• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep learning neural networks for the thirdorder nonlinear Schr?dinger equation:bright solitons, breathers, and rogue waves

    2021-10-12 05:32:00ZijianZhouandZhenyaYan
    Communications in Theoretical Physics 2021年10期

    Zijian Zhou and Zhenya Yan,*

    1 Key Laboratory of Mathematics Mechanization,Academy of Mathematics and Systems Science,Chinese Academy of Sciences, Beijing 100190, China

    2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

    Abstract The dimensionless third-order nonlinear Schr?dinger equation (alias the Hirota equation) is investigated via deep leaning neural networks.In this paper,we use the physics-informed neural networks(PINNs)deep learning method to explore the data-driven solutions(e.g.bright soliton,breather, and rogue waves) of the Hirota equation when the two types of the unperturbated and perturbated(a 2%noise)training data are considered.Moreover,we use the PINNs deep learning to study the data-driven discovery of parameters appearing in the Hirota equation with the aid of bright solitons.

    Keywords:third-order nonlinear Schr?dinger equation,deep learning,data-driven solitons,datadriven parameter discovery

    1.Introduction

    As a fundamental and prototypical physical model, the nonlinear Schr?dinger (NLS) equation is

    where q = q(x, t) denotes the complex field, and the subscripts stand for the partial derivatives with respect to the variables,σ = 1 and σ = -1 corresponds to the focusing and defocusing interactions, respectively.Equation (1) can be used to describe the wave propagation in many fields of Kerr nonlinear and dispersion media such as plasmas physics,deep ocean, nonlinear optics, Bose–Einstein condensate, and even finance (see, e.g.[1–8] and references therein).When the ultra-short laser pulse (e.g.100 fs [7]) propagation were considered, the study of the higher-order dispersive and nonlinear effects is of important significance, such as thirdorder dispersion, self-frequency shift, and self-steepening arising from the stimulated Raman scattering [9–11].The third-order NLS equation (alias the Hirota equation [12]) is also a fundamental physical model.The Hirota equation and its extensions can also be used to describe the strongly dispersive ion-acoustic wave in plasma [13] and the broaderbanded waves on deep ocean[14,15].The Hirota equation is completely integrable, and can be solved via the bi-linear method [12], inverse scattering transform [16, 17], and Darboux transform (see, e.g.[18–22]), and etc.Recently, we numerically studied the spectral signatures of the spatial Lax pair with distinct potentials (e.g.bright solitons, breathers,and rogue waves) of the Hirota equation [23].

    Up to now, artificial intelligence and machine learning have been widely used to powerfully deal with big data, and play a more and more important role in the various fields,such as language translation, computer vision, speech recognition, and so on [24, 25].More recently, the deep neural networks were presented to study the data-driven solutions and parameter discovery of nonlinear physical models [26–36].Particularly, the physics-informed neural networks(PINNs)technique[28,32]were developed to study nonlinear partial differential equations.In this paper, we would like to extend the PINNs deep learning method to investigate the data-driven solutions and parameter discovery for the focusing third-order NLS equation (alias the Hirota equation) with initial-boundary value conditions

    where q = q(x, t) is a complex envelope field, α and β are real constants for the second- and third-order dispersion coefficients, respectively.For β = 0, the Hirota equation (2)becomes a NLS equation, whereas α = 0, the Hirota equation (2) reduces to the complex modified KdV equation [12].

    2.The PINN scheme for the data-driven solutions

    2.1.The PINNs scheme

    In this section, we would like to simply introduce the PINN deep learning method [32] for the data-driven solutions.The main idea of the PINN deep learning method is to use a deep neural network to fit the solutions of equation (2).Letq(x,t) =u(x,t) +iv(x,t)withu(x,t) ,v(x,t)being its real and imaginary parts,respectively.The complex-valued PINNF(x,t) =Fu(x,t) +iFv(x,t) withFu(x,t) ,Fv(x,t) being its real and imaginary parts, respectively are written as

    and proceeded by approximating q(x,t)by a complex-valued deep neural network.In the PINN scheme, the complexvalued neural networkq(x,t) =(u(x,t) ,v(x,t)) can be written as

    Based on the defined q(x, t), the PINN F(x, t) can be taken as

    The shared parameters, weights and biases, between the neural network=u(x,t) +iv(x,t) andF(x,t)=Fu(x,t) +iFv(x,t) can be learned by minimizing the whole training loss (TL), that is, the sum of theL2-norm TLs of the initial data (TLI), boundary data (TLB), and the whole equation F(x, t) (TLS)

    where the mean squared (i.e.L2-norm) errors are chosen for them in the forms

    We would like to discuss some data-driven solutions of equation (2) by the deep learning method.Here we choose a 5-layer deep neural network with 40 neurons per layer and a hyperbolic tangent activation functiontanh(·)

    to approximate the learning solutions, whereAj=anddenote the output and bias column vectors of the jth layer, respectively,stands for the weight matrix of the jth layer,A0= (x,t)T,AM+1=(u,v)T.The real and imaginary parts, u(x, t) and v(x, t), of approximated solution=u(x,t) +iv(x,t) are represented by the two outputs of one neural network (see figure 1 for the PINN scheme).In the following, we consider some fundamental solutions (e.g.bright soliton, breather, and rogue wave solutions) of equation (2) by using the PINNs deep leaning scheme.For the caseαβ≠0 in equation (2),without loss of generality, we can take α = 1, β = 0.01.

