• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Barrier or easy-flow channel:The role of grain boundary acting on vortex motion in type-II superconductors?

    2021-09-28 02:18:28YuLiu劉宇XiaoFanGou茍曉凡andFengXue薛峰
    Chinese Physics B 2021年9期
    關(guān)鍵詞:薛峰劉宇

    Yu Liu(劉宇),Xiao-Fan Gou(茍曉凡),?,and Feng Xue(薛峰)

    College of Mechanics and Materials,Hohai University,Nanjing 211100,China

    Keywords:type-II superconductors,grain boundary(GB),vortex motion,competition effect,GB strength,the relative disorder strengthαp/αv

    1.Introduction

    The type-II superconductors allow for the penetration of quantized magnetic flux,viz.vortex lines(vortex for short hereafter)when being subjected to sufficiently strong external magnetic field.The motion of the vortices in superconductors is not only about the micro physics,more importantly,macroscopically dominates the superconductivity,for example the current-carrying capacity–critical current density Jc.[1–5]Essentially,vortex motion mainly results from the balance of the electromagnetic force(i.e.,the Lorentz force FL=J×B)and pining force at pining centers.The pining force on vortices,as an intrinsic characteristic of superconductors,is fundamentally determined by the pining strength of defects.These various defects in superconductors including second phases,grain boundaries,oxygen-vacancy clusters,irradiation-caused defects,dislocations,and growth flux inclusions are found to act as pinning sites for vortex motion against the driven electromagnetic force in type-II superconductors.[6–13]Among them,grain boundaries(GBs)are the most typical anisotropic pinning defects of the cuprate compound YBa2Cu3O7?x(YBCO).And therefore,study of the effect of GB on vortex motion in type-II superconductors has to be very significant not only for understanding their basic physics but also for the materials fabrication and many potential applications.

    GB in type-II superconductors and the effect on vortex motion have been studied in various researches performed on thin films and bulk samples.[14–22]By means of magnetooptical and magnetic hysteresis measurements,GB in superconductors was found to play a strong obstructive barrier for vortex motion in most cases,and later studies further indicated that GB can also be an easy-flow channel of vortices under certain conditions.[23,24]Recently more researches focused on the dependence of the GB angle on vortex motion.[25,26]Thus,a question arises that what is exactly the role of GB on vortex motion and how does it affect.So far it has been still unclear and remains to be future studied.

    In order to answer this question,deeply and completely understanding the effect of GB on vortex motion in superconductors has to be very significant.So,in the present work,we firstly developed a large scale molecular dynamic model,in which the GB structure was created by uniformly distributed special sites and an attractive well formed with the local electric fields.And besides,random structureless point pinning centers in superconductor were also taken into account in this model.Further performed with the LAMMPS code to deal with vortex–vortex,vortex–pin,and vortex–GB interactions,we tried to understand the role of GB on vortex motion,and reveal the effect mechanism of GB and the intrinsic correlations.In addition,on this molecular dynamic model and taking the superconductor YBCO as example with GB,we obtained a clear and visual knowledge of three typical trajectories of the vortices in the area near the grain boundary corresponding to the different relation of the average velocity with the driving force.

    2.Calculation model and approach

    Following the previous studies in regard to the GB effect on the vortex motion in the mixed state of superconductors,that is,the GB acting as easy-flow channels for vortices moving parallel to it and as an obstructive barrier for them perpendicular to it,here we consider the behavior of the vortices in the vicinity of the GB analogous to the motion of charge carriers induced by an electric field.As shown in Fig.1,the GB can be actually modeled as a potential well in which a series of dislocations(red dots)were arranged along the GB and meanwhile the local electric fields were applied to be perpendicular to the direction of the grain boundary on both sides.As charge carriers,all the vortices are subjected to an additional electric force when they move into the specific area to model the GB as a potential well showing that the GBs are anisotropic pinning centers.[27–29]The direction of the electric force that the vortices subjected to in the local electric field is perpendicular to the GB and always points to inside of the GB region since the local electric fields on both sides of the GB equal in magnitude(due to quantities of twin boundaries existing in the cuprate superconductors)but opposite in direction.

    Fig.1.The calculation model:a magnetic vortex pinning area of type-II superconductors with the grain boundary(GB).A large number of solid black spots represent magnetic vortices,and the rectangular band area between the red dotted lines indicates just the GB,2d andθare the width of the GB and the angle between the GB and the applied current respectively.In the GB region,a series of bigger red dots represent dislocations,and the red arrows on magnetic vortices represent the directions of electric forces.I and H present the transport current and applied magnetic field,respectively.

