• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and(3 + 1)-dimensional ZK equations

    2021-10-12 05:31:42AliAkbarMdAbdulKayumandOsman
    Communications in Theoretical Physics 2021年10期

    M Ali Akbar, Md Abdul Kayum,2 and M S Osman

    1 Department of Applied Mathematics, University of Rajshahi, Bangladesh

    2 Department of Computer Science & Engineering, North Bengal International University, Rajshahi,Bangladesh

    3 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

    Abstract The(3 + 1)-dimensional Zakharov–Kuznetsov(ZK)and the new extended quantum ZK equations are functional to decipher the dense quantum plasma, ion-acoustic waves, electron thermal energy,ion plasma,quantum acoustic waves,and quantum Langmuir waves.The enhanced modified simple equation (EMSE) method is a substantial approach to determine competent solutions and in this article, we have constructed standard, illustrative, rich structured and further comprehensive soliton solutions via this method.The solutions are ascertained as the integration of exponential,hyperbolic,trigonometric and rational functions and formulate the bright solitons, periodic, compacton, bellshape, parabolic shape, singular periodic, plane shape and some new type of solitons.It is worth noting that the wave profile varies as the physical and subsidiary parameters change.The standard and advanced soliton solutions may be useful to assist in describing the physical phenomena previously mentioned.To open out the inward structure of the tangible incidents,we have portrayed the three-dimensional,contour plot,and two-dimensional graphs for different parametric values.The attained results demonstrate the EMSE technique for extracting soliton solutions to nonlinear evolution equations is efficient, compatible and reliable in nonlinear science and engineering.

    Keywords: (3 + 1)-dimensional ZK, the extended QZK equation, enhanced modified simple equation method, soliton solutions, NLEEs

    1.Introduction

    Nonlinear evolution equations (NLEEs) play a very important role in describing many physical features, particularly in quantum acoustic waves, quantum Langmuir waves, dense quantum plasma, ion-acoustic waves, electron thermal energy,ion plasma,solid state physics,optical fibers,chemical physics,chaos theory, mathematical physics, astrophysics, biophysics,nuclear physics, fluid mechanics, engineering problems [1, 2]etc.Nonlinear soliton solutions of these NLEEs play a fundamental role in unraveling the dynamics and describing the facts.Thus, different methods are used to search soliton solutions to these NLEEs.Some of them are the extended simple equation technique [3], the generalized Kudryashov technique [4], the first-integral technique[5],the new auxiliary equation technique[6], the Bernoulli sub-equation function technique [7, 8], the Riccati–Bernoulli sub-ODE method [9–11], the sine-Gordon expansion technique[12,13],the sine–cosine technique[14],the generalized unified technique[15],the modified Khater method[16], the tanh–coth method [17], He’s variational principle[18, 19], the Bcklund transformation method [20], the unifeid Riccati equation expansion method [21], the extended Kudryashov method [22], the improved(G′/G) -expansion method[23], the functional variable method [24], the exp-expansion technique [25], the improvedF-expansion technique [26], the MSE technique [27–30], the enhanced MSE method [31], the Jacobi elliptic functions method [32–35], and other different techniques [36–40].

    In various fields of physics, applied mathematics, and engineering, the Zakharov–Kuznetsov (ZK)equation is used.The new extended quantum ZK (QZK) and the (3 + 1)-dimensional ZK equations were derived for finite but small amplitude ion-acoustic waves in a quantum magneto-plasma by using the reductive perturbation theory and the quantum hydrodynamical model [41].In this study, we consider the enhanced MSE technique to search bright solitons, periodic,compacton, bell-shape, parabolic, singular periodic and other general soliton solutions of the (3 + 1)-dimensional ZK equation and the new extended quantum QZK equation [42].The ZK equation is one of the two canonical two-dimensional extensions of the Korteweg–de Vries equation, which was initially developed in two dimensions for weakly nonlinear ion-acoustic waves in strongly magnetized lossless plasma.The new extended QZK equation [43] is:

    wherev(x,y,t)represents the electrostatic wave potential with the temporal variabletand spatial variablesx,yandα,β,γare all constants.The coefficients ofβandγdescribe the multi-dimensional dispersion terms,the coefficient ofαis the nonlinear term,andvtis the evolution with respect to time.

    In the subsequent, we consider the (3 + 1)-dimensional ZK [44]:

    where α is the nonlinear coefficient andβ,γ,δare the dispersion coefficients.In[44], the ZK equation was derived by putting in use the reductive perturbation technique and the quantum hydrodynamic model and some periodic, explosive,and solitary wave solutions are obtained with the help of the extended Conte’s truncation technique.

    The exact solutions and symmetry reductions to the extended QZK equation have been derived by Lie symmetry analysis in[45].In[46],the optimal system and conservation law were used for further investigation of the extended QZK equation.To obtain the exact travelling wave solutions to the extended QZK equation, El-Ganaini and Akbar [47] contrive the modified simplest equation technique, the extended simplest equation technique,and the simplest equation technique.Baskonus et al [48] extracted hyperbolic and complex function solutions of the extended QZK equation by using the sine-Gordon expansion technique.Raza et al [49] used the trial equation method to search soliton and periodic solutions of equation (1).

    The multiple soliton solutions and new exact solitary wave solutions of (2) were attained by means of the Hirota’s bilinear technique and the auxiliary equation method in [50].Ebadi et al[51]used the adaptedF-expansion technique,expfunction technique, and the(G′/G) -expansion technique to find exact travelling wave solutions.Bhrawy et al [52] introduced the extendedF-expansion technique for finding the complexiton solutions, singular soliton, non-topological, and topological solutions.In[53],the authors applied the extended generalized(G′/G)-expansion technique to determine new exact solutions of (2).Lu et al [54] introduced the modified extended direct algebraic method to extract the elliptic function solutions,soliton and new exact solitary wave solutions of(2).New types of travelling wave solutions of(2)were attained by applying the generalized(G′/G)-expansion technique and the improved tan (φ/2) -expansion technique in [55].Zayed et al[56] applied the(G′/G, 1/G)-expansion method to extract further exact solutions of (2).Recently, Vinita and Ray [57]used the Lie symmetry analysis to study the equation (2) and new exact solitary wave solutions are attained and also derived the conservation laws to the QZK equation.