    Figure 1.The PINN scheme solving the Hirota equation(2)with the initial and boundary conditions,where the activation function T= tanh(·).

    2.2.The data-driven bright soliton

    The first example we would like to consider is the fundamental bright soliton of equation (2) [9, 12]

    where the third-order dispersion coefficient β stands for the wave velocity, and the sign of β represents the direction of wave propagation [right-going (left-going) travelling wave bright soliton for β >0 (β <0)].

    We here choose L = 10,t0= 0,T = 5,and will consider this problem by choosing two distinct kinds of initial sample points:In the first case,we will choose the NI= 100 random sample points from the initial dataqbs(x,t=0) withx∈ [- 10, 10].But in the second case, we only choose NI= 5 sample points from the initial dataqbs(x,t=0) with 5 equidistant and symmetric pointsx∈ {- 5, -2.5,0, 2.5, 5}.In the both cases, we use the same NB=200 periodic boundary random sample points and NS=10 000 random sample points in the solution region{(x,t,qbs(x,t))∣(x,t) ∈ [- 10, 10] ×[0 , 5]}.It is worth mentioning that the NS= 10 000 sample points are obtained via the Latin Hypercube Sampling strategy [37].

    We emulate the first case of initial data by using 10 000 steps Adam and 10 000 steps L-BFGS optimizations such that figures 2(a1)–(a3)and(b1)–(b3)illustrate the learning results starting from the unperturbated and perturbated (2% noise)training data, respectively.The relative L2- norm errors of q(x, t), u(x, t) and v(x, t), respectively, are 9.3183 ×10-3, 5.3270 × 10-2, 3.8502 × 10-2in figures 2(a1)–(a2),and 7.0707 × 10-3, 2.4057 × 10-2, 1.6464 × 10-2in figures 2(b1)–(a2).Similarly, we use the 20 000 steps Adam and 50 000 steps L-BFGS optimizations for the second case of initial data such that figures 2(c1)–(c3) and (d1)–(b3)illustrate the learning results starting from the unperturbated and perturbated training data, respectively.The relative L2-norm errors of q(x, t), u(x, t) and v(x, t), respectively,are 1.8822 × 10-2, 4.9227 × 10-2, 4.0917 × 10-2in figures 2(c1)–(c2), and 2.5427 × 10-2, 3.4825 × 10-2,2.5983 × 10-2in figures 2(d1)–(d2).Notice that those total learning times are(a)717s,(b)741s,(c)1255s,and(d)1334s,respectively,by using a Lenovo notebook with a 2.6 GHz sixcores i7 processor and a RTX2060 graphics processor.

    Remark.In each step of the L-BFGS optimization, the program is stop at

    where the loss(n) represents the value of loss function in the nth step L-BFGS optimization, and1.0 ×np.finfo (f loat).eps represent Machine Epsilon.When the relative error between loss(n)andloss(n-1)less than Machine Epsilon,procedure would be stop.This is why the computation times are different for each test by using the same step optimization.

    2.3.The data-driven AKM breather solution

    The second example we would like to study is the AKM breather (spatio-temporal periodic pattern) of equation (2)[18]

    whereξ=x- 2β[2 +cos (2c)t],ω=2 sin (2c),p=2 sin(c),and c is a real constant.The wave velocity and wavenumber of this periodic wave are2β(2 + cos (2c)) and p, respectively.This AKM breather differs from the Akhmediev breather (spatial periodic pattern) of the NLS equation because equation(2)contains the third-order coefficient β.In this example, we assume β = 0.01 again.Whent→∞,∣qakm(x,t)∣2→1.Ifβ→0, we haveξ→x, and then AKM breather almost becomes the Akhmediev breather.

    We here choose L = 10 andt∈ [-3, 3],and choose the NI= 100 random sample points from the initial dataqakm(x,t=0), NB= 200 random sample points from the periodic boundary data, and NS= 10 000 random sample points in the solution region (x,t) ∈ [- 1 0, 10] × [- 3, 3].We use the 20 000 Adam and 50 000 L-BFGS optimizations to learn the solutions from the unperturbated and perturbated(a 2% noise) initial data.As a result, figures 3 (a1)–(a3) and(b1)–(b3)exhibit the leaning results for the unperturbated and perturbated (a 2% noise) cases, respectively.The relative L2-norm errors of q(x, t), u(x, t) and v(x, t), respectively, are(a) 1.1011 × 10-2, 3.5650 × 10-2, 5.0245 × 10-2, (b)1.3458 × 10-2,5.1326 × 10-2,7.0242 × 10-2.The learning times are 2268 s and 1848 s, respectively.

