• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effectiveness of heat and mass transfer on mixed convective peristaltic motion of nanofluid with irreversibility rate

    2021-10-12 05:31:50AkbarAbbasiZahidandShehzad
    Communications in Theoretical Physics 2021年10期

    Y Akbar F M Abbasi, U M Zahid and S A Shehzad

    1 Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan

    2 Department of Mathematics, COMSATS University Islamabad, Sahiwal, Pakistan

    Abstract Entropy generation is one of the key features in analysis as it exhibits irreversibility of the system.Therefore, the present study investigates the entropy generation rate in a mixed convective peristaltic motion of a reactive nanofluid through an asymmetrical divergent channel with heat and mass transfer characteristics.The endorsed nanofluid model holds thermophoresis and Brownian diffusions.Mathematical modeling is configured under the effects of mixed convection, heat generation/absorption and viscous dissipation.A chemical reaction is also introduced for the description of mass transportation.The resulting system of differential equations is numerically tackled by employing the Shooting method.The findings reveal that entropy generation rises by improving the Brownian motion and thermophoresis parameters.The temperature of the nanofluid decreases due to rising buoyancy forces caused by the concentration gradient.The concentration profile increases by increasing the chemical reaction parameter.The velocity increases by enhancing the Brownian motion parameter.

    Keywords: peristaltic flow, thermophoresis and Brownian motion, mixed convection, chemical reaction, irreversibility, nanofluid

    1.Introduction

    The mechanism of nanofluids is becoming a hot topic for research owing to their heat conductive properties.Typically,a nanofluid is a dilute aggregation of fibers and particles of nanometer scale distributed in a carrier liquid.Nanomaterials are composed of metals, their oxides and nanotubes, whereas base liquids include engine oils, lubricants, grease, water and ethylene glycol etc.Some nanofluids possess idiosyncratic properties.They have had a broad array of applications in many biomedical,industrial and engineering systems.Some of them include domestic refrigerators, fission and fusion reactions, fuel cells, cancer treatments, chemotherapy, hybridpowered engines, milk sterilization, and electronic cooling systems.In 1995,innovative ideas of nanofluids were reported by Choi [1].Later, Buongiorno [2] stated that nanofluids are the colloidal suspensions of small particles in liquids.In this study, the author also designed a model to assess the flow of nanoliquids using Brownian motion and thermophoresis effects.Prasad et al [3] reported a new concept to deliver nanomedicines.The main aim of this research was to treat rheumatoid arthritis.Kleinstreuer and Feng [4] conducted an experimental and theoretical study on optimizing nanofluids’thermal conductivity.A water-based nanoliquid moving over wavy surfaces in a porous space of spherical packing beds was highlighted by Hassan et al [5].Vallejo et al [6] studied Ag–graphene-based hybrid nanoliquids for direct solar absorption.Recently, Shahrestani et al [7] numerically reviewed the fluid flow and thermal analysis ofnanoliquid inside a microchannel of inner diameter 0.1 mm.

    Peristalsis is a fluid flow mechanism that occurs due to the successive series of muscle relaxation and contraction by which fluids are transferred from one place to another in a physiological system.Peristaltic flows are encountered in cilia motion, movement of spermatozoa, heart–lung and dialysis machines, medical infusion pumps and in rocket chamber fuel control technologies.In 1966, Latham [8] proposed a mechanism of liquid motion via peristaltic pump.Shapiro et al [9] made a considerable development on the mathematical modeling of peristaltic motion [8] and explored this mechanism by applying ‘long wavelength and small Reynolds number assumptions.’ This research employed both theoretical and numerical methods.Akbar and Nadeem [10]discussed the peristaltic movement of a nanoliquid with endoscopic effects.The process of peristalsis has been studied by many researchers both theoretically and experimentally[11–19].Riaz et al[20]explored the peristaltic propulsion of a Jeffrey nanoliquid through a porous rectangular duct.

    The aspects of Brownian motion and thermophoresis are very important in the fields of science and technology.These effects are of great importance in the production of germanium oxide and silicon, etc.Beg and Tripathi [21] presented a theoretical analysis to explore the phenomenon of peristalsis with double-diffusive convection in nanoliquids via a deformable channel.For this review,the authors utilized Buongiorno’s model to investigate the behavior of a nanoliquid.Peristaltic transportation of a magnetohydrodynamic (MHD) nanoliquid under the influence of Brownian motion and thermophoresis were highlighted by Hayat et al [22].A numerical study on peristaltic motion of nanoliquids between the gap of two coaxial tubes with distinct structures and configurations was conducted by Ellahi et al[23].Khan et al[24]analyzed the movement of non-Newtonian material subject to Dufour and Soret impacts over a porous space.The effects of wall flexibility with convective conditions on MHD peristaltic motion of an Eyring–Powell nanoliquid were highlighted by Nisar et al [25].