    Through the calculation model,we can study NvAbrikosov vortices interacting with the GB and Nprandom pins in a two-dimensional(2D)slice in the x–y rectangular system of the three-dimensional(3D)slab.The x axis is taken along the orientation of the applied current so that the Lorentz force only has a y component.In calculation,in order to use reasonably the periodic boundary conditions in the x-axis and y-axis directions for both GB and pinning sites,the slice is fixed with the GB in the center normal to the edge just as shown in Fig.1.And the variation of the angleθis realized by changing the direction of the applied current.Considering the London limitλL?ξs,whereλLis the penetration length andξsis the superconducting coherence length,we can treat vortices as point particles.In the present calculation,we employed the LAMMPS molecular dynamics code to perform numerical simulation.

    The equation of the time evolution of the vortex i at the position rican be given as[30,31]

    where kBis the Boltzmann constant,T is the temperature,and λ,μ=x,y.The vortex–vortex repulsive interaction is described by a modified Bessel function as[30,31]

    and the attractive pinning potential[30,31]is described by

    where Rpthe radius of the pins,andαvandαpare tunable parameters,which depend on the relative strengths of the vortex–vortex and vortex–pin interactions.The FGBis the GB force acting on the vortices,here we took account of the action of the local electric fields described in the calculation model and the effect of the series of dislocations acting as special uniform pinning centers.The related parameters E(the electric field intensity)and q(charge of the vortices)are tunable parameters.The pinning potential of the special pins along the GB is given by

    whereβis a tunable coefficient.The action of the local electric field occurs when the vortices moving into the specified area in the vicinity of the GB,and disappears after the vortices moving out the area.In simulation,we setαv=2.83×103λLε,whereεis an energy per unit length.The cutoff radius in the LAMMPS code rc=6.5λLand the radius of the pins Rp=0.22λL.A unit system was used here,in whichλL=1,ε=1,and kB=1.

    3.Results and discussion

    3.1.Vortex motion and the competition mechanism of determining the GB role

    The samples with the presence of pins or both GB and pins display different responses with the external driving force.However,there all exists the critical depinning force Fcabove which the system starts sliding from a pinned state.In order to check for the hysteresis behavior of vortex motion,several trial values can be chosen in the neighboring range of the force initially obtained to confirm its accurate value for each critical force.On previous researches,[31]we already know that,in the elastic regime,all the vortices depin together and move orderly as one,which forming a topologically ordered structure with coupled channels,but flow along the channels around pinned regions of vortices which indicates the integrity of the lattice being compromised in the plastic case.To completely understand the vortex motion,in this work we can study both the elastic and plastic dynamics of vortices through a combined parameter—the relative disorder strengthαp/αv.It is defined as the ratio of vortex–pin and vortex–vortex interactions,and can characterize the level of the relative disorder on vortex motion in a system.Generally,we can choose the value small enough(for example,αp/αv=5×10?3)to enforce elastic behavior or big enough(for example,αp/αv=5×10?2)to cause plastic behavior.

    Firstly,we calculated the critical driving force Fc,and obtained the normalized Fcby F0(i.e.,the critical driving force for the sample without GB)varying with the GB strength FGBboth in the elastic and plastic regimes under three different GB angles.Here the applied electric force FGB=Eq represents the total GB strength since the pinning force from the special pins along the GB keeps constant.As shown in Fig.2,the same things in common are that the normalized critical driving force varies with no obvious decrease when the GB strength is lower(less than about 10?1for elastic regime and 1.5 for plastic regime),while rapidly declines when the GB strength is much higher(larger than 10?1and close to 100for elastic regime and larger than 1.5 and close to 1.8 for plastic regime).The smaller the grain boundary angle is,the larger the normalized critical driving force is.And with referring to the result(identically equal to 1)for the sample without GB,generally,the critical driving forces vary from greater to lower than 1(no matter what regime it is in)except for the situation for the cases of GB angle 60°in the elastic regime(Fig.2(a))and GB angle 45°&60°in the plastic regime(Fig.2(b)),and in which the force keeps lower than 1 under no GB condition as the intrinsic behavior effected and concealed by the weight of the angle.

    Fig.2.The normalized critical driving force Fc/F0 versus the GB strength FGB in(a)the elastic regime and(b)plastic regime for the sample of size(Lx,Ly)=with 384 vortices in three cases of different GB angles(F0 is the critical driving force for the sample without GB corresponding to specific relative disorder strengthαp/αv,the same below).

    The results in Fig.3 show that,with the relative disorder strengthαp/αvincreasing for all three cases of GB angles,the critical driving force decreases across the value in the case of no GB,i.e.,the value from greater than 1 to less than 1,and the general trend is not affected by different GB angles.It means that the GB acts as an easy-flow channel for vortex motion as the critical driving force lower than that for the case of no GB,while as a strong barrier with the critical driving force higher than that in no GB situation.

    Fig.3.The normalized critical driving force Fc/F0 versus the relative disorder strengthαp/αv in three cases of different GB angles.The specific GB strength is fixed as 10?1.