    2.4.The data-driven rogue wave solution

    The third example is a fundamental rogue wave solution of equation (2), which can be generated when one takesc→0 in the AKM breather (9) in the form [19]

    Figure 2.Data-driven bright soliton of the Hirota equation(2):(a1),(a2)and(b1),(b2)the learning solutions arising from the unpeturbated and perturbated(2%)training data related to the first case of initial data,respectively;(c1),(c2)and(d1),(d2)the learning solutions arising from the unpeturbated and perturbated(2%)training data related to the first case of initial data,respectively;(a3),(b3),(c3),(d3)the absolute values of the errors between the modules of exact and learning solutions.The relative L2- norm errors of q(x, t), u(x, t) and v(x, t),respectively, are (a1)–(a3) 9.3183 × 10-3, 5.3270 × 10-2, 3.8502 × 10-2, (b1)–(b3) 7.0707 × 10-3, 2.4057 × 10-2, 1.6464 × 10-2,(c1)–(c3) 1.8822 × 10-2, 4.9227 × 10-2, 4.0917 × 10-2, (d1)–(d3) 2.5427 × 10-2, 3.4825 × 10-2, 2.5983 × 10-2.

    Figure 3.Learning breathers related to the AKM breather(9)of the Hirota equation(2).(a1)–(a3)The unperturbated case,(b1)–(b3)the 2%perturbated case.The relative L2- norm errors of q(x, t), u(x, t) and v(x, t), respectively, are (a1)–(a3) 1.1011 × 10-2, 3.5650 × 10-2,5.0245 × 10-2, (b1)–(b3) 1.3458 × 10-2, 5.1326 × 10-2, 7.0242 × 10-2.

    As ∣x∣ ,∣t∣ →∞,∣qrw∣ →1, and maxx,t∣qrw∣ =3.

    We here choose L = 2.5 andt∈ [- 0.5, 0.5], and considerqrw(x,t= -0.5) as the initial condition.We still choose NI= 100 random sample points from the initial dataqrw(x,t= -0.5), NB= 200 random sample points from the periodic boundary data, and NS= 10 000 random sample points in the solution region (x,t) ∈ [- 2 .5, 2.5]×[- 0.5, 0.5].We use the 20 000 steps Adam and 50 000 steps L-BFGS optimizations to learn the rogue wave solutions from the unperturbated and perturbated (a 2% noise) initial data,respectively.As a result, figures 4(a1)–(a3) and (b1)–(b3)exhibit the leaning results for the unperturbated and perturbated (a 2% noise) cases, respectively.The relative L2- norm errors of q(x, t), u(x, t) and v(x, t), respectively, are(a) 6.7597 × 10-3, 8.8414 × 10-3, 1.6590 × 10-2, (b)3.9537 × 10-3, 5.8719 × 10-3, 9.0493 × 10-3.The learning times are 1524 s and 1414 s, respectively.

    3.The PINNs scheme for the data-driven parameter discovery

    In this section, we apply the PINNs deep learning method to study the data-driven parameter discovery of the Hirota equation (2).In the following, we use the deep learning method to identify the parameters α and β in the Hirota equation (2).Moreover, we also use this method to identify the parameters of the high-order terms of equation (2).

    3.1.The data-driven parameter discovery for α and β

    Here we would like to use the PINNs deep learning method to identify the coefficients α, β of second- and third-order dispersive terms in the Hirota equation

    where α, β are the unknown real-valued parameters.

    Letq(x,t) =u(x,t) +iv(x,t) withu(x,t) ,v(x,t)being its real and imaginary parts, respectively, and the PINNsF(x,t) =Fu(x,t) +iFv(x,t) withFu(x,t) ,Fv(x,t)being its real and imaginary parts, respectively, be

    Then the deep neural network is used to learn{u(x,t) ,v(x,t)} and parameters (α, β) by minimizing the mean squared error loss

    Figure 4.Learning rogue wave solution related to equation(10)of the Hirota equation(2).(a1)–(a3) The unperturbated case,(b1)–(b3)the 2% perturbated case.The relative L2- norm errors of q(x, t), u(x, t) and v(x, t), respectively, are (a1)–(a3) 6.7597 × 10-3, 8.8414 × 10-3,1.6590 × 10-2, (b1)–(b3) 3.9537 × 10-3, 5.8719 × 10-3, 9.0493 × 10-3.

    Table 1.Comparisons of α, β and their errors in the different training data-set via deep learning.