    In thermal design and heat transfer, the analysis of the second law of thermodynamics is a widely used and useful tool.The study of entropy production is indeed one of the main aspects in analysis because it illustrates the disorder of the system.When any engineering system operates, it encounters irreversible energy losses that affect the efficiency of the machine.Therefore,circumstances are needed that minimize the production of entropy.The innovative idea of entropy generation(second law) was explained by Bejan [26].In this analysis, the author outlined the key ways to minimize entropy at the system level of the structure.Nadeem and Sadia [27] studied entropy generation for a Johnson–Segalman fulid by assuming variable viscosity.Akbar et al [28] studied entropy generation for peristalsis ofCu +H2O nanoliquid.Abbas et al [29] studied irreversible analysis for peristaltic movement of nanoliquids folwing in a two-dimensional(2D)channel with compliant walls.Farooq et al[30]explored the role of entropy production in peristalsis of multi- and single-walled carbon nanotubes.Consideration of entropy production for peristaltic transportation ofCu -H2O nanoliquid with radiative heat flux was provided by Akbar et al[31].MHD peristaltic transportation of a Sutterby nanoliquid with Hall current and mixed convection was highlighted by Hayat et al[32].Some important studies related to irreversibility analysis for peristaltic transport of a nanoliquid can also be viewed in references [33–39].

    In view of these investigations, the main aim of the present study is to address the irreversibility rate, heat and mass transfer for peristaltic flow of a reactive nanofluid flowing through a divergent channel.The effects of thermophoresis, chemical reaction and Brownian motion are taken into consideration.Lubrication theory is used in the mathematical formulation.The Shooting method is employed to obtain the solution of differential equations.Entropy generation, Bejan number, mass and heat transfers, and skin friction are addressed under the influence of different pertinent parameters.Further, comparisons of heat, mass transfer rate and skin friction at the channel wall in light of two different numeric methods are also provided.The present study finds its application in transport phenomena in chemical engineering and energy systems to increase the heat capacity of machines.

    2.Problem formulation

    A 2D mixed convective peristaltic motion of reactive nanofluid through a divergent channel is considered.The wave trains are propagating with velocity c on the channel walls.Further,the channel is assumed to be asymmetric.A physical model of the problem is shown in figure 1.Mathematically,deformation in the channel walls is defined as [16]:

    Figure 1.Geometry of the problem.

    whered1+d2, a1, a2,c, t, m, γ and λ are the channel width,amplitudes, wave speed, time, nonuniform parameter, phase difference and wavelength, respectively.The governing equations for the present model using chemical reaction,thermophoresis, mixed convection, viscous dissipation and Brownian motion are given as [24, 33, 38]:

    In the above equations P, Cf,DB, DT, C, α andα*represent pressure, specific heat of fluid, chemical reaction rate, mass diffusivity, thermal diffusion, concentration,and thermal and concentration expansion coefficients,respectively.

    Invoking the following dimensionless quantities:

    and applying ‘low Reynolds number and long wavelength’approximations, equations (4)–(7) take the following form:

    Here ψ, Gt, Br, Gc, Sc, Nb,γc, Nt, and Pr are the dimensionless stream function, temperature Grashof number,Brinkman number, concentration Grashof number, Schmidt number, Brownian motion parameter, chemical reaction parameter, thermophoresis parameter and Prandtl number,respectively.Determining the nondimensional flow rates η and F, defined by [16]:

    the dimensionless boundary conditions are given as [16]:

    where

    3.Entropy generation

    Mathematically, the dimensional entropy generation rate is defined as [33, 38]:

    In dimensionless form, the entropy generation number(Ns)is presented as [33]:

    The Bejan number(Be)is the ratio of entropy produced by conduction to the total entropy.The mathematical interpretation of the Bejan number(Be)is expressed as follows [33]:

    4.Numerical solution

    For numerical solution we intend to use the Shooting technique with RK-4 on differential equations (9)–(12)subject to boundary conditions (14).In this connection the boundary conditions (14) for the system of differential equations (9)–(12) are simplified into initial conditions.Therefore, the prescribed problem to be addressed is as follows:

    The initial conditions are written as:

    We partially differentiate equations (19)–(21) with respect toξ1,ξ2,ξ3andξ4separately by letting:

    Hence, the stated problem is converted into four systems of equations.These equations are further simplified to a system of first-order differential equations.The system of differential equations are then solved numerically by using the Shooting technique with the RK-4 method.Appropriate values of unknown initial conditionsξ1,ξ2,ξ3andξ4are approximated and optimized through Newton’s technique until the boundary conditions are met.The step scale is considered as Δh= 0.05 and convergence criterion is taken as 10?6.All necessary calculations are performed in Mathematica software.