    Combined with the results in Fig.2,we discussed as follows:(i)the role of GB on vortex motion(or vortices start to move)is not unchangeable,but changes from obstruction(corresponding to the situation Fc/F0>1,it means obstructive action on vortices)to promotion(i.e.,Fc/F0<1,it means promotive action);(ii)the role changing on vortex motion is related to the relative disorder strengthαp/αvin no GB region,the GB angle and strength.In other words,this role changing depends on the relative strength of the restriction on vortices from pining centers in no GB region and GB region itself;(iii)more intrinsically,there actually exists a competition effect between the internal(in GB region)grain boundary strength and the external(in no GB region)effect intensity(the intensity can be characterized by the relative disorder strengthαp/αvor inversely the relative order strengthαv/αp).In conclusion,it is such the competitive behavior that determines the role of GB on vortex dynamics being a strong barrier or an easy-flow channel.Specifically,in the elastic depinning transition regime,the vortices have strong integrity and the pinning effect gets relatively weak,and consequently the long-range pattern is destroyed by GB.However,in the plastic depinning transition regime,the integrity of the vortices is relatively weak and the pinning effect is comparatively strong,and consequently GB primarily overcome the attraction of pinning centers.In a word,the competition exists in the contrast of the action on vortex dynamics from the GB region to no GB region.

    The competition effect has to be of crucial importance on the role of GB over the vortex dynamics in the mixed state.Moreover,the existence of the competition effect can offer a preferable foundation for the optimization of superconducting transport properties by adjusting the correlation between the internal grain boundary strength and the external effect intensity.Indeed,various approaches developed,such as doped grain boundary,artificial pinning sites,and the arrangement of the pinning centers for adjusting and controlling the nanostructure of type-II superconducting materials,have been verified to be viable to transform the pinning effects.

    Besides the competition effect,the relative orientation of flux movement with respect to the direction of GB has influence on the role of GB as well.As shown in Fig.4,no matter in which the elastic regime(Fig.4(a))or the plastic regime(Fig.4(b)),the critical driving forces sharply drops down when the angle is in the range of 0°–15°,and then gently decreases,and again rapidly goes down when the angle is close to 90°(for the plastic regime).And in other words,the critical driving forces decreases across the value in the case of no GB(i.e.,the Fc/F0varies from greater than 1 to less than 1).The variation of the critical driving force again indicates that the role of the GB on vortex motion can transform between a barrier and an easy-flow pathway.In addition,the lattice is more likely to move or be teared with the angleθgrowing,which means the system depinning transition becomes easier.

    Fig.4.The normalized critical driving force Fc/F0 varying with the angleθ in(a)the elastic regime and(b)the plastic regime.The specific GB strength is fixed as 10?1.

    3.2.Impact of GB on vortex motion in YBa2Cu3O7 conductors

    Specifically,taking the superconductor YBa2Cu3O7(YBCO)as an example,we investigated the effect of GB on vortex motion in the superconductor.In calculation,the essential parameterαp/αvis set as 5.0×10?2,which is reasonable for YBCO samples.[26]As a result,the average moving velocities of vortices in the transverse and longitudinal directions versus the driving force were respectively plot in Fig.5.As shown in Fig.5(a),all the transverse velocities vxin three cases of different GB angles present similar a parabolic variation with a maximum value.But for different GB angles,generally,the transverse velocity vxpresents slightly different variations:with the driving force,the whole curve of the transverse velocity vxgradually shifting to the right,and the larger the GB angle is,the higher the maximum vxis.Generally,to a large extent,the transverse vortex motion is restricted by the strength of the GB potentials.The transverse velocity vxincreases with driving force at first,but when the component force in longitudinal direction reaches a strong enough value at which the vxrises up to its maximum,vortices launch across the grain boundary,which causes a decrease in the transverse velocity vx.

    Fig.5.The average velocity(a)vx and(b)vy versus the driving force FL for the sample of size(Lx,Ly)= in three cases of different GB angles.