    To study the data-driven parameter discovery of the Hirota equation(2)for α,β,we generate a training data-set by using the Latin Hypercube Sampling strategy to randomly select randomly choosing Nq= 10 000 points in the solution region arising from the exact bright soliton (7) with α = 1, β = 0.5 and(x,t) ∈ [- 8 , 8] × [ - 3, 3].Then the obtained data-set is applied to train an 8-layer deep neural network with 20 neurons per layer and a same hyperbolic tangent activation function to approximate the parameters α, β in terms of minimizing the mean squared error loss given by equation (13) starting from α = β = 0 in equation (12).We here use the 20 000 steps Adam and 50 000 steps L-BFGS optimizations.Table 1 illustrates the learning parameters α, β in equation (11) under the cases of the data without perturbation and a 2%perturbation,and their errors of α, β are 3.85 × 10-5, 7.48 × 10-5and 3.31 × 10-4, 2.89 × 10-4, respectively.Figure 5 exhibits the learning solutions and the relative L2- norm errors of q(x, t),u(x, t) and v(x, t): (a1)–(a2) 7.0371 × 10-4, 1.0894 × 10-3,1.0335 × 10-3; (b1)–(b2) 9.4420 × 10-4, 1.4055 × 10-3,1.2136 × 10-3, where the training times are (a1)–(a2) 1510 s and (b1)–(b2) 3572 s, respectively.

    3.2.The data-driven parameter discovery for μ and ν

    In what follows,we will study the learning coefficients of the high-order term in equation(2)via the deep learning method.We consider the Hirota equation (2) with two parameters in the form

    where μ and ν are the unknown real constants of higher-order dispersion and nonlinear terms, respectively.

    Letq(x,t) =u(x,t) +iv(x,t) withu(x,t) ,v(x,t)being its real and imaginary parts, respectively, and the PINNsF(x,t) =Fu(x,t) +iFv(x,t) withFu(x,t) ,Fv(x,t)being its real and imaginary parts, respectively, be Then the deep neural network is used to learn{u(x,t) ,v(x,t)}and parameters(μ,ν)by minimizing the mean squared error loss given by equation (13).

    Figure 5.Data-driven parameter discovery of α and β in the sense of bright soliton (7).(a1)–(a2) Bright soliton without perturbation.(b1)–(b2) Bright soliton with a 2% noise.(a2), (b2) The absolute value of difference between the modules of exact and learning bright solitons.The relative L2- norm errors of q(x, t), u(x, t) and v(x, t), respectively, are (a1)–(a2) 7.0371 × 10-4, 1.0894 × 10-3, 1.0335 ×10-3, (b1)–(b2) 9.4420 × 10-4, 1.4055 × 10-3, 1.2136 × 10-3.

    Table 2.Comparisons of μ, ν and their errors in the different training data-set via deep learning.

    To illustrate the learning ability, we still use an 8-layer deep neural network with 20 neurons per layer.We choose Nq= 10 000 sample points by the same way in the interior of solution region.The 20 000 steps Adam and 50 000 steps L-BFGS optimizations are used in the training process.Table 2 exhibits the training value and value errors of μ and ν in different training data set.And the results of neural network fitting exact solution are shown in figure 6.The training times are (a1)–(a2) 1971 s and (b1)–(b2) 1990 s, respectively.

    Figure 6.Data-driven parameter discovery of μ and ν in the sense of bright soliton(7).(a)(b)display the learning result under bright soliton data set.(a1)–(a2)are calculated without perturbation.(b1)–(b2)are calculated with 2%perturbation.(a2)and(b2)exhibit absolute value of difference between real solution and the function represented by the neural network.The relative L2- norm error of q(x,t),u(x,t)and v(x,t),respectively, are (a1)–(a2) 8.0153 × 10-4, 1.0792 × 10-3, 1.2177 × 10-3, (b1)–(b2) 1.0770 × 10-3, 1.6541 × 10-3, 1.3370 × 10-3.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos.11 925 108 and 11 731 014).