    The enhanced modified simple equation(EMSE)method is recently developed a significant approach to determining competent solutions that is effective,compatible,and reliable to extract soliton solutions to NLEEs.This method have been used to examine the (1 + 1)-dimensional Burgers–Fisher equation with variable coefficients, the (2 + 1)-dimensional ZK equation with variable coefficient,the FitzHugh–Nagumo equation, the Burgers–Huxley equation [58], the modified Volterra equations,the Burger–Fisher equation[59],the Phi-4 equation [60], Chafee–Infante equation [61], the Gardner equation and the modified Benjamin–Bona–Mahony equation

    [62].The (3 + 1)-dimensional ZK and the new extended QZK equations are important mathematical models to decipher ion-acoustic waves, quantum acoustic waves, quantum Langmuir waves, etc.To the optimal of our cognition and based on the analysis of the documents reachable in the literature obtained, the formerly introduced equations have not been investigated by the EMSE technique earlier.Thus,supported by the earlier studies, the aim of this article is to ascertain standard, realistic and far-reaching compatible solutions to these equations through the EMSE method.The feature of the solutions is that they extract bright solitons,periodic, compacton, bell-shape, parabolic shape, singular periodic and other solitons for certain values of the associated parameters.

    The remaining of the article is sorted out as follows: the explanation of the enhanced MSE technique is given in section 2.In section 3, we use technique to search the advanced and wide-spectral soliton solutions.Some of the important graphical depictions of the solutions obtained are given in section 4.Finally in the last section,the conclusion is given.

    2.The EMSE technique

    In this section, we concisely explain the EMSE technique[58–62].Let us consider a general NLEE in the subsequent form:

    whereL is a polynomial with respect to the wave functionv(x,y,z,t)in which the highest order derivatives and nonlinear terms are involved.The following are the basic steps of this technique:

    Step 1.The wave variableξ=p(t)x+q(t)y+r(t)z+s(t),wherev(x,y,z,t)=V(ξ)remodels equation (3) into a nonlinear differential equation in the follow way:

    whereV=V(ξ), dot specifies the differentiation related to timet, and prime (′) specifies the differentiation with respect toξ.

    Step 2.The solution of the reduced equation(4),in agreement with the EMSE method can be put into the form:

    wherea0(t),a1(t),a2(t),…,aN(t)are the unknown function of‘t’ to be evaluated, such thataN(t) ≠0,andψ′(ξ)≠0.The outstanding feature of this approach is that, instead of constants, the coefficients ofψ(ξ)-iare the function oft, andψ(ξ)is an unknown function or not a solution of any wellknown equation.

    Step 3.The balancing theory between the nonlinear and linear terms appearing in equation (4), results the balance numberNarise in solution (5).

    Step 4.Using the solution (5) and its necessary derivatives into equation(4),together with the balance numberN,yield a polynomial ofψ(ξ)-i, wherei= 1,2,3,…,N.Collecting all the terms of same power and equating them to zero, it is attained a system of differential and algebraic equations, can be estimated to finda0,ai,p,q,r,sandψ(ξ).Thus, we can establish inclusive,fresh and standard soliton solutions of(3)by substituting the above values into the solution (5).

    3.Solutions analysis

    In this section, bright solitons, periodic, compacton, parabolic, bell-shape, singular periodic and other types of soliton solutions of the (3 + 1)-dimensional ZK and the new extended QZK equations are established via the enhanced MSE technique.

    3.1.The new extended QZK equation

    In this section,we derive the general solitary wave solution in terms of hyperbolic function, trigonometric function, exponential function and rational function of the new extended QZK equation using the enhance MSE technique.The wave transformation

    remodel the equation (1) into the subsequent equation:

    We attain equation (8) after integrating (7),

    setting the zero-integrating constant.

    Using the balancing principle betweenV″ and V2, we obtainN= 2.

    Therefore, the equation (8) has a solution of the following form

    Inserting solution (9) and its necessary derivatives into equation(8);equating all the coefficients ofψ-i,xψ-i,yψ-i,i=0, 1,2,3,4, and setting them to zero, we attain the algebraic and differential equations as follows:

    Equations (11), (12), (14), (15), (17) and (18) give the subsequent results:

    =0 and= 0.Thus,p=handq=k,wherehandkare integrating constants.

    On the other hand, from equations (10) and (20), we found

    a0(t) =0,-2r˙/hαanda2(t) =sincea2(t) ≠0.

    Equation (19) provides the subsequent result:

    wherec1,c2are constants of integration andK=

    The following cases should now be discussed:

    Case 1.Whena0=0.

    Inserting the values ofψ(ξ),a2(t)anda0(t)into(13),we obtain

    Since the values ofp,q,a0,a1,a2andψsatisfy equation(16),the values ofp,q,a0,a1,a2andψare admissible to determine the soliton solutions.

    Using the values ofa0,a1,a2andψ(ξ)into the solution(9), we ascertain

    By using the transformation between the exponential and hyperbolic functions, solution (22) is reduced to the subsequent soliton solution:

    Choosing the value of arbitrary constants, c1= ±4 andtherefore, we attain

    whereξ=hx+ky+r(t).