    While the variation of the average velocity of vortices vywith the driving force is quite different.As shown in Fig.5(b),the velocity vymonotonically increases with the driving force for all three cases of GB angles.And in terms of magnitude,most of the velocity vy,as a whole,are one to two orders greater than the transverse velocity vx,and the velocities vyfor the two cases of the GB angle 60°and 45°,are close to each other,and slightly larger than that for the case of the GB angle 30°.Actually,more results show that the velocities vyincrease with the GB angle growing,and reaches maximum value at the angle reaching 90°,which corresponding to the moving direction of vortices parallel to the grain boundary.The results just indicate that the GB acts as easy flow channels for vortices moving parallel to the GB.More significantly,to deeply investigate vortex dynamics,on the calculated results we demonstrated three typical trajectories of vortices as shown in Fig.7,which is just matched up with three featured stages in Fig.5(b).In order to make the relationship between the GB and the trajectories more intuitive,the sample is revolved to the position where its edge parallel to the orientation of the applied current as the GB fixed(shown in Fig.6).The transformed sample still respect the original periodic boundary conditions.Here we try to make a complete illustration and in-depth discussion of the vortex dynamics in the YBCO sample with GB existing on the results of combined Figs.5(b)and 7.A channel occurs along the GB or in the vicinity of the GB when the driving force reaches the critical value(stage I).The vortices in the channel flow regularly past a series of fixed positions on the channel,viz.the trajectory of one given vortex on the channel fully displays the whole channel,as shown in stage I(Fig.7(b)).In this stage,the average velocities of vortices of the longitudinal component(i.e.,vy)presents an approximately linear increasing with the Lorentz driving force FL,which is shown as stage I in Fig.5(b).With FLincreasing,new channels which are generated as interconnected forms in the previous pinned area(stage II in Fig.7(c)).In this stage,the motion of vortices is somewhat disordered,which should be resulted from the average velocities of vortices nonlinearly increasing with the driving force in stage II shown in Fig.5(b).In stage III,the vortices flow orderly along the independent channels(Fig.7(d))as the driving force reaching to a sufficiently large value.And the average velocities of vortices for all three cases of the GB angles present an almost perfectly linear increasing with the driving force in stage III shown in Fig.5(b).

    Fig.6.The sample revolved on the z axis to make the edge parallel to the direction of the applied current by fixing the GB.

    Combining Figs.5 and 7,complete vortex motion in the area near GB should be understood as follows.The vortices begin to move firstly occurring in the vicinity of the GB,then with the Lorentz force growing,more interconnected moving channels are formed in the second stage,and finally all the vortices flow steadily.When the driving force gets strong enough,the vortices are able to cross through the GB,which causes a decrease in the transverse velocity.

    Fig.7.Typical trajectories of vortices in the YBCO sample with the GB of θ=30°during the three vortex movement stages:(a)the position of GB,(b)a channel along the GB(stage I),(c)interconnected channels formed(stage II),and(d)decoupled channels(stage III).

    Besides the vortex dynamics,the resulted in macro transport properties of type-II superconductors should be much more concerned.Therefore,we furthermore investigate how the GB acts on the properties correlated to the transport current.For a type-II superconductor in the mixed state,the flux lines are subjected to the Lorentz force if the superconductor carries a transport current.If the vortices are driven by this Lorentz force with the velocity v,the electric field induced is as follows:

    where B is the macroscopic magnetic flux density,and can be usually written as

    whereφ0is the magnetic flux quantum and S is the area of the sample surface.N is the number of flux lines penetrating the superconductor sample.The Lorentz force acting on the flux lines can be calculated by

    where J is the external current density.The practical critical current density is determined by the flux pinning in superconductors,fundamentally,and it is not an essential attribute,but depends on the flux pining,specifically the type,density,and configuration of pinning centers.According to Eqs.(6)–(8),the current–voltage characteristic of the YBCO superconductor with grain boundaries of various angles just corresponds to the relationship of the Lorentz force FLversus the velocityv.Thus,to reveal the current–voltage characteristic,we calculated the average velocity vyversus the driving force FLin the three cases of different magnetic field densities ranging from 0.025 T to 0.2 T for the GB angle 30°,which can be used for observing corresponding diverse characteristics of I–V curves.As shown in Fig.8,with the Lorentz force FLincreasing,the average velocity vyincreases slowly in the beginning,and then grows up gradually.Under smaller magnetic field,the vortices are more difficult to unpin and enter the flow state and match with lower average velocity.Particularly,several obvious fluctuations occur in the curve for the case of the smallest magnetic field intensity as 0.025 T,and this finding is nearly identical with the experiment observation.[26]This interesting phenomenon actually reflects the fact of the special feature of vortex dynamics in this case.As an intrinsic behavior for lower vortex densities which is proportional to the magnitude of the applied field,the strong fluctuations as well as sharp jumps are considered resulting from the melting transition of vortex lattice in high-Tcsuperconductors.[32]

    Fig.8.The average velocity vy versus the driving force FL for the YBCO sample with the GB ofθ=30°under three cases of different magnetic fields.

    4.Summary

    In this article,we have studied the effect of GBs on vortex motion in type-II superconductors through molecular dynamical modeling.The most significant finding is that the role of GB on vortex motion can be changeable,in other words,it can transform between the two roles of strong barrier and easyflow channel.And the role change is intrinsically determined by the competition effect that the GB action on vortex motion is resulted from the two aspects:the internal GB strength in GB region and the external effect intensity(which can be characterized by the relative disorder strengthαp/αv)in no GB region.In conclusion,it is such the competition mechanism that determines the role of GB on vortex dynamics and transition between strong barrier or easy-flow channel.