    亚洲国产av新网站| videosex国产| 亚洲精品国产av蜜桃| 亚洲av电影在线观看一区二区三区| 亚洲av电影在线进入| 我要看黄色一级片免费的| 亚洲精品日韩在线中文字幕| 欧美+亚洲+日韩+国产| 一本久久精品| 欧美日韩视频精品一区| 国产xxxxx性猛交| 高清不卡的av网站| 别揉我奶头~嗯~啊~动态视频 | 女人高潮潮喷娇喘18禁视频| 国产亚洲午夜精品一区二区久久| 午夜福利在线免费观看网站| 亚洲国产毛片av蜜桃av| 国产成人一区二区在线| 久久久国产欧美日韩av| 欧美大码av| 日韩av免费高清视频| 又紧又爽又黄一区二区| 成人国语在线视频| 成人免费观看视频高清| 久久久久久免费高清国产稀缺| 日日摸夜夜添夜夜爱| 性少妇av在线| 老汉色av国产亚洲站长工具| 一级黄色大片毛片| 久久影院123| 日韩,欧美,国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 叶爱在线成人免费视频播放| 欧美成人精品欧美一级黄| 久久影院123| 少妇人妻久久综合中文| 叶爱在线成人免费视频播放| 亚洲专区中文字幕在线| 久久热在线av| 麻豆国产av国片精品| 久久人妻熟女aⅴ| 亚洲国产精品国产精品| 在线 av 中文字幕| 好男人视频免费观看在线| 中文欧美无线码| 两个人免费观看高清视频| 精品福利观看| 久久99热这里只频精品6学生| 一级,二级,三级黄色视频| tube8黄色片| 精品少妇内射三级| 免费久久久久久久精品成人欧美视频| 精品免费久久久久久久清纯 | 亚洲精品在线美女| 亚洲精品国产一区二区精华液| a级毛片在线看网站| 色网站视频免费| 日韩制服丝袜自拍偷拍| 欧美大码av| 国产精品偷伦视频观看了| 大话2 男鬼变身卡| 少妇精品久久久久久久| av国产精品久久久久影院| 青草久久国产| 国产成人精品久久久久久| 巨乳人妻的诱惑在线观看| 久久精品国产综合久久久| 一本色道久久久久久精品综合| 亚洲天堂av无毛| 国产欧美日韩精品亚洲av| 悠悠久久av| 一级黄色大片毛片| xxxhd国产人妻xxx| 免费在线观看黄色视频的| 肉色欧美久久久久久久蜜桃| 国产精品九九99| 亚洲 国产 在线| 我要看黄色一级片免费的| 99久久99久久久精品蜜桃| 亚洲国产av影院在线观看| 一级毛片黄色毛片免费观看视频| 人妻一区二区av| 国产无遮挡羞羞视频在线观看| 欧美日韩视频高清一区二区三区二| 最黄视频免费看| 亚洲美女黄色视频免费看| 91精品三级在线观看| 97人妻天天添夜夜摸| 超碰成人久久| 国产片内射在线| 欧美日韩视频精品一区| 日韩一本色道免费dvd| 岛国毛片在线播放| 狠狠精品人妻久久久久久综合| 在线观看免费高清a一片| 久久综合国产亚洲精品| 欧美精品人与动牲交sv欧美| 成年动漫av网址| 日韩 欧美 亚洲 中文字幕| 亚洲欧美精品综合一区二区三区| 中文字幕最新亚洲高清| 亚洲熟女精品中文字幕| 国产成人精品久久久久久| 亚洲精品国产av蜜桃| 咕卡用的链子| 国产成人精品久久二区二区免费| 狂野欧美激情性xxxx| 日韩一本色道免费dvd| 夫妻性生交免费视频一级片| kizo精华| 999精品在线视频| www日本在线高清视频| 青青草视频在线视频观看| 男女床上黄色一级片免费看| 亚洲国产精品国产精品| 激情视频va一区二区三区| 脱女人内裤的视频| 十分钟在线观看高清视频www| 国产一区二区在线观看av| 国产高清不卡午夜福利| 日韩一区二区三区影片| 欧美中文综合在线视频| 亚洲国产av新网站| 免费女性裸体啪啪无遮挡网站| 宅男免费午夜| kizo精华| 久久久久久久国产电影| 一本大道久久a久久精品| 欧美 亚洲 国产 日韩一| 国产男女内射视频| 一区在线观看完整版| 日韩av不卡免费在线播放| 国产欧美日韩一区二区三 | 久久ye,这里只有精品| 极品人妻少妇av视频| 免费观看人在逋| 人人妻人人爽人人添夜夜欢视频| 日韩视频在线欧美| 亚洲国产精品成人久久小说| 成人18禁高潮啪啪吃奶动态图| 国产极品粉嫩免费观看在线| 国产成人精品无人区| 欧美97在线视频| 一级黄色大片毛片| 午夜两性在线视频| 日日夜夜操网爽| 2018国产大陆天天弄谢| 免费av中文字幕在线| 日本午夜av视频| 国产亚洲精品久久久久5区| 国产高清不卡午夜福利| 久久精品aⅴ一区二区三区四区| 99热全是精品| 国产精品久久久久久精品电影小说| 脱女人内裤的视频| 国产男人的电影天堂91| 亚洲伊人久久精品综合| 18在线观看网站| 看十八女毛片水多多多| 亚洲成人国产一区在线观看 | 99国产精品一区二区蜜桃av | 天天躁夜夜躁狠狠躁躁| 97精品久久久久久久久久精品| 国产成人a∨麻豆精品| √禁漫天堂资源中文www| 伦理电影免费视频| 精品一区二区三区四区五区乱码 | www.