    Again, choosingc1= ±12andthe solution(23) turns to be

    Moreover, if we assign,c1= ±G,c2= ±1orc1= ±1,we obtain the succeeding hyperbolic function solutions of equation (8)

    Thus,subject to the spatio-temporal coordinates,we attain the subsequent bright and singular soliton to the extended QZK equation as

    We attain the subsequent trigonometric function solutions, from solutions (28) and (29):

    Case 2.When.

    Introducing the values ofa0(t),a2(t)andψ(ξ)into(13),yields

    Substituting the values ofa0,a1,a2andψ(ξ)into (9), we attain the ensuing solution

    The solution (32) can be written as

    Setting the valuesc1= ±6and of the arbitrary constants in (33), we extract

    whereξ=h x+k y+r(t).

    Yet again, settingc1= ±18andwe obtain

    Alternatively, if we setc1= ±H,c2= ±1orc1= ±1,we ascertain the under mentioned soliton solutions

    Subject to the temporal-spatial coordinates, we obtain the interpreted bright and singular soliton to the extended QZK equation as follows:

    The periodic soliton for solutions (38) and (39) is considered to be:

    whereGis provided in the above.The solutions (28)–(31)and (38)–(41) represent bright, parabolic soliton, bell-shape soliton, singular periodic soliton, and compacton.

    3.2.The (3 + 1)-dimensional ZK equation

    In this section, relating to exponential function, rational function, hyperbolic function and trigonometric function, we obtain the general solitary wave solution to the (3 + 1)-dimensional ZK equation via the EMSE method.The wave variable

    reduces the (3 + 1)-dimensional ZK equation (2) into the ensuing equation:

    Integrating (43) with zero integrating constant, we obtain

    Applying the balance principle between the nonlinear termV2and highest order derivativeV″ , we foundN= 2.

    Thus, the solution of equation (44) accept the following form

    wherea0,a1anda2are an unknown function oft,andψ′(ξ)≠0.

    Putting the values ofV(ξ)and it’s twice derivative into(44)and equalizing the coefficients of same power to zero,we attain some algebraic and differential equations as follows:

    From equations (47)–(49), (51)–(53) and (55)–(57), it is found

    Integrating the above expressions with respect to time, yields

    where l, m and n are the constants of integration.

    Equation (58) gives the following result:

    wherec3andc4are constants of integration andK′=.

    Solving equations(46)and(59)and putting the values ofp,q,r, we attain

    Case 1.Whena0=0,

    Using the values ofa0,a2,ψinto the equation (50) and solving fora1, we acquire

    Inasmuch as equation(54)is satisfied for the values ofp,q,r,a0,a1,a2andψ, these values are acceptable for determining the soliton solutions.

    Substituting the values ofa0,a1,a2andψinto the solution (45), we attain the subsequent exponential function solution

    Transforming the exponential function solution (61) into the hyperbolic function solution, we attain

    Sincec3andc4are integral constants,their values could be set at random.As a result,we can choose the values ofc3andc4arbitrarily.Therefore, if we choosec3= ±5 /2andc4= ±1 /2M,the solution (62) turns out to be

    Again, if we choosec3= ±M,c4= ±1orc3= ±1,we attain the hyperbolic function solutions of equation (44) in the ensuing

    Thus, the bell-shape and singular solitons to the (3 + 1)-dimensional ZK equation in relation to the space-time coordinates are

    In relation to (66) and (67), the trigonometric function solutions can be simulated as:

    .

    Case 2.When.

    Embedding the values ofa0,a2,ψinto (50) and deciphering fora1, yield

    For these values ofa0,a1,a2andψ, from solution (45), we attain

    The solution (70) of the exponential function can be formulated as

    For the valuesc3= ±6andsolution (71) turns to the soliton solutions:

    Furthermore, if we setc3= ±T,c4= ±1orc3= ±1,solution (72) turns into:

    Therefore, we attain the under mentioned bell-shape and singular soliton solutions subject to space-time coordinates.

    Relating to(75)and(76),the trigonometric function solutions can be constructed as:

    The solutions (66)–(69) and (75)–(78) produce the bright,periodic, singular bell-shaped and plane shaped solitons which helps to understand the physical features of the(3 + 1)-dimensional ZK equation.

    4.Results and discussion

    The symbolic demonstration is very significant to understand the physical context of the solutions obtained for diverse parameter values.Therefore, we have portrayed two and three-dimensional graphics of the completed solutions to the(3 + 1)-dimensional ZK equation and the new extended QZK equation, in this section.To ascertain the physical properties of the earlier described equations, graphical descriptions of some of the solutions obtained by Matlab software are portrayed.Since the arbitrarily functionr(t) of the new extended QZK equation ands(t) of the (3 + 1)-dimensional ZK equation exist in the solutions,therefore we may choose their values randomly for each solution.Figures 1–8 show the two and three-dimensional diagrams of the obtained solutions for the new extended QZK equation, and figures 9–16 indicate the two and three-dimensional graphs for the (3 + 1)-dimensional ZK equation.In figures 1–8, the 3D graphs are portrayed aty=0 and 2D graphs are depicted atx=y=0.Also, in figures 9–16, the 3D graphs are depicted aty=z=0 and the 2D graphs are illustrated atx=y=z=0.

    Sincer(t)is an arbitrary function, without loss of generality we have consideredr(t)=λt.For the parametric valuesh= 2,k= 1,α= 6,β= 2,γ=2 andλ= 2,the solution (24) demonstrate the periodic soliton and designated in figure 1.Periodic solitons perform a dynamic onward in characterizing the electrostatic wave potential in plasma physics.The space-time range for 3D graph is- 10≤x,t≤10.Also, the two-dimensional plot with the time range- 15 ≤t≤15 is depicted forλ= 2,2.1,2.2 which are identified by three different colors.

    Figure 1.The 3D and 2D graphics for r ( t) =λt of the solution (24) with the parametric values h = 2,k = 1, α = 6, β = 2, γ=2 andλ = 2.