    For a superconductor YBCO sample with GBs,on molecular dynamical model and through the simulation of the depinning transition of vortices,we found three typical dynamical regimes and exhibited corresponding motion trajectories of vortices.The simulated results clearly revealed the role changing of GB on vortex motion and dominated by the competition effect between the GB and no-GB regions,which depends on essential characteristics of the grain boundary strength,angleθ,and the relative disorder strengthαp/αv.Further,we obtained the relation of the average velocity vyof vortices with their driving force FL,which is physically corresponding to the macroscopic current–voltage characteristics of YBCO conductors.Practically,in order to obtain a complete understanding of vortex motion in type-II superconductors,constructing the model containing multigrain boundary network is very necessary,and further relative studies are more significant for controlling artificial nanostructured pining defects,especially in coated conductors.

    猜你喜歡
    薛峰劉宇
    Role of grain boundary networks in vortex motion in superconducting films
    最有耐心的兔子
    快樂(lè)的事
    不怕打針
    我沒(méi)有不聽(tīng)話
    下雨了
    薛峰 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:50:56
    女白領(lǐng)“名??亍斌@魂,倒追的“清華男”你是誰(shuí)?(下)
    女白領(lǐng)“名??亍斌@魂,倒追的“清華男”你是誰(shuí)?(上)
    從《你怎么也想不到》看路遙筆下的女性形象塑造
    青春歲月(2017年2期)2017-03-15 16:49:59
    嫩草影视91久久| 9191精品国产免费久久| 亚洲无线在线观看| 九色国产91popny在线| 男女做爰动态图高潮gif福利片| 首页视频小说图片口味搜索| 99久久久亚洲精品蜜臀av| 在线观看午夜福利视频| 国产乱人伦免费视频| 夜夜爽天天搞| av免费在线观看网站| 日日干狠狠操夜夜爽| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 亚洲午夜精品一区,二区,三区| 久久人妻福利社区极品人妻图片| 在线国产一区二区在线| 嫩草影院精品99| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 精品高清国产在线一区| 欧美性猛交黑人性爽| 亚洲成av人片在线播放无| 深夜精品福利| 国产aⅴ精品一区二区三区波| 日韩欧美一区二区三区在线观看| 国产激情久久老熟女| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三| 黄色a级毛片大全视频| 久久香蕉国产精品| 国产亚洲精品av在线| 精品免费久久久久久久清纯| 成人国产综合亚洲| 免费看十八禁软件| 人妻夜夜爽99麻豆av| 操出白浆在线播放| 午夜影院日韩av| 精品午夜福利视频在线观看一区| 亚洲精品久久成人aⅴ小说| 国产片内射在线| www.999成人在线观看| 国产激情偷乱视频一区二区| 国产精品自产拍在线观看55亚洲| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av高清一级| 欧美精品亚洲一区二区| 91国产中文字幕| 成人国产一区最新在线观看| 国产一级毛片七仙女欲春2| 一边摸一边抽搐一进一小说| 亚洲精品中文字幕在线视频| 啦啦啦韩国在线观看视频| 国产精品乱码一区二三区的特点| 999久久久精品免费观看国产| 亚洲自拍偷在线| 亚洲精品美女久久久久99蜜臀| 国产主播在线观看一区二区| 此物有八面人人有两片| 婷婷精品国产亚洲av| 国产1区2区3区精品| 欧美成人免费av一区二区三区| 狂野欧美激情性xxxx| 久久中文看片网| 国产伦在线观看视频一区| 国产亚洲av嫩草精品影院| 2021天堂中文幕一二区在线观| 国产成人啪精品午夜网站| 国产三级黄色录像| 曰老女人黄片| 成人av在线播放网站| 在线视频色国产色| 亚洲精品av麻豆狂野| 国产成人av激情在线播放| 人妻久久中文字幕网| 午夜精品久久久久久毛片777| 一夜夜www| 国产午夜精品久久久久久| 国产精品日韩av在线免费观看| 国产黄片美女视频| 99久久精品国产亚洲精品| 黄片小视频在线播放| 欧美日韩国产亚洲二区| 亚洲成av人片免费观看| 一a级毛片在线观看| 免费在线观看日本一区| 久久久久久久精品吃奶| 老熟妇仑乱视频hdxx| 亚洲avbb在线观看| av有码第一页| 亚洲色图av天堂| 精品无人区乱码1区二区| 亚洲,欧美精品.