    5.Results and discussion

    This section provides the graphs of different flow quantities for several parameters of interest.Plots for heat transfer,irreversible rate, mass transfer and velocity profile are presented and analyzed.

    5.1.Heat transfer analysis

    Analysis of temperature profile is presented through figures 2–5.The maximum value of temperature profile is observed near the center of the channel.Figure 2 indicates that the temperature profile decreases by increasing buoyancy forces caused by concentration difference(Gc).The displayed result is due to an increment in viscosity which leads to a drop in temperature.However, figure 3 shows that temperature increases by improving the temperature Grashof number(Gt).Physically, it refers to the condition where improved buoyancy forces are strengthened due to the temperature gradient.Figure 4 shows that temperature increases for a rise in Nb.The reason is that kinetic energy is augmented as Nbis improved which incorporates it into internal energy and thus raises the temperature within the channel.An increase in temperature is obtained by increasing the amount of the thermophoresis parameter (Nt) (see figure 5).For higher Nt, nanoparticles migrate from warm regions to cool regions and hence the temperature increases.Here, the numerical outcomes presented via figures 4 and 5 are found to be well matched with the results reported by Hayat et al [32] and Ellahi et al [23].

    Figure 2.Variation in θ with Gc.

    Figure 3.Variation in θ with Gt.

    Figure 4.Variation in θ with Nb.

    Figure 5.Variation in θ with Nt.

    Table 1.Comparison of- θ′ ( h)1 by using the Shooting method and the built-in function NDSolve in Mathematica.

    Numerical values of the heat transfer rate at the channel wall(-θ′(h1))for variations in Gt,Gc,Nt,and Nbare shown in table 1.It is seen that(-θ′(h1))increases when Gtis assigned higher values.This fact shows that mixed convection improves heat transfer phenomena between the solid boundary and the base fluid.A similar trend is also seen for Nband Nt.However,(-θ′(h1))decreases for large Gc.Moreover,it is interesting to note that results calculated by both methods,i.e.the Shooting method and NDSolve, are in good agreement.

    5.2.Entropy generation

    Figures 6–9 demonstrate the change in entropy generation(Ns)for different values of Gc,Gt,Ntand Nb.Figure 6 shows that through enhancing the values of Gc, entropy generation decreases.This is mainly due to a rise in buoyancy forces caused by the concentration difference, which lowers the temperature and contributes to a decrease in entropy generation.However, figure 7 indicates that entropy generation is enhanced by increasing the values of Gt.This occurs due to mixed convection caused by temperature differences, as mixed convection helps the nanoliquid in achieving higher temperatures, resulting in increased entropy production.It is visualized in figures 8 and 9 that increases in Ntand Nbenhance entropy generation.This is because kinetic energy increases with increases in Ntand Nb,which generates heat in the system,resulting in increased irreversibility in the system.

    Figure 6.Variation in Ns with Gc.

    Figure 7.Variation in Ns with Gt.

    Figure 8.Variation in Ns with Nt.

    Figure 9.Variation in Ns with Nb.

    Figures 10 and 11 are outlined to show the effects of Ntand Gton entropy generation along the channel’s length.These graphs show oscillating behavior with the highest value near a wider portion of the channel.Figure 10 shows that entropy increases by improving Nt.A similar trend is seen for Gt(see figure 11).By improving buoyancy forces,the randomness in a system rises and hence the irreversibility rate increases.

    Figure 10.Effects of Nt on Ns versus axial distance.

    Figure 11.Effects of Gt on Ns versus axial distance.

    Figures 12 and 13 provide the distribution of Bejan number(Be)for different values of Gtand Gc.These graphs show that the Bejan number reaches its minimum value near the center of the channel, while the maximum value appears near the channel walls.The Bejan number has an increasing effect by increasing the values of Gt(see figure 12).This is due to an increase in heat transfer irreversibility over total irreversibility.However, the Bejan number has a decreasing behavior for enhanced values of Gc(see figure 13).

    Figure 12.Variation in Be with Gt.

    Figure 13.Variation in Be with Gc.

    Figures 14 and 15 are outlined to show the effects of Ntand Gton the Bejan number along the channel’s length.These plots exhibit sinusoidal behavior with the highest value near the wider portion of the channel.Figure 14 shows that the Bejan number increases by increasing Gt.A similar trend is also seen for Nt(see figure 15).

    Figure 14.Effects of Nt on Be versus axial distance.

    Figure 15.Effects of Gt on Be versus axial distance.