    Figure 2 describes the periodic soliton nature represented by the solution (28).The suitable values of parameters withr(t)=λtare taken ash=0.5,k=0.2,α= 0.3,β= 0.4,γ= 0.6 andλ= 0.5 for 3D and 2D graphs.The twodimensional graph is portrayed atλ= 0.5,0.506,0.509 with different colors.The space-time range of 3D and 2D graphs is- 5 ≤x,t≤5.

    Figure 2.The 3D and 2D graphics for r(t) = λt of the solution(28)with the parametric values h= 0.5, k= 0.2,α = 0.3,β = 0.4,γ = 0.6 andλ = 0.5.

    Also,the 3D graph in figure 3 reflects the bright solitonic nature forr(t) =sinh (λt)of the solution (28) with the appropriate parametric valuesh=0.7,k= -1,α= -1,β= 2,γ= 3 andλ= 0.2.The bright solitons are worthwhile to understand the behavior of charged carriers in quantum plasmas.The space-time range of 3D and 2D graphics is- 5 ≤x,t≤5.The two-dimensional plot is drawn atλ= 0.2,0.21,0.22 which are identified by diverse colors.

    Figure 3.The 3D and 2D graphics for r ( t) =sinh ( λt)of the solution(28)with parametric values h =0.7, k= -1,α = -1,β = 2,γ = 3 andλ = 0.2.

    On the contrary, the solution (29) for the parametric valuesh=4,k=4,α= 3,β= -0.1,γ= 0.3 andλ= 4 represents pulse like singular periodic soliton, presented in figure 4 forr(t)=λt.The singular solitons are traveling wave solutions having discontinuities.The time-space range for 3D graph is- 5 ≤x,t≤5,for 2D graph the time range is- 10 ≤t≤10 atλ= 4,5, 6.

    Figure 4.The 3D and 2D graphics for r ( t) =λt of the solution (29) with particular values h =4, k =4, α = 3, β = -0.1, γ = 0.3 andλ = 4.

    Furthermore, the solution shapes in figure 5 show the compacton drawn from the solution (30) forr(t)=λt with the particular valuesh=2.8,k=3,α= 3,β= 2,γ= 1.9 andλ= 2.Compactons are a sort of soliton with a dense support that can be used to describe ion-acoustic waves,electrostatics wave, quantum acoustic waves in plasma physics.The space-time range for 3D graph is- 5 ≤x,t≤5.The two-dimensional plot is shown atλ= 2,2.1,2.2 in different colors with the time range- 10 ≤t≤10.

    Figure 5.The 3D and 2D graphics for r ( t) =λt of the solution (30) with the particular values h =2.8, k =3, α = 3, β = 2, γ = 1.9 andλ = 2.

    Figure 6 indicates the periodic soliton forr(t)=λt sketched from the solution (34) with the particular valuesh=0.7,k=1,α= 0.4,β= 0.4,γ= 0.6 andλ= -1.The time-space range of 3D graph for real and imaginary parts of the solution (34) is- 10 ≤x,t≤10.

    Figure 6.The 3D graphics for r ( t) =λt of the solution (34) with the particular values h= 0.7, k= 1, α = 0.4, β = 0.4, γ = 0.6 andλ = -1.

    Figure 7, describes the bell-shape soliton portrayed from the solution (38) forr(t)=λt with the parametric valuesh=0.7,k=1,α= 0.4,β= 0.4,γ= 0.6 andλ= 1.5.Bell-shaped solitons,which have infinite wings on both sides,are another sort of solitary wave solution useful signal management.The time-space range for 3D and 2D graph is- 5 ≤x,t≤5.The two-dimensional plot is portrayed atλ= 1.5,2,2.5.

    Figure 7.The 3D and 2D graphics for r ( t) =λt of the solution (38) with the particular values h= 0.7, k= 1,α = 0.4,β = 0.4,γ = 0.6 andλ = 1.5.

    The solution (40) exhibits the parabolic soliton for the values ofh=9,k= -0.8,α= 2,β= 4,γ= 6 andλ= -0.1 withr(t)=λt sketched in figure 8.The space-time range of 3D and 2D graph is- 5 ≤x,t≤5.The twodimensional plot is depicted atλ= -0.1.

    Figure 8.The 3D and 2D graphics for r ( t) =λt of the particular solution(40)with the parametric values h= 9, k= -0.8,α = 2,β = 4,γ = 6 andλ = -0.1.

    The 3D graph in figure 9 shows the soliton nature fors(t) =sin (λt)of the particular solution (63) with the suitable parametric valuesl= -0.1,m=0.3,n=1,δ= 0.8,γ= 0.6,β= 0.9,α= 0.4 andλ= 0.2.The space-time range of 3D graph for real and imaginary parts of the solution(63) is- 10 ≤x,t≤10.

    Figure 9.The 3D graphics for s ( t) =sin ( λt) of the solution(63)with the parametric values l= -0.1, m =0.3, n =1,δ = 0.8,γ = 0.6,β = 0.9,α = 0.4 andλ = 0.2.

    On the other hand, figure 10 reflects the periodic soliton nature fors(t) =sin (λt) of the particular solution (66) with the particular valuesl=0.6,m=0.8,n=1,α= 2,β= 4,γ= 2,δ= 1 andλ= 1.The space-time range of 3D and 2D graph is- 8 ≤x,t≤8.Also, the 2D graph is depicted atλ= 1,1.2,1.4 which are specified by different colors.

    Figure 10.The 3D and 2D graphics for s ( t) =sin ( λt)of the general solution (66) with the parametric values l =0.6, m =0.8, n =1,α = 2, β = 4, γ = 2,δ = 1 and λ = 1.