熟女人妻精品国产| 99香蕉大伊视频| 99国产精品一区二区蜜桃av | 韩国精品一区二区三区| 91字幕亚洲| 日韩 亚洲 欧美在线| 99久久99久久久精品蜜桃| 丁香六月欧美| 色综合欧美亚洲国产小说| 中文欧美无线码| 久9热在线精品视频| 国产av精品麻豆| 国产亚洲欧美在线一区二区| 老汉色av国产亚洲站长工具| 美女中出高潮动态图| 精品视频人人做人人爽| av天堂在线播放| 亚洲欧美激情在线| 秋霞在线观看毛片| 色视频在线一区二区三区| 成人三级做爰电影| 国产一区二区 视频在线| 精品久久蜜臀av无| 观看av在线不卡| 国产精品秋霞免费鲁丝片| 久久久亚洲精品成人影院| 国产免费福利视频在线观看| 久久中文字幕一级| 亚洲人成电影免费在线| 午夜激情久久久久久久| 99精品久久久久人妻精品| 国产黄色免费在线视频| 如日韩欧美国产精品一区二区三区| 成人亚洲欧美一区二区av| 啦啦啦 在线观看视频| 看十八女毛片水多多多| 精品视频人人做人人爽| 午夜免费男女啪啪视频观看| 精品亚洲成国产av| 超碰97精品在线观看| 三上悠亚av全集在线观看| 精品少妇一区二区三区视频日本电影| 亚洲精品日本国产第一区| 午夜两性在线视频| 97人妻天天添夜夜摸| 日韩 亚洲 欧美在线| 高清欧美精品videossex| 高潮久久久久久久久久久不卡| 天天躁日日躁夜夜躁夜夜| 啦啦啦在线免费观看视频4| 91精品伊人久久大香线蕉| 亚洲欧美日韩高清在线视频 | 欧美成人精品欧美一级黄| 国产日韩欧美在线精品| 97在线人人人人妻| 伊人久久大香线蕉亚洲五| 黄色 视频免费看| 亚洲精品成人av观看孕妇| 久久人人97超碰香蕉20202| 亚洲欧美激情在线| 久久人人爽人人片av| 欧美成人精品欧美一级黄| 一边摸一边做爽爽视频免费| 亚洲精品第二区| 国产精品免费视频内射| 黄色视频在线播放观看不卡| 女人被躁到高潮嗷嗷叫费观| 天堂俺去俺来也www色官网| 97在线人人人人妻| 久久精品国产a三级三级三级| 中文字幕制服av| 搡老岳熟女国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产不卡av网站在线观看| 午夜福利一区二区在线看| 熟女av电影| 久久av网站| 宅男免费午夜| 亚洲七黄色美女视频| 天堂中文最新版在线下载| cao死你这个sao货| 满18在线观看网站| 亚洲九九香蕉| 久久精品亚洲av国产电影网| 汤姆久久久久久久影院中文字幕| 最黄视频免费看| 最黄视频免费看| 操出白浆在线播放| 成人国产av品久久久| 日日爽夜夜爽网站| 精品久久久精品久久久| 在线观看免费高清a一片| 精品少妇内射三级| 欧美日韩精品网址| 亚洲午夜精品一区,二区,三区| 亚洲精品国产区一区二| 超碰97精品在线观看| 婷婷成人精品国产| 亚洲av成人不卡在线观看播放网 | 麻豆乱淫一区二区| 久热爱精品视频在线9| 天堂俺去俺来也www色官网| 精品亚洲乱码少妇综合久久| 老熟女久久久| 国产欧美亚洲国产| www.999成人在线观看| 51午夜福利影视在线观看| 男女下面插进去视频免费观看| 最新的欧美精品一区二区| 一区在线观看完整版| 国产欧美日韩综合在线一区二区| av天堂久久9| 色视频在线一区二区三区| 女性被躁到高潮视频| 在现免费观看毛片| 狠狠精品人妻久久久久久综合| 水蜜桃什么品种好| 丝袜脚勾引网站| 精品亚洲成国产av| 日韩精品免费视频一区二区三区| 亚洲七黄色美女视频| 久久免费观看电影| 国产男人的电影天堂91| 欧美中文综合在线视频| 亚洲,一卡二卡三卡| 日日摸夜夜添夜夜爱| 高清欧美精品videossex| 无遮挡黄片免费观看| 欧美av亚洲av综合av国产av| 日韩欧美一区视频在线观看| 蜜桃在线观看..