    5.3.Mass transfer analysis

    Figures 16–19 display the consequences of Sc,γc, Nb, and Nton concentration profile(φ) .Figure 16 indicates that φ increases when Scis increased.This is primarily due to an increase in momentum diffusivity.A similar trend is noted forγc(see figure 17).The concentration increases whenγcis assigned higher values.As the chemical reaction enhances the interfacial mass transfer rate, thus the local concentration decreases, resulting in an increased concentration flux.It is inferred from figures 18 and 19 that φ increases with an enhancement in Nband decreases for larger Nt.When Ntincreases, there is a decrease in viscosity which leads to a decrease in φ.

    Figure 16.Variation in φ with Sc.

    Figure 17.Variation in φ with γc.

    Figure 18.Variation in φ with Nb.

    Figure 19.Variation in φ with Nt.

    Table 2 shows the effects of Sc,γc, Ntand Nbon mass transfer rate at the channel wall (φ′(h)1).Table 2 shows that‘φ′(h)1’ augments by increasing the values of Ntwhile it decreases by increasing Sc,γcand Nb.Moreover, it is interesting to note that the results calculated by both methods are in good agreement.

    Table 2.Comparison of φ′ ( h1) by using the Shooting method and the built-in function NDSolve in Mathematica.

    5.4.Flow behavior analysis

    Figures 20–23 are designed to compute the variations in Gt,Gc, Nband Nton velocity profile.These plots show that an extreme value of velocity occurs near the channel center.From figure 20 it is noted that velocity is an increasing function of Gt.This is because an increase in Grleads to a decrease in viscosity.This activity causes less resistance to flow and therefore increases velocity.In contrast to the previous case, velocity decreases with an increase in Gc(see figure 21).This is because Gcwith its increasing values improves the concentration of the nanofluid and results in a decrease in velocity.Figure 22 shows an increase in velocity as Nbis enhanced.It is found that Nblowers the viscosity of the fluid due to its heat absorbing properties and thus tends to increase the fluid velocity.A decreasing effect on velocity is reported for increasing Ntas it makes the nanofluid denser(see figure 23).

    Figure 20.Variation in u with Gt.

    Figure 21.Variation in u with Gc.

    Figure 22.Variation in u with Nb.

    Figure 23.Variation in u with Nt.

    It is important to look at the nature of streamlines under the influence of various parameters that affect the flow characteristics.The most important characteristic of peristaltic flow is associated with the circulation of streamline, characterized as trapping that leads to the formation of the trapped volume of liquids, which is called a bolus.This captured bolus is carried along peristaltic waves.This tendency is extremely beneficial for transporting fluids through the body in a proper manner.This phenomenon is examined through figures 24 and 25.From these plots, it is noted that the bolus formation and streamline pattern slightly changes by enhancing Gcand Nt.

    Figure 24.Impacts of Gc on ψ.

    Figure 25.Impacts of Nt on ψ.

    Table 3 displays the numerical results of Gt, Gc, Nband Nton skin friction at the wall.Table 3 shows that skin friction at the wall consistently augments with an increase in Gtand Ntwhereas it reduces with Gcand Nb.

    Table 3.Comparison of skin friction by using the Shooting method and the built-in function NDSolve in Mathematica.

    6.Conclusions

    Entropy generation rate, heat and mass transfer analysis for mixed convective peristaltic transportation of a reactive nanofluid under the effects of thermophoresis and Brownian motion are investigated.The major findings produced from the present study are:

    · The temperature of a nanofluid increases by increasing the Brownian motion parameter.

    · Entropy generation enhances by improving the Brownian motion parameter.

    · An increase in the thermophoresis parameter produces more entropy.

    · The Bejan number has an increasing effect for increasing temperature Grashof number.

    · Concentration of nanoparticles improves when the Brownian motion parameter is increased, and decreases by enhancing the thermophoresis parameter.

    · An increase in the chemical reaction parameter improves the concentration characteristics of nanoparticles.

    · The mass transfer rate at the wall enhances by increasing the thermophoresis parameter.On the other hand, it decreases by enhancing the Schmidt number and chemical reaction parameter.

    · An augmentation in axial velocity is seen for a large temperature Grashof number while it decreases by increasing the concentration Grashof number.

    · Velocity increases by enhancing the Brownian motion parameter while it decreases for a large thermophoresis parameter.