    Furthermore, the solution shapes in figure 11 is the bright-like soliton profile is interpreted from the solution(66)fors(t) =eλtwith the suitable parametric valuesl=5,m=0.5,n=2,α= 3,β= 1,γ= 2,δ= 2 and,λ= -0.4.This solution is descend from left to right asymptotic state.The space-time range for 3D and 2D graph is- 5 ≤x,t≤5.Also, the two-dimensional plot is illustrated atλ= -0.4,-0.5,-0.6.

    Figure 11.The 3D and 2D graphics for s ( t) = eλ t of the solution (66) with the particular values l =5, m =0.5, n =2,α = 3, β = 1,γ = 2,δ = 2 andλ = -0.4.

    Figure 12 is the singular soliton characterized by the solution (67).The appropriate values of parameters withs(t) =sin (λt)are taken asl=1,m=0.2,n=0.9,δ= 1,γ= 1.5,β= 2.5,α= 1.5 andλ= 0.1 for 3D and 2D graphs.The two-dimensional graph is portrayed atλ= 0.1,0.2,0.3 with different colors.The space-time range of 3D and 2D graphs is- 5 ≤x,t≤5.

    Figure 12.The 3D and 2D graphics for s ( t) =sin ( λt) of the particular solution (67) with the particular values l =1, m =0.2, n =0.9,δ = 1, γ = 1.5, β = 2.5, α = 1.5 andλ = 0.1.

    Figure 13 represents the soliton like solution fors(t) =tanh (λt)of the solution (68) with suitable parametric valuesl=5,m=5,n=2,δ= 1,γ= 2,β= 1,α= 3 andλ= 0.4.The space-time range for 3D and 2D graphs is- 5 ≤x,t≤5.The two-dimensional plot is drawn atλ= 0.4,0.5,0.6 which are specified by different colors.

    Figure 13.The 3D and 2D graphics for s ( t) =tanh ( λt) of the solution(68)with the particular values l =5, m =5, n =2,δ = 1,γ = 2,β = 1,α = 3 andλ = 0.4.

    Figure 14, is periodic soliton depicted from the solution(75) fors(t) =cos (λt) with the suitable parametric valuesl=4,m=7,n=2.5,α= 3.5,β= 2.5,γ= 3.5,δ= 8 andλ= 0.6.The space-time range for 3D and 2D graph is- 5 ≤x,t≤5.The two-dimensional plot is shown atλ= 0.6,0.7,0.8 with different colors.

    Figure 14.The 3D and 2D graphics for s ( t) =cos ( λt) of the particular solution (75) with the particular values l =4, m =7, n =2.5,α = 3.5, β = 2.5, γ = 3.5,δ = 8 andλ = 0.6.

    Figure 15 signifies the singular soliton fors(t)=λt constructed from the solution (76) with the particular valuesl=1,m=7,n=5,α= 3,β= 0.5,γ= 1.5,δ= 1 andλ= 1.The time- space range of 3D and 2D graph is- 5 ≤x,t≤5.Also, the two-dimensional plot is depicted atλ= 1,2,3 which is shown in different colors.

    Figure 15.The 3D and 2D graphics for s ( t) =λt of the particular solution (76) with the particular values l= 1, m= 7, n= 5, α = 3,β = 0.5, γ = 1.5,δ = 1 andλ = 1.

    The solution shape in figure 16 shows the plane soliton which is drawn from the solution (77) fors(t) =cos (λt)with the parametric valuesl= -0.9,m=7,n=2.5,α= 3.5,β= 2.5,γ= 3.5,δ= 8 andλ= 0.1.The space time range for 3D and 2D graph is- 5 ≤x,t≤5.Also, the two-dimensional plot is drawn at λ = 0.1,0.2,0.3 which are identified by three different colors.

    Figure 16.The 3D and 2 graphics for s ( t) =cos ( λt) of the solution (77) with the parametric values l= -0.9, m =7, n =2.5,α = 3.5,β = 2.5, γ = 3.5,δ = 8 andλ = 0.1.

    For simplicity, some graphical representations of the achieved solutions are not reported here.Figures 1–16 indicate the periodic, bright, singular periodic, bell-shaped,compacton, parabolic, plane-shaped solitons etc describe the physical behavior of instances modulated by extended QZK equation and (3 + 1)-dimensional ZK equation.

    5.Conclusion

    In this study,we have effectively contrived the enhanced MSE technique to search for standard, definitive, and large-scale soliton solutions of the new extended QZK and (3 + 1)-dimensional ZK equations.The solutions are revealed in rational function, trigonometric function, hyperbolic function,exponential function and their integration.Bright solitons,periodic solitons, compacton, bell-shaped, parabolic, singular periodic solitons,plane shaped solitons,and some distinct and general solitons have been established.The soliton solutions that are similar to the preceding solutions validate this study,and the generic soliton solutions will enrich the literature and be valuable in future research.Two and three-dimensional graphs of these solutions are portrayed to help understand physical phenomena, namely ion-acoustic waves, dense quantum plasma, electron thermal energies, ion plasmas,quantum acoustic waves, quantum Langmuir waves, etc.This study confirms that the enhanced MSE technique is an effective and useful mathematical tool and is applicable to other NLEEs in physics, engineering and mathematical physics.

    Acknowledgments

    The authors would like to express their gratitude to the anonymous referees for their insightful remarks and ideas to improve the quality of the article.