| 99国产精品一区二区三区| 国产熟女午夜一区二区三区| 国产真人三级小视频在线观看| 精品国产乱子伦一区二区三区| 午夜亚洲福利在线播放| 一进一出抽搐gif免费好疼| 最新在线观看一区二区三区| 他把我摸到了高潮在线观看| 人妻丰满熟妇av一区二区三区| 亚洲乱码一区二区免费版| 亚洲欧美激情综合另类| av欧美777| 9191精品国产免费久久| 久久午夜亚洲精品久久| 日韩 欧美 亚洲 中文字幕| 中文字幕av在线有码专区| 国产成人影院久久av| 亚洲美女黄片视频| 国产激情偷乱视频一区二区| 男人的好看免费观看在线视频 | 亚洲精品国产精品久久久不卡| 国产乱人伦免费视频| 老司机午夜十八禁免费视频| 国产精品,欧美在线| 国产精品一区二区三区四区免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产97在线/欧美 | 欧美+亚洲+日韩+国产| 一本精品99久久精品77| 精品免费久久久久久久清纯| 露出奶头的视频| 午夜激情av网站| 狂野欧美激情性xxxx| 亚洲人成77777在线视频| 欧美日韩黄片免| 国产aⅴ精品一区二区三区波| 亚洲aⅴ乱码一区二区在线播放 | 色精品久久人妻99蜜桃| 精品久久久久久,| 天堂av国产一区二区熟女人妻 | x7x7x7水蜜桃| 国产欧美日韩精品亚洲av| 在线观看www视频免费| 日韩欧美国产在线观看| 亚洲一区高清亚洲精品| 淫秽高清视频在线观看| 麻豆久久精品国产亚洲av| 国产人伦9x9x在线观看| 国产成人精品久久二区二区91| 男女午夜视频在线观看| 天堂av国产一区二区熟女人妻 | 欧美黄色淫秽网站| 欧美性猛交╳xxx乱大交人| 身体一侧抽搐| 精品一区二区三区av网在线观看| 高清毛片免费观看视频网站| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩东京热| 久久久久性生活片| 久久久久久久午夜电影| 久久久久久九九精品二区国产 | 麻豆国产av国片精品| 一进一出抽搐动态| av福利片在线| 99精品久久久久人妻精品| 国产av又大| 欧美色视频一区免费| 欧美日韩中文字幕国产精品一区二区三区| 精品电影一区二区在线| 一级毛片高清免费大全| 国产成人一区二区三区免费视频网站| 女生性感内裤真人,穿戴方法视频| 18禁观看日本| 免费一级毛片在线播放高清视频| 久久久国产成人免费| 亚洲精品粉嫩美女一区| 久久精品人妻少妇| 欧美日本视频| 亚洲成人精品中文字幕电影| 免费观看人在逋| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 中文亚洲av片在线观看爽| 国产精品久久久久久精品电影| 岛国在线免费视频观看| 特大巨黑吊av在线直播| 一本大道久久a久久精品| 一区二区三区高清视频在线| 久久久久久久久久黄片| 一边摸一边抽搐一进一小说| 亚洲精品国产一区二区精华液| 亚洲午夜理论影院| 色哟哟哟哟哟哟| 99精品欧美一区二区三区四区| 夜夜爽天天搞| 成年女人毛片免费观看观看9| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 男人的好看免费观看在线视频 | 亚洲国产看品久久| 欧美zozozo另类| 国产精品久久电影中文字幕| 欧美乱色亚洲激情| 99国产极品粉嫩在线观看| 国产精品爽爽va在线观看网站| 国内精品久久久久久久电影| 免费一级毛片在线播放高清视频| 女人高潮潮喷娇喘18禁视频| 搡老妇女老女人老熟妇| svipshipincom国产片| 一级黄色大片毛片| 在线永久观看黄色视频| 在线观看免费日韩欧美大片| 怎么达到女性高潮| 久久精品人妻少妇| 久久中文字幕人妻熟女| 亚洲免费av在线视频| 亚洲av中文字字幕乱码综合| www.自偷自拍.com| 久久中文字幕人妻熟女| 国产成人啪精品午夜网站| 妹子高潮喷水视频| 免费高清视频大片| 毛片女人毛片| 日日夜夜操网爽| 12—13女人毛片做爰片一| 三级国产精品欧美在线观看 | 久热爱精品视频在线9| 午夜福利欧美成人| 精品免费久久久久久久清纯| 久久久精品国产亚洲av高清涩受| 精品国内亚洲2022精品成人| 欧美三级亚洲精品| 宅男免费午夜| 久99久视频精品免费| 亚洲午夜理论影院| 欧美在线黄色| 色精品久久人妻99蜜桃| 国内久久婷婷六月综合欲色啪| 欧美成人午夜精品| 黄色视频不卡| 两人在一起打扑克的视频| 日日摸夜夜添夜夜添小说| 一边摸一边做爽爽视频免费| 宅男免费午夜| 久久午夜亚洲精品久久| 亚洲国产精品久久男人天堂| 小说图片视频综合网站| 午夜免费观看网址| 国模一区二区三区四区视频 | 老司机福利观看| 亚洲一区中文字幕在线| av在线播放免费不卡| 人成视频在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 在线观看66精品国产| 少妇被粗大的猛进出69影院| 日韩欧美免费精品| 成人亚洲精品av一区二区| 