕| 欧美黑人精品巨大| 美女扒开内裤让男人捅视频| 久久天堂一区二区三区四区| 国内久久婷婷六月综合欲色啪| 男女做爰动态图高潮gif福利片| 特大巨黑吊av在线直播| 在线视频色国产色| 成年免费大片在线观看| 天天躁夜夜躁狠狠躁躁| 非洲黑人性xxxx精品又粗又长| 欧美又色又爽又黄视频| 久久香蕉激情| 日本免费一区二区三区高清不卡| 欧美日韩一级在线毛片| 三级国产精品欧美在线观看 | 亚洲一码二码三码区别大吗| 国内精品一区二区在线观看| 久久亚洲真实| 精品少妇一区二区三区视频日本电影| 桃红色精品国产亚洲av| 国产高清视频在线播放一区| 精品一区二区三区四区五区乱码| 少妇人妻一区二区三区视频| 欧美中文综合在线视频| 黄片小视频在线播放| 啦啦啦观看免费观看视频高清| 一个人免费在线观看的高清视频| 欧美 亚洲 国产 日韩一| 久久精品91无色码中文字幕| 亚洲精品在线美女| 夜夜夜夜夜久久久久| 中文字幕人妻丝袜一区二区| 亚洲午夜精品一区,二区,三区| 一进一出抽搐动态| 18禁国产床啪视频网站| 欧美乱色亚洲激情| 欧美人与性动交α欧美精品济南到| 男人舔女人下体高潮全视频| 天堂av国产一区二区熟女人妻 | 国产成+人综合+亚洲专区| 后天国语完整版免费观看| 日本 av在线| 亚洲av成人一区二区三| 成年人黄色毛片网站| 在线观看一区二区三区| 波多野结衣巨乳人妻| 男人的好看免费观看在线视频 | 精品国产乱子伦一区二区三区| 日韩av在线大香蕉| av天堂在线播放| 亚洲欧美日韩高清在线视频| 亚洲国产欧美一区二区综合| 久久人人精品亚洲av| 国产激情欧美一区二区| 这个男人来自地球电影免费观看| 国产在线观看jvid| 中文字幕高清在线视频| 久久九九热精品免费| 亚洲精品久久成人aⅴ小说| 欧美日本视频| 久久香蕉激情| 国产私拍福利视频在线观看| 欧美日韩瑟瑟在线播放| 日韩有码中文字幕| 国产91精品成人一区二区三区|