    ORCID iDs

    欧美精品人与动牲交sv欧美| 亚洲精品第二区| 亚洲美女搞黄在线观看| 看免费成人av毛片| 国产精品无大码| 久久久久人妻精品一区果冻| 丝袜脚勾引网站| 国产高清三级在线| 永久网站在线| 九色成人免费人妻av| 国产在视频线精品| av在线app专区| 国产一区二区激情短视频 | 日本午夜av视频| 成人影院久久| 另类精品久久| 久久久久国产网址| 成人国产麻豆网| av在线播放精品| 久久精品久久久久久久性| 国产淫语在线视频| 男女下面插进去视频免费观看 | 国产又色又爽无遮挡免| 国产黄色免费在线视频| 男女边吃奶边做爰视频| 久久人人爽人人片av| 成年女人在线观看亚洲视频| a级毛片在线看网站| 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| 在线天堂最新版资源| 亚洲国产av影院在线观看| 亚洲精品av麻豆狂野| 黄色 视频免费看| 欧美激情国产日韩精品一区| 国产熟女午夜一区二区三区| 日日爽夜夜爽网站| 乱人伦中国视频| 看十八女毛片水多多多| 久久这里只有精品19| 国产免费视频播放在线视频| 亚洲少妇的诱惑av| 大话2 男鬼变身卡| 多毛熟女@视频| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 精品熟女少妇av免费看| 免费不卡的大黄色大毛片视频在线观看| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人 | 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 久久午夜综合久久蜜桃| 欧美 日韩 精品 国产| 久久久久精品人妻al黑| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| 国产一区有黄有色的免费视频| 全区人妻精品视频| 国产精品免费大片| 三级国产精品片| 深夜精品福利| 久久这里只有精品19| 亚洲国产最新在线播放| 青春草视频在线免费观看| av网站免费在线观看视频| 久久久国产一区二区| 中文乱码字字幕精品一区二区三区| 天天影视国产精品| 美女大奶头黄色视频| 亚洲欧洲日产国产| 亚洲成人一二三区av| 在线精品无人区一区二区三| 国产一区二区在线观看av| 18禁在线无遮挡免费观看视频| 乱人伦中国视频| 欧美日韩综合久久久久久| 日日撸夜夜添| 婷婷色综合www| 夜夜爽夜夜爽视频| 国产精品成人在线| 一二三四中文在线观看免费高清| 又黄又爽又刺激的免费视频.| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| 黑人高潮一二区| 在现免费观看毛片| 久久毛片免费看一区二区三区| 丝袜人妻中文字幕| 国精品久久久久久国模美| 精品99又大又爽又粗少妇毛片| 看十八女毛片水多多多| 少妇的逼好多水| 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区| 搡女人真爽免费视频火全软件| 99九九在线精品视频| 在线观看人妻少妇| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 99热全是精品| 久久久国产精品麻豆| 国产成人91sexporn| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 亚洲精品乱码久久久久久按摩| 久久ye,这里只有精品| 免费看av在线观看网站| 国产av码专区亚洲av| 777米奇影视久久| 日韩 亚洲 欧美在线| 免费在线观看完整版高清| 亚洲熟女精品中文字幕| 亚洲av免费高清在线观看| 久久婷婷青草| 免费观看a级毛片全部| 久久国产亚洲av麻豆专区| av在线app专区| 国产成人精品无人区| 亚洲精品国产色婷婷电影| 另类精品久久| 欧美xxⅹ黑人| 亚洲性久久影院| 丝袜人妻中文字幕| 性色avwww在线观看| 久久国产精品男人的天堂亚洲 | 三上悠亚av全集在线观看| 大陆偷拍与自拍| 一级片'在线观看视频| 麻豆乱淫一区二区| 99精国产麻豆久久婷婷| 国产精品免费大片| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 97在线视频观看| 欧美丝袜亚洲另类| 免费观看在线日韩| 黄色怎么调成土黄色| 乱人伦中国视频| 高清黄色对白视频在线免费看| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 看十八女毛片水多多多| 国产亚洲最大av| 久热久热在线精品观看| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 中文字幕制服av| 夫妻性生交免费视频一级片| 成人影院久久| 高清毛片免费看| 日本黄大片高清| 亚洲精品国产色婷婷电影| 国产精品久久久久久久久免| 国产成人精品久久久久久| www.熟女人妻精品国产 | 免费不卡的大黄色大毛片视频在线观看| 黄色视频在线播放观看不卡| 久久狼人影院| 婷婷色综合大香蕉| 九色亚洲精品在线播放| 国产精品一区二区在线观看99| 啦啦啦在线观看免费高清www| 麻豆精品久久久久久蜜桃| 大香蕉久久网| 丰满乱子伦码专区| 久久精品国产鲁丝片午夜精品| 成人毛片60女人毛片免费| 欧美性感艳星| 国产成人精品一,二区| 丝袜人妻中文字幕| 亚洲av免费高清在线观看| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 看十八女毛片水多多多| 丰满迷人的少妇在线观看| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 精品久久久精品久久久| 亚洲精品美女久久av网站| 亚洲一级一片aⅴ在线观看| 人妻系列 视频| 国产欧美亚洲国产| 免费久久久久久久精品成人欧美视频 | 久久精品国产亚洲av天美| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 一区二区三区精品91| 久久午夜福利片| 成年女人在线观看亚洲视频| 日本vs欧美在线观看视频| 最近的中文字幕免费完整| 大香蕉久久网| 夫妻午夜视频| 免费黄网站久久成人精品| 男女下面插进去视频免费观看 | 午夜福利在线观看免费完整高清在| 在线观看国产h片| 十八禁高潮呻吟视频| 