    ORCID iDs

    亚洲国产成人一精品久久久| 久久久久久免费高清国产稀缺| 亚洲欧美日韩高清在线视频 | 国产97色在线日韩免费| 亚洲av电影在线进入| 久久精品国产a三级三级三级| 一区二区三区国产精品乱码| 亚洲国产av影院在线观看| 高清黄色对白视频在线免费看| 国产在线观看jvid| 日日摸夜夜添夜夜添小说| 黄色视频,在线免费观看| 成人av一区二区三区在线看| 欧美中文综合在线视频| 在线观看免费午夜福利视频| 亚洲一码二码三码区别大吗| 久久中文字幕一级| 国产精品麻豆人妻色哟哟久久| 不卡一级毛片| 我要看黄色一级片免费的| 看免费av毛片| 人妻久久中文字幕网| 久久精品国产99精品国产亚洲性色 | 五月天丁香电影| 人人妻人人澡人人看| 午夜福利在线观看吧| 色94色欧美一区二区| 国产精品免费一区二区三区在线 | 高清av免费在线| 久久久国产成人免费| 老司机影院毛片| 亚洲成人国产一区在线观看| 国产精品香港三级国产av潘金莲| 不卡一级毛片| 夜夜骑夜夜射夜夜干| 午夜福利视频精品| 9191精品国产免费久久| 日日夜夜操网爽| 黄色a级毛片大全视频| 日本av手机在线免费观看| 国产高清videossex| 自拍欧美九色日韩亚洲蝌蚪91| 免费不卡黄色视频| 日本一区二区免费在线视频| 久久久国产成人免费| 高清毛片免费观看视频网站 | 一区二区av电影网| 后天国语完整版免费观看| 大香蕉久久成人网| 精品福利永久在线观看| 精品久久久久久久毛片微露脸| 久久久久精品人妻al黑| 蜜桃在线观看..| kizo精华| 免费在线观看完整版高清| 蜜桃在线观看..| 免费在线观看完整版高清| 国产精品二区激情视频| 精品人妻在线不人妻| 极品少妇高潮喷水抽搐| 亚洲精品在线观看二区| 日韩免费高清中文字幕av| 老司机深夜福利视频在线观看| 不卡av一区二区三区| 99国产精品一区二区三区| 国产成+人综合+亚洲专区| 99久久99久久久精品蜜桃| 精品少妇内射三级| 精品高清国产在线一区| 啦啦啦视频在线资源免费观看| 国精品久久久久久国模美| 黄色怎么调成土黄色| 国产高清国产精品国产三级| 制服人妻中文乱码| 中文字幕色久视频| 成年人黄色毛片网站| 久久久久国内视频| 日本av免费视频播放| 欧美精品一区二区免费开放| 无人区码免费观看不卡 | 水蜜桃什么品种好| 欧美精品亚洲一区二区| 激情在线观看视频在线高清 | 一二三四在线观看免费中文在| www日本在线高清视频| 757午夜福利合集在线观看| 欧美精品亚洲一区二区| 免费在线观看影片大全网站| 在线亚洲精品国产二区图片欧美| av天堂在线播放| 国产真人三级小视频在线观看| 国产精品国产av在线观看| 亚洲精品美女久久久久99蜜臀| 国产成人精品在线电影| 最近最新中文字幕大全免费视频| 天天操日日干夜夜撸| 最新的欧美精品一区二区| 亚洲av日韩在线播放| 日韩熟女老妇一区二区性免费视频| 另类亚洲欧美激情| 久久精品熟女亚洲av麻豆精品| 在线永久观看黄色视频| 亚洲精品美女久久久久99蜜臀| 黄色视频,在线免费观看| 精品免费久久久久久久清纯 | 亚洲中文av在线| 久久中文字幕人妻熟女| 电影成人av| 最黄视频免费看| 操美女的视频在线观看| 首页视频小说图片口味搜索| 精品欧美一区二区三区在线| 亚洲国产欧美在线一区| 亚洲国产中文字幕在线视频| 国产aⅴ精品一区二区三区波| 午夜两性在线视频| a级毛片黄视频| 亚洲成人免费电影在线观看| 亚洲精品在线观看二区| 国产又爽黄色视频| 99在线人妻在线中文字幕 | 日本精品一区二区三区蜜桃| 国产精品九九99| 黄色视频,在线免费观看| 国产男女超爽视频在线观看| 国产精品久久久久久人妻精品电影 | 狠狠狠狠99中文字幕| 汤姆久久久久久久影院中文字幕| 日韩有码中文字幕| 99热网站在线观看| 成人三级做爰电影| 国产精品欧美亚洲77777| 人人澡人人妻人| 久久 成人 亚洲| 高清欧美精品videossex| 欧美精品啪啪一区二区三区| 9热在线视频观看99| 欧美成人午夜精品| 久久婷婷成人综合色麻豆| 男女午夜视频在线观看| 无遮挡黄片免费观看| 人妻 亚洲 视频| 成人免费观看视频高清| 国产免费福利视频在线观看| 欧美乱妇无乱码| 国产精品秋霞免费鲁丝片| 欧美黄色淫秽网站| av一本久久久久| 窝窝影院91人妻| 高清欧美精品videossex| 亚洲色图av天堂| 激情视频va一区二区三区| 久久人人97超碰香蕉20202| 国产野战对白在线观看| 精品人妻熟女毛片av久久网站| 免费女性裸体啪啪无遮挡网站| 国产精品 国内视频| 亚洲人成电影观看| 欧美日韩视频精品一区| 国产成人免费观看mmmm| 女人精品久久久久毛片| 国产精品 欧美亚洲| 久久国产亚洲av麻豆专区| 下体分泌物呈黄色| 