| 欧美日本中文国产一区发布| 免费高清在线观看日韩| 大型av网站在线播放| 别揉我奶头~嗯~啊~动态视频 | 国产成人一区二区三区免费视频网站 | 精品一品国产午夜福利视频| 女性生殖器流出的白浆| 免费观看av网站的网址| 99久久精品国产亚洲精品| 狂野欧美激情性xxxx| 91精品伊人久久大香线蕉| 高清欧美精品videossex| 亚洲精品国产区一区二| 乱人伦中国视频| 1024香蕉在线观看| 美女高潮到喷水免费观看| 亚洲av日韩在线播放| 国产一区二区三区av在线| 日本vs欧美在线观看视频| 色视频在线一区二区三区| netflix在线观看网站| 自线自在国产av| 欧美在线黄色| 欧美日韩综合久久久久久| 天天操日日干夜夜撸| 午夜久久久在线观看| 久久热在线av| 99热全是精品| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀 | 天天躁日日躁夜夜躁夜夜| 久久久久网色| 欧美黑人精品巨大| 欧美日本中文国产一区发布| 一区在线观看完整版| 各种免费的搞黄视频| 夜夜骑夜夜射夜夜干| 国产精品一区二区精品视频观看| 两个人免费观看高清视频| 看免费成人av毛片| 婷婷色综合大香蕉| 色婷婷av一区二区三区视频| 国精品久久久久久国模美| 欧美性长视频在线观看| 极品少妇高潮喷水抽搐| 亚洲精品久久成人aⅴ小说| 精品国产一区二区三区久久久樱花| 久久天躁狠狠躁夜夜2o2o | 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 亚洲欧洲日产国产| 在线观看www视频免费| 国产精品麻豆人妻色哟哟久久| 香蕉丝袜av| 中国美女看黄片| 中文字幕最新亚洲高清| 一本综合久久免费| 国产日韩欧美亚洲二区| 午夜福利,免费看| 汤姆久久久久久久影院中文字幕| 女人精品久久久久毛片| 91精品伊人久久大香线蕉| 水蜜桃什么品种好| 日韩精品免费视频一区二区三区| 性高湖久久久久久久久免费观看| 别揉我奶头~嗯~啊~动态视频 | 欧美另类一区| 午夜日韩欧美国产| 国产精品久久久av美女十八| 老汉色av国产亚洲站长工具| 亚洲天堂av无毛| svipshipincom国产片| 老司机亚洲免费影院| 99久久人妻综合| 国产伦理片在线播放av一区| 精品久久久久久久毛片微露脸 | 巨乳人妻的诱惑在线观看| 久久女婷五月综合色啪小说| 久久性视频一级片| 国产成人啪精品午夜网站| 精品卡一卡二卡四卡免费| 婷婷成人精品国产| 国产又色又爽无遮挡免| 亚洲av日韩在线播放| 久久这里只有精品19| 高潮久久久久久久久久久不卡| 九色亚洲精品在线播放| 亚洲第一av免费看| 精品久久久久久久毛片微露脸 | 啦啦啦 在线观看视频| 又大又爽又粗| 91精品伊人久久大香线蕉| 激情视频va一区二区三区| 高清欧美精品videossex| 久久久久久久国产电影| 欧美黄色片欧美黄色片| 天天躁夜夜躁狠狠久久av| 可以免费在线观看a视频的电影网站| 99九九在线精品视频| 中文字幕亚洲精品专区| 精品少妇黑人巨大在线播放| 日韩av在线免费看完整版不卡| 大码成人一级视频| 午夜福利影视在线免费观看| 国产日韩欧美在线精品| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 精品熟女少妇八av免费久了| 人人澡人人妻人| 国产精品一二三区在线看| 精品人妻在线不人妻| 久久精品成人免费网站| av又黄又爽大尺度在线免费看| 建设人人有责人人尽责人人享有的| h视频一区二区三区| 中文欧美无线码| 国产高清videossex| 侵犯人妻中文字幕一二三四区| av视频免费观看在线观看| 亚洲av欧美aⅴ国产| svipshipincom国产片| a 毛片基地| 99国产精品免费福利视频| 欧美精品一区二区免费开放| 精品国产国语对白av| 极品少妇高潮喷水抽搐| 欧美日韩综合久久久久久| 精品欧美一区二区三区在线| 超碰成人久久| 国产伦理片在线播放av一区| 日韩av在线免费看完整版不卡| 黄色怎么调成土黄色| 999精品在线视频| 99国产精品免费福利视频| 美女主播在线视频| 中文字幕av电影在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲综合一区二区三区_| 国产高清videossex| 侵犯人妻中文字幕一二三四区| 免费看不卡的av| 国产精品成人在线| 精品少妇久久久久久888优播| 久久久久久久国产电影| 国产一区二区激情短视频 | 少妇裸体淫交视频免费看高清 | 宅男免费午夜| 久久精品亚洲av国产电影网| 青青草视频在线视频观看| 国产一级毛片在线| 成年人免费黄色播放视频| 少妇人妻久久综合中文| 夜夜骑夜夜射夜夜干| 人妻一区二区av| 99久久99久久久精品蜜桃| www.