母亲3免费完整高清在线观看 | 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 国产成人av激情在线播放| 日本91视频免费播放| 亚洲精品久久久久久婷婷小说| 久久午夜福利片| 18禁国产床啪视频网站| 国产国拍精品亚洲av在线观看| 黄色 视频免费看| 男女免费视频国产| 丝袜美足系列| 欧美+日韩+精品| xxx大片免费视频| 美女视频免费永久观看网站| 亚洲精品乱码久久久久久按摩| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 男女高潮啪啪啪动态图| 丝袜喷水一区| 日韩制服骚丝袜av| 蜜桃国产av成人99| 亚洲av欧美aⅴ国产| 青青草视频在线视频观看| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 国产精品久久久久成人av| 91精品三级在线观看| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 最近最新中文字幕大全免费视频 | 亚洲第一区二区三区不卡| 人人妻人人添人人爽欧美一区卜| 亚洲人成网站在线观看播放| av片东京热男人的天堂| 18禁动态无遮挡网站| 中文天堂在线官网| 高清欧美精品videossex| 捣出白浆h1v1| 两个人看的免费小视频| 两个人免费观看高清视频| 国产一区二区在线观看av| 人妻系列 视频| 永久网站在线| 国产在视频线精品| 国产精品一区二区在线观看99| 精品第一国产精品| 国产精品久久久av美女十八| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 日本-黄色视频高清免费观看| 精品少妇久久久久久888优播| 国产淫语在线视频| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 亚洲av国产av综合av卡| 九色亚洲精品在线播放| 国产免费一级a男人的天堂| 亚洲成人手机| 国产探花极品一区二区| 青春草亚洲视频在线观看| 在线观看一区二区三区激情| 少妇人妻久久综合中文| 男人舔女人的私密视频| 亚洲天堂av无毛| a 毛片基地| 人体艺术视频欧美日本| 一二三四中文在线观看免费高清| 十八禁网站网址无遮挡| 免费大片18禁| 午夜免费观看性视频| 亚洲av男天堂| 韩国精品一区二区三区 | 精品亚洲成a人片在线观看| 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 欧美日韩综合久久久久久| 青青草视频在线视频观看| 久热这里只有精品99| 我的女老师完整版在线观看| 精品人妻一区二区三区麻豆| 亚洲国产av影院在线观看| 美女视频免费永久观看网站| 如日韩欧美国产精品一区二区三区| 97人妻天天添夜夜摸| 精品国产一区二区三区久久久樱花| 青春草亚洲视频在线观看| 男人添女人高潮全过程视频| 亚洲成国产人片在线观看| 亚洲美女搞黄在线观看| 国产国语露脸激情在线看| 啦啦啦啦在线视频资源| 久久99蜜桃精品久久| 最近2019中文字幕mv第一页| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 亚洲成av片中文字幕在线观看 | 91精品伊人久久大香线蕉| 亚洲,欧美精品.| 国产男女内射视频| 男人添女人高潮全过程视频| 一级片'在线观看视频| 免费黄频网站在线观看国产| 亚洲av男天堂| 国产乱人偷精品视频| 哪个播放器可以免费观看大片| 少妇熟女欧美另类| 午夜日本视频在线| 亚洲精品第二区| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 最近中文字幕2019免费版| av在线播放精品| 欧美激情国产日韩精品一区| 久久久久久久精品精品| 亚洲精品美女久久久久99蜜臀 | 久久久久久久久久人人人人人人| 亚洲高清免费不卡视频| 90打野战视频偷拍视频| 9191精品国产免费久久| 亚洲人成77777在线视频| 中文字幕av电影在线播放| 在线精品无人区一区二区三| 久久99热这里只频精品6学生| 亚洲,欧美精品.| 国产片内射在线| 国产淫语在线视频| 欧美国产精品一级二级三级| 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 高清视频免费观看一区二区| 久久青草综合色| 久久av网站| 国产亚洲最大av| 赤兔流量卡办理| 免费av中文字幕在线| 日韩电影二区| 国产精品免费大片| 久久毛片免费看一区二区三区| 国产精品三级大全| 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区| 欧美变态另类bdsm刘玥| 久久久久人妻精品一区果冻| 久久久久久久久久成人| 亚洲 欧美一区二区三区| 欧美激情国产日韩精品一区| 亚洲 欧美一区二区三区| 在线精品无人区一区二区三| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 夜夜骑夜夜射夜夜干| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 大陆偷拍与自拍| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 日韩欧美精品免费久久| 免费观看av网站的网址| 五月天丁香电影| 国产免费一级a男人的天堂| 国产片特级美女逼逼视频| 中文字幕人妻丝袜制服| 国产精品嫩草影院av在线观看| 免费观看在线日韩| 欧美日韩av久久| 美女大奶头黄色视频| 国产精品99久久99久久久不卡 | 中文字幕另类日韩欧美亚洲嫩草| 我要看黄色一级片免费的| 狠狠婷婷综合久久久久久88av| 久久国内精品自在自线图片| 国产女主播在线喷水免费视频网站| 亚洲精品日本国产第一区| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩另类电影网站| 制服诱惑二区| 久久精品国产亚洲av天美| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 亚洲成国产人片在线观看| 亚洲欧美色中文字幕在线| xxx大片免费视频| 免费人成在线观看视频色| 多毛熟女@视频| 免费看不卡的av| 狂野欧美激情性xxxx在线观看| 日韩成人伦理影院| 亚洲 欧美一区二区三区| 