白带黄色成豆腐渣| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说| 一本精品99久久精品77| 久久精品91蜜桃| 十八禁网站免费在线| 真人一进一出gif抽搐免费| 中文字幕久久专区| 神马国产精品三级电影在线观看 | 国产激情偷乱视频一区二区| 嫩草影视91久久| 丝袜美腿诱惑在线| 午夜福利视频1000在线观看| 久久久久久久久免费视频了| 国产99白浆流出| 亚洲无线在线观看| 久久久国产成人精品二区| 757午夜福利合集在线观看| 国产av一区二区精品久久| 久久精品成人免费网站| 亚洲美女视频黄频| 18禁美女被吸乳视频| 精品日产1卡2卡| 精品国产亚洲在线| 日韩高清综合在线| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 一本综合久久免费| 色综合站精品国产| 亚洲精品av麻豆狂野| 亚洲成人国产一区在线观看| 伦理电影免费视频| 久久亚洲精品不卡| www国产在线视频色| 又粗又爽又猛毛片免费看| 18禁裸乳无遮挡免费网站照片| 欧美性长视频在线观看| 俄罗斯特黄特色一大片| 色综合婷婷激情| 男女床上黄色一级片免费看| 日韩欧美国产在线观看| 欧美午夜高清在线| 丰满人妻熟妇乱又伦精品不卡| 美女免费视频网站| 免费在线观看成人毛片| 波多野结衣高清无吗| 国产av又大| 一边摸一边做爽爽视频免费| 久久久久国内视频| 亚洲av五月六月丁香网| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 99久久无色码亚洲精品果冻| 亚洲国产精品合色在线| 丝袜美腿诱惑在线| 国产伦在线观看视频一区| 欧美日韩中文字幕国产精品一区二区三区| 成人一区二区视频在线观看| 日韩三级视频一区二区三区| 精品国内亚洲2022精品成人| 久久久水蜜桃国产精品网| 级片在线观看| 国产av一区二区精品久久| 欧美3d第一页| 日本五十路高清| 黄色片一级片一级黄色片| 精品少妇一区二区三区视频日本电影| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 精品久久久久久久毛片微露脸| 窝窝影院91人妻| 亚洲,欧美精品.| 在线播放国产精品三级| 午夜免费观看网址| 久久热在线av| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 丰满人妻一区二区三区视频av | 母亲3免费完整高清在线观看| 99国产精品一区二区三区| 欧美性猛交╳xxx乱大交人| 一区二区三区国产精品乱码| 精品久久久久久久毛片微露脸| 天堂av国产一区二区熟女人妻 | 91大片在线观看| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| 男女下面进入的视频免费午夜| 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆| 香蕉国产在线看| 久久精品91蜜桃| 久久久久九九精品影院| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产欧美一区二区综合| 欧美日韩精品网址| 国模一区二区三区四区视频 | 亚洲成人久久性| 亚洲色图 男人天堂 中文字幕| 一边摸一边做爽爽视频免费| 亚洲成av人片免费观看| 99久久久亚洲精品蜜臀av| 欧美色视频一区免费| 三级国产精品欧美在线观看 | 国产激情欧美一区二区| 他把我摸到了高潮在线观看| 国产av一区在线观看免费| 久久这里只有精品中国| 中文在线观看免费www的网站 | 国产成人精品久久二区二区免费| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品综合一区在线观看 | 国产av一区在线观看免费| 一区福利在线观看| 国产高清videossex| 国产精品久久久久久精品电影| www.熟女人妻精品国产| 亚洲,欧美精品.| 欧美久久黑人一区二区| 哪里可以看免费的av片| 免费一级毛片在线播放高清视频| 嫩草影院精品99| 久久精品国产综合久久久| 成在线人永久免费视频| 91九色精品人成在线观看| 丝袜美腿诱惑在线| 欧美激情久久久久久爽电影| 久久中文字幕一级| 欧美乱色亚洲激情| 色播亚洲综合网| 精品福利观看| 国产成人影院久久av| 亚洲中文字幕日韩| av福利片在线| 国产男靠女视频免费网站| 久久久久久亚洲精品国产蜜桃av| 国产一区在线观看成人免费| 成人18禁在线播放| 中文字幕人妻丝袜一区二区| 国产探花在线观看一区二区| 亚洲av电影在线进入| 欧美一级a爱片免费观看看 | 日本熟妇午夜| 国产精品 国内视频| 麻豆成人av在线观看| 色播亚洲综合网| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人一区二区免费高清观看 | 免费在线观看完整版高清| 国产成人av激情在线播放| 长腿黑丝高跟| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| a在线观看视频网站| 国产一区二区三区视频了| av福利片在线| 最好的美女福利视频网| 国产69精品久久久久777片 | 久久天躁狠狠躁夜夜2o2o| 黄色成人免费大全| 日韩高清综合在线| av福利片在线观看| 精品国产乱码久久久久久男人| 亚洲av中文字字幕乱码综合| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| √禁漫天堂资源中文www| 