自偷自拍.com| 婷婷色麻豆天堂久久| 亚洲情色 制服丝袜| 女人被躁到高潮嗷嗷叫费观| 久久女婷五月综合色啪小说| 老司机午夜十八禁免费视频| 亚洲一区中文字幕在线| 成年动漫av网址| 日韩制服骚丝袜av| 午夜福利影视在线免费观看| 青春草视频在线免费观看| 在线观看免费日韩欧美大片| 校园人妻丝袜中文字幕| 日韩电影二区| 免费高清在线观看视频在线观看| 人人妻人人添人人爽欧美一区卜| 国产爽快片一区二区三区| 99精国产麻豆久久婷婷| 啦啦啦中文免费视频观看日本| 韩国精品一区二区三区| 香蕉丝袜av| svipshipincom国产片| 亚洲精品国产区一区二| 51午夜福利影视在线观看| 欧美国产精品一级二级三级| 啦啦啦啦在线视频资源| 90打野战视频偷拍视频| 国产一区亚洲一区在线观看| www.自偷自拍.com| 亚洲国产精品一区二区三区在线| 国产视频首页在线观看| www.自偷自拍.com| 久久99一区二区三区| 亚洲国产欧美网| 在线观看一区二区三区激情| 一级片免费观看大全| 午夜福利视频精品| 亚洲国产毛片av蜜桃av| 中文字幕人妻熟女乱码| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三 | 国产91精品成人一区二区三区 | 亚洲精品日本国产第一区| 18禁国产床啪视频网站| 国产成人免费观看mmmm| 国产精品一区二区精品视频观看| 国产免费现黄频在线看| 久久久国产一区二区| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| 亚洲 欧美一区二区三区| 天天影视国产精品| 国产成人精品在线电影| www.精华液| 极品少妇高潮喷水抽搐| 1024视频免费在线观看| 丝袜美足系列| 国产黄频视频在线观看| 午夜91福利影院| 大香蕉久久网| 国产精品 欧美亚洲| 成人国产一区最新在线观看 | 夜夜骑夜夜射夜夜干| 欧美黄色片欧美黄色片| 又粗又硬又长又爽又黄的视频| 老汉色∧v一级毛片| 国产福利在线免费观看视频| 高清不卡的av网站| 久热这里只有精品99| 日韩中文字幕视频在线看片| 天堂俺去俺来也www色官网| 你懂的网址亚洲精品在线观看| 亚洲av片天天在线观看| 亚洲中文av在线| 中文字幕高清在线视频| 十八禁网站网址无遮挡| 中文字幕最新亚洲高清| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 国产无遮挡羞羞视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| av国产久精品久网站免费入址| 欧美激情 高清一区二区三区| 日韩中文字幕视频在线看片| 99久久人妻综合| 亚洲五月婷婷丁香| 在线 av 中文字幕| 美女大奶头黄色视频| av国产久精品久网站免费入址| 亚洲,欧美精品.| 国产人伦9x9x在线观看| 国产一区有黄有色的免费视频| av福利片在线| 久久久精品区二区三区| 永久免费av网站大全| 国产免费一区二区三区四区乱码| 大香蕉久久网| 制服人妻中文乱码| 男人添女人高潮全过程视频| 美女扒开内裤让男人捅视频| 亚洲av在线观看美女高潮| 欧美成狂野欧美在线观看| 黄网站色视频无遮挡免费观看| 最近最新中文字幕大全免费视频 | 中文字幕人妻丝袜一区二区| 日本猛色少妇xxxxx猛交久久| av在线app专区| 国产成人av教育| 另类精品久久| 亚洲精品日韩在线中文字幕| 午夜激情av网站| 性色av乱码一区二区三区2| 精品高清国产在线一区| 国产亚洲欧美在线一区二区| 天堂8中文在线网| 久久毛片免费看一区二区三区| 国产片内射在线| 波多野结衣av一区二区av| 亚洲av成人精品一二三区| 18禁观看日本| 男人操女人黄网站| 黄网站色视频无遮挡免费观看| 在线观看免费日韩欧美大片| 日韩 亚洲 欧美在线| 亚洲av日韩在线播放| 9热在线视频观看99| 久久人妻熟女aⅴ| 精品久久久精品久久久| 精品国产乱码久久久久久男人| av国产久精品久网站免费入址| 国产在线免费精品| 免费在线观看日本一区| 一二三四社区在线视频社区8| av天堂久久9| 久久久欧美国产精品| 久久人人爽av亚洲精品天堂| 亚洲精品一二三| 欧美大码av| 男女床上黄色一级片免费看| 亚洲国产精品一区三区| 国产欧美日韩一区二区三 | 国产伦人伦偷精品视频| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 在现免费观看毛片| 大话2 男鬼变身卡| www日本在线高清视频| 国产精品久久久久久人妻精品电影 | 欧美成人午夜精品| 汤姆久久久久久久影院中文字幕| 久久人人爽人人片av| 18在线观看网站| 亚洲欧美激情在线| 精品熟女少妇八av免费久了| 欧美日韩亚洲高清精品| 欧美日韩一级在线毛片|