伦理电影大哥的女人| videossex国产| 国产熟女欧美一区二区| 亚洲精品日本国产第一区| 男的添女的下面高潮视频| 51国产日韩欧美| 2022亚洲国产成人精品| 婷婷成人精品国产| 国产国语露脸激情在线看| 精品亚洲乱码少妇综合久久| 久久久久视频综合| 考比视频在线观看| 日本av手机在线免费观看| 国产成人精品福利久久| 午夜91福利影院| 免费观看在线日韩| 一二三四在线观看免费中文在 | 国产 精品1| 视频在线观看一区二区三区| 国产精品久久久久久精品古装| 国产一区二区在线观看日韩| 新久久久久国产一级毛片| 五月玫瑰六月丁香| 国产成人午夜福利电影在线观看| 久久青草综合色| 国产精品一区二区在线观看99| av电影中文网址| 国产免费一级a男人的天堂| 久久精品夜色国产| 69精品国产乱码久久久| 高清在线视频一区二区三区| 一边亲一边摸免费视频| 中国美白少妇内射xxxbb| 91在线精品国自产拍蜜月| 久久女婷五月综合色啪小说| 女性被躁到高潮视频| 1024视频免费在线观看| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 亚洲第一av免费看| 青春草亚洲视频在线观看| 亚洲精品美女久久av网站| 久久午夜福利片| 国产免费福利视频在线观看| 国产日韩欧美视频二区| 欧美bdsm另类| 国产日韩欧美在线精品| 在线观看国产h片| 看免费成人av毛片| 国产亚洲精品久久久com| 母亲3免费完整高清在线观看 | 国产亚洲av片在线观看秒播厂| 亚洲综合色网址| 宅男免费午夜| 午夜福利视频精品| 国产成人精品无人区| 日韩一区二区三区影片| 国产国语露脸激情在线看| 亚洲国产毛片av蜜桃av| 色视频在线一区二区三区| 国产在线免费精品| videossex国产| 男女下面插进去视频免费观看 | www.色视频.com| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 黄色配什么色好看| 亚洲欧美清纯卡通| 亚洲精品日韩在线中文字幕| 在线亚洲精品国产二区图片欧美| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| xxxhd国产人妻xxx| 香蕉丝袜av| 午夜激情av网站| 国产黄频视频在线观看| 日日啪夜夜爽| 激情五月婷婷亚洲| 成人免费观看视频高清| 中文乱码字字幕精品一区二区三区| 超色免费av| 丝瓜视频免费看黄片| 久久人人爽人人爽人人片va| 91精品三级在线观看| 午夜老司机福利剧场| a级毛片在线看网站| 性色av一级| 精品久久久久久电影网| 人妻 亚洲 视频| 久久97久久精品| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩另类电影网站| 亚洲美女视频黄频| 亚洲精品久久成人aⅴ小说| 久久久久久久精品精品| 天堂中文最新版在线下载| 三级国产精品片| 亚洲国产av新网站| 久久这里有精品视频免费| 日本av手机在线免费观看| 一级毛片黄色毛片免费观看视频| 51国产日韩欧美| 久久久久精品久久久久真实原创| 久久狼人影院| av国产精品久久久久影院| 精品熟女少妇av免费看| 啦啦啦啦在线视频资源| 亚洲一级一片aⅴ在线观看| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频| 满18在线观看网站| 如何舔出高潮| 啦啦啦在线观看免费高清www| 亚洲成av片中文字幕在线观看 | 国产日韩欧美视频二区| 亚洲综合色惰| 亚洲欧美成人精品一区二区| videossex国产| 亚洲精品自拍成人| 韩国精品一区二区三区 | 国产成人精品福利久久| 美女国产高潮福利片在线看| 欧美日韩精品成人综合77777| 国产成人精品一,二区| 青青草视频在线视频观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品区二区三区| 爱豆传媒免费全集在线观看| 在线精品无人区一区二区三| 国内精品宾馆在线| 香蕉国产在线看| 一级爰片在线观看| 久久青草综合色| 成人毛片60女人毛片免费| 黄色 视频免费看| 欧美精品国产亚洲| 黄色配什么色好看| 国产精品一区www在线观看| 欧美日韩精品成人综合77777| 日韩视频在线欧美| 中文字幕av电影在线播放| 精品福利永久在线观看| 18禁观看日本| 一级毛片电影观看| 成人亚洲欧美一区二区av| 秋霞在线观看毛片| 日韩大片免费观看网站| 亚洲,欧美,日韩| 亚洲av免费高清在线观看| 欧美人与性动交α欧美精品济南到 | 中文字幕亚洲精品专区| 有码 亚洲区| 大香蕉久久网| 少妇人妻精品综合一区二区| 亚洲av.av天堂| 亚洲性久久影院| 免费日韩欧美在线观看| 26uuu在线亚洲综合色| 久久久精品免费免费高清| 美女内射精品一级片tv| 只有这里有精品99| 免费少妇av软件| 日日摸夜夜添夜夜爱| 母亲3免费完整高清在线观看 | 久热这里只有精品99| 99久久综合免费| 亚洲av国产av综合av卡| 在线观看人妻少妇| 日本爱情动作片www.在线观看| 永久免费av网站大全| 亚洲美女搞黄在线观看| 久久午夜综合久久蜜桃| 永久网站在线| 男人舔女人的私密视频| 国产精品一区二区在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 香蕉精品网在线| 国产精品欧美亚洲77777| 免费高清在线观看日韩| 在线观看www视频免费| 亚洲av福利一区| 国产白丝娇喘喷水9色精品| 欧美日韩av久久| 日本vs欧美在线观看视频| 高清视频免费观看一区二区| 亚洲国产色片| 日韩制服骚丝袜av| 欧美+日韩+精品| 丝袜脚勾引网站| av片东京热男人的天堂| 亚洲在久久综合| a 毛片基地| 桃花免费在线播放| 在线精品无人区一区二区三| 国产 精品1| 我的女老师完整版在线观看| 国产在线视频一区二区| 最近2019中文字幕mv第一页| 最近最新中文字幕免费大全7| 亚洲国产日韩一区二区| 少妇人妻精品综合一区二区| 18禁裸乳无遮挡动漫免费视频| 国产欧美亚洲国产| 少妇熟女欧美另类| 亚洲国产欧美在线一区| 国产成人精品在线电影| 超碰97精品在线观看| 国产亚洲午夜精品一区二区久久| 99视频精品全部免费 在线| 国产一级毛片在线| 黑人猛操日本美女一级片| av.在线天堂| 中文字幕制服av| 青春草亚洲视频在线观看| 午夜福利网站1000一区二区三区| 国产乱人偷精品视频|