一级黄色大片毛片| 三上悠亚av全集在线观看| 啦啦啦免费观看视频1| 成年人免费黄色播放视频| 久久精品国产亚洲av高清一级| 满18在线观看网站| tocl精华| 欧美一级毛片孕妇| 亚洲情色 制服丝袜| 亚洲成人手机| 免费日韩欧美在线观看| 建设人人有责人人尽责人人享有的| 国产精品影院久久| 男女无遮挡免费网站观看| 日本精品一区二区三区蜜桃| 国产伦人伦偷精品视频| a在线观看视频网站| 极品人妻少妇av视频| 婷婷丁香在线五月| 啦啦啦在线免费观看视频4| 欧美精品亚洲一区二区| 激情视频va一区二区三区| 飞空精品影院首页| 免费少妇av软件| av视频免费观看在线观看| 国产欧美亚洲国产| 一级,二级,三级黄色视频| 黄色片一级片一级黄色片| bbb黄色大片| 精品午夜福利视频在线观看一区 | 91九色精品人成在线观看| 国产视频一区二区在线看| 免费黄频网站在线观看国产| 亚洲视频免费观看视频| 国产一区二区激情短视频| 大型av网站在线播放| 亚洲国产av新网站| 亚洲欧洲日产国产| 亚洲 欧美一区二区三区| 大片免费播放器 马上看| 老熟妇乱子伦视频在线观看| 侵犯人妻中文字幕一二三四区| 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 亚洲熟妇熟女久久| 久久精品91无色码中文字幕| 精品国产一区二区久久| 亚洲国产中文字幕在线视频| 午夜日韩欧美国产| 久久国产精品影院| 成人av一区二区三区在线看| 久热这里只有精品99| 日韩欧美免费精品| 99久久精品国产亚洲精品| 亚洲精品av麻豆狂野| 在线 av 中文字幕| 亚洲国产欧美日韩在线播放| www.自偷自拍.com| 美女午夜性视频免费| 久久狼人影院| 欧美日本中文国产一区发布| 狠狠狠狠99中文字幕| av片东京热男人的天堂| 脱女人内裤的视频| 999久久久国产精品视频| 十八禁网站网址无遮挡| 亚洲一码二码三码区别大吗| 成人手机av| 亚洲人成伊人成综合网2020| 人人澡人人妻人| 久久久久网色| 新久久久久国产一级毛片| 欧美黑人欧美精品刺激| 性高湖久久久久久久久免费观看| 亚洲一区二区三区欧美精品| 可以免费在线观看a视频的电影网站| 高潮久久久久久久久久久不卡| 亚洲精品一卡2卡三卡4卡5卡| 国产深夜福利视频在线观看| 国产伦理片在线播放av一区| 19禁男女啪啪无遮挡网站| 中亚洲国语对白在线视频| 人妻久久中文字幕网| 搡老熟女国产l中国老女人| 动漫黄色视频在线观看| 人妻 亚洲 视频| 亚洲成人国产一区在线观看| 在线观看免费视频网站a站| 色在线成人网| 亚洲欧美色中文字幕在线| 亚洲国产看品久久| 少妇精品久久久久久久| 少妇精品久久久久久久| 涩涩av久久男人的天堂| 国产高清视频在线播放一区| 国产精品一区二区精品视频观看| 亚洲精品av麻豆狂野| 日日夜夜操网爽| 国产一区二区 视频在线| 自拍欧美九色日韩亚洲蝌蚪91| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩高清专用| 亚洲精品久久国产高清桃花| 国产高清有码在线观看视频| 亚洲欧美一区二区三区黑人| 成在线人永久免费视频| 久久久久久大精品| 久久久久久国产a免费观看| 九九热线精品视视频播放| 国产精品日韩av在线免费观看| 男女之事视频高清在线观看| 一进一出抽搐动态| 久久久久久久久免费视频了| 小说图片视频综合网站| 亚洲片人在线观看| 91在线精品国自产拍蜜月 | 国产乱人视频| 一二三四社区在线视频社区8| 免费看十八禁软件| svipshipincom国产片| 亚洲午夜精品一区,二区,三区| 欧美在线黄色| 欧美性猛交╳xxx乱大交人| 三级毛片av免费| 精品久久久久久久久久免费视频| 黄色日韩在线| 九九久久精品国产亚洲av麻豆 | 国产精品美女特级片免费视频播放器 | 成人欧美大片| 精品国产亚洲在线| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 在线看三级毛片| 日韩欧美在线乱码| 老司机在亚洲福利影院| 久久人人精品亚洲av| 综合色av麻豆| 别揉我奶头~嗯~啊~动态视频| 中文字幕最新亚洲高清| 色老头精品视频在线观看| 亚洲国产精品999在线| 国产午夜精品久久久久久| 最近在线观看免费完整版| 日韩大尺度精品在线看网址| 人妻夜夜爽99麻豆av| 麻豆国产97在线/欧美| 精品一区二区三区视频在线 | 精品久久久久久久末码| 精品一区二区三区视频在线 | 久久草成人影院| 国产精品野战在线观看| 天堂av国产一区二区熟女人妻| 国产免费男女视频| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| 亚洲中文av在线| 少妇裸体淫交视频免费看高清| 欧美成人性av电影在线观看| 亚洲精品中文字幕一二三四区| 啪啪无遮挡十八禁网站| 毛片女人毛片| 在线免费观看不下载黄p国产 | 亚洲精品在线美女| 婷婷亚洲欧美| 999久久久精品免费观看国产| 中文亚洲av片在线观看爽| 欧美日本亚洲视频在线播放| 哪里可以看免费的av片| 欧美成狂野欧美在线观看| av黄色大香蕉| 欧美三级亚洲精品| 美女黄网站色视频| 男插女下体视频免费在线播放| 亚洲精品456在线播放app | 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 国产精品女同一区二区软件 | 成人性生交大片免费视频hd| 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲片人在线观看| 欧美在线一区亚洲| 最新美女视频免费是黄的| 全区人妻精品视频| 国产av不卡久久| 亚洲欧美激情综合另类| 欧美乱色亚洲激情| 午夜影院日韩av| 午夜亚洲福利在线播放| 欧美日韩福利视频一区二区| 九色国产91popny在线| 一个人看的www免费观看视频| 久久婷婷人人爽人人干人人爱| 高清毛片免费观看视频网站| 日日夜夜操网爽| 久久久久亚洲av毛片大全| a级毛片a级免费在线| 国产真实乱freesex| 亚洲av成人一区二区三| 国产男靠女视频免费网站| 欧美日韩乱码在线| 成熟少妇高潮喷水视频| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久| 一本一本综合久久| 亚洲 欧美一区二区三区| 亚洲真实伦在线观看| 欧美激情在线99| 色尼玛亚洲综合影院| 亚洲中文字幕日韩| 麻豆国产97在线/欧美| 亚洲精品456在线播放app | 天堂av国产一区二区熟女人妻| 两个人的视频大全免费| 嫩草影院精品99| 精品99又大又爽又粗少妇毛片 | 欧美日韩瑟瑟在线播放| 亚洲午夜精品一区,二区,三区| 精品午夜福利视频在线观看一区| av国产免费在线观看| 久久草成人影院| 国产精品久久久久久精品电影| 日本成人三级电影网站| 全区人妻精品视频| 久久久久久大精品| 午夜福利成人在线免费观看| 成人特级黄色片久久久久久久| 欧美性猛交黑人性爽| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 亚洲国产欧洲综合997久久,| 麻豆成人午夜福利视频| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 久久久色成人| 99久久99久久久精品蜜桃| 美女免费视频网站| 亚洲欧美一区二区三区黑人| 91老司机精品| 久久久久亚洲av毛片大全| 又大又爽又粗| 丁香六月欧美| 日韩欧美精品v在线| 久久精品91无色码中文字幕| 国产激情偷乱视频一区二区| 91av网一区二区| 亚洲精品久久国产高清桃花| 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 最近最新中文字幕大全免费视频| 淫妇啪啪啪对白视频| 人人妻,人人澡人人爽秒播| 男女视频在线观看网站免费| 中文字幕久久专区| 男人舔奶头视频| 十八禁人妻一区二区| 99热精品在线国产| 免费看a级黄色片| 免费人成视频x8x8入口观看| 亚洲av成人精品一区久久| 亚洲欧美日韩无卡精品| 亚洲五月婷婷丁香| 窝窝影院91人妻| 美女免费视频网站| 这个男人来自地球电影免费观看| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 欧美乱妇无乱码| 欧美乱色亚洲激情| 男女床上黄色一级片免费看| 久久久国产成人精品二区| 成年女人看的毛片在线观看| 极品教师在线免费播放| 狂野欧美激情性xxxx| 久久精品91蜜桃| 丰满的人妻完整版| 非洲黑人性xxxx精品又粗又长| 网址你懂的国产日韩在线| 亚洲国产欧洲综合997久久,| av片东京热男人的天堂| 国产亚洲精品久久久久久毛片| 久久精品综合一区二区三区| 国内久久婷婷六月综合欲色啪| 欧美日韩黄片免| 丁香六月欧美| 国产精品av视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 日日夜夜操网爽| 国产蜜桃级精品一区二区三区| 国产97色在线日韩免费| 亚洲电影在线观看av| 久久久久久久精品吃奶| 国产激情偷乱视频一区二区| 1024香蕉在线观看| 免费在线观看亚洲国产| 国内精品美女久久久久久| 啪啪无遮挡十八禁网站| 韩国av一区二区三区四区| 波多野结衣高清作品| 国内久久婷婷六月综合欲色啪| 97人妻精品一区二区三区麻豆| 一级作爱视频免费观看| 精品不卡国产一区二区三区| 99国产综合亚洲精品| 精品国内亚洲2022精品成人| 久久亚洲精品不卡| 亚洲人成伊人成综合网2020| 日本黄大片高清| 国模一区二区三区四区视频 | 免费电影在线观看免费观看| 特大巨黑吊av在线直播| 99久久久亚洲精品蜜臀av| 欧美日韩乱码在线| 色综合婷婷激情| 老汉色av国产亚洲站长工具| 日本在线视频免费播放| 一级a爱片免费观看的视频| 99精品久久久久人妻精品| 黄色日韩在线| 日本a在线网址| 看黄色毛片网站| 国产精品一区二区三区四区久久| 亚洲男人的天堂狠狠| av中文乱码字幕在线| 在线观看日韩欧美| 亚洲电影在线观看av| 18美女黄网站色大片免费观看| 99国产精品一区二区三区| 露出奶头的视频| 一级毛片精品| 午夜免费观看网址| 91麻豆av在线| 色在线成人网| 美女 人体艺术 gogo| 国产高潮美女av| 俺也久久电影网| 在线观看66精品国产| 免费搜索国产男女视频| 国产精品99久久久久久久久| 欧美一区二区国产精品久久精品| 国产成人av激情在线播放| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看 | 偷拍熟女少妇极品色| 啦啦啦观看免费观看视频高清| 少妇丰满av| 少妇的丰满在线观看| 亚洲精品一区av在线观看| av女优亚洲男人天堂 | 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频,在线免费观看| 人人妻人人看人人澡| 亚洲av日韩精品久久久久久密| 99精品在免费线老司机午夜| 色综合亚洲欧美另类图片| 校园春色视频在线观看| 最好的美女福利视频网| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 麻豆国产av国片精品| 久久精品91蜜桃| 国产成人影院久久av| 免费av不卡在线播放| a级毛片在线看网站| 曰老女人黄片| 免费搜索国产男女视频| 亚洲欧美日韩东京热| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 午夜福利免费观看在线| 免费一级毛片在线播放高清视频| 九色成人免费人妻av| 一级毛片女人18水好多| 97超视频在线观看视频| 国产又黄又爽又无遮挡在线| 丰满人妻一区二区三区视频av | a级毛片在线看网站| 欧美日韩瑟瑟在线播放| 18禁美女被吸乳视频| www日本在线高清视频| 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 欧美精品啪啪一区二区三区| 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 一夜夜www| 曰老女人黄片| 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 久久久久国内视频| 日本黄色视频三级网站网址| a在线观看视频网站| 精品一区二区三区视频在线观看免费| 精品久久久久久久末码| 黑人巨大精品欧美一区二区mp4| 成人无遮挡网站| 欧美日韩综合久久久久久 | 久久中文字幕一级| 丁香六月欧美| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 十八禁网站免费在线| 99精品在免费线老司机午夜| 亚洲18禁久久av| 日日夜夜操网爽| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 免费观看人在逋| 国产精品国产高清国产av| 老鸭窝网址在线观看| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 成年版毛片免费区| 99riav亚洲国产免费| 99视频精品全部免费 在线 | 国产黄片美女视频| 在线观看午夜福利视频| 亚洲 欧美 日韩 在线 免费| av女优亚洲男人天堂 | 亚洲狠狠婷婷综合久久图片| 国产 一区 欧美 日韩| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 亚洲午夜精品一区,二区,三区| 淫秽高清视频在线观看| 久久热在线av| avwww免费| 国产成人欧美在线观看| 91字幕亚洲| 久久久久九九精品影院| 婷婷亚洲欧美| 一本久久中文字幕| 亚洲欧洲精品一区二区精品久久久| 久久欧美精品欧美久久欧美| 亚洲五月婷婷丁香| 婷婷亚洲欧美| 日本免费a在线| 麻豆一二三区av精品| 国产私拍福利视频在线观看| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 色播亚洲综合网| 亚洲自偷自拍图片 自拍| 欧美一区二区国产精品久久精品| 国产综合懂色| 巨乳人妻的诱惑在线观看| 在线看三级毛片|