神马国产精品三级电影在线观看 | 性欧美人与动物交配| 国产三级在线视频| 18禁黄网站禁片午夜丰满| 亚洲精品中文字幕在线视频| 男女视频在线观看网站免费 | 波多野结衣高清无吗| 51午夜福利影视在线观看| 窝窝影院91人妻| 国内揄拍国产精品人妻在线| 欧美日韩福利视频一区二区| 久久久久久人人人人人| 一本一本综合久久| 日本黄色视频三级网站网址| av视频在线观看入口| 一级毛片高清免费大全| 日韩三级视频一区二区三区| 最近最新中文字幕大全电影3| 成人av一区二区三区在线看| 好男人在线观看高清免费视频| 国产精品久久久久久久电影 | 国产爱豆传媒在线观看 | 变态另类成人亚洲欧美熟女| 国产高清有码在线观看视频 | 国产三级在线视频| 亚洲五月婷婷丁香| 亚洲成av人片在线播放无| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 香蕉av资源在线| 蜜桃久久精品国产亚洲av| 村上凉子中文字幕在线| 真人一进一出gif抽搐免费| 夜夜看夜夜爽夜夜摸| 两性夫妻黄色片| 欧美三级亚洲精品| 精品久久久久久久末码| 一本综合久久免费| 一夜夜www| 国产精品亚洲美女久久久| 亚洲成人国产一区在线观看| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 成年女人毛片免费观看观看9| 男人舔奶头视频| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 日本一二三区视频观看| 久久久久国产精品人妻aⅴ院| 亚洲av第一区精品v没综合| 岛国在线观看网站| 国产亚洲精品久久久久5区| 久久久久久久久中文| 亚洲精品国产精品久久久不卡| 亚洲第一欧美日韩一区二区三区| 午夜福利18| 99久久综合精品五月天人人| 亚洲av成人不卡在线观看播放网| 久9热在线精品视频| 久久久久久人人人人人| 禁无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| 精品免费久久久久久久清纯| 国产午夜精品论理片| 国产精品精品国产色婷婷| 一本大道久久a久久精品| 免费高清视频大片| 日日摸夜夜添夜夜添小说| 色综合站精品国产| 亚洲国产日韩欧美精品在线观看 | 波多野结衣高清无吗| 久久这里只有精品19| 欧美成人午夜精品| 俺也久久电影网| 不卡一级毛片| 麻豆成人午夜福利视频| 亚洲精品中文字幕在线视频| 99在线视频只有这里精品首页| 精品不卡国产一区二区三区| 亚洲精华国产精华精| 在线观看66精品国产| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 久久精品91无色码中文字幕| 亚洲成人免费电影在线观看| tocl精华| 麻豆成人av在线观看| 18美女黄网站色大片免费观看| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 午夜激情av网站| 高清毛片免费观看视频网站| 色哟哟哟哟哟哟| 1024视频免费在线观看| 999精品在线视频| 午夜老司机福利片| 又紧又爽又黄一区二区| 久久精品成人免费网站| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片| 国产一级毛片七仙女欲春2| 操出白浆在线播放| 国产精品影院久久| 国产69精品久久久久777片 | 久久婷婷成人综合色麻豆| 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 少妇裸体淫交视频免费看高清 | 国产91精品成人一区二区三区| 久久国产精品人妻蜜桃| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 无遮挡黄片免费观看| 中出人妻视频一区二区| 日韩成人在线观看一区二区三区| 精品久久蜜臀av无| 2021天堂中文幕一二区在线观| 久久久久久亚洲精品国产蜜桃av| 在线视频色国产色| 欧美日韩亚洲国产一区二区在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产日韩欧美精品在线观看 | 夜夜看夜夜爽夜夜摸| 制服诱惑二区| 18禁观看日本| 夜夜夜夜夜久久久久| 欧美日本亚洲视频在线播放| www国产在线视频色| 国产精品香港三级国产av潘金莲| svipshipincom国产片| 精品乱码久久久久久99久播| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 精品高清国产在线一区| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 免费高清视频大片| 精品久久久久久久久久久久久| 一级a爱片免费观看的视频| 99久久综合精品五月天人人| 日韩 欧美 亚洲 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 99热只有精品国产| 午夜久久久久精精品| av在线播放免费不卡| 精品午夜福利视频在线观看一区| 国产av一区二区精品久久| 桃色一区二区三区在线观看| 久久久久久九九精品二区国产 | 成人国产一区最新在线观看| 久久午夜亚洲精品久久| 亚洲avbb在线观看| 丰满的人妻完整版| 欧美一级毛片孕妇| 国产精品香港三级国产av潘金莲| 最新美女视频免费是黄的| 五月玫瑰六月丁香| 看片在线看免费视频| 久久久国产精品麻豆| 亚洲av片天天在线观看| 一个人免费在线观看的高清视频| 欧美性长视频在线观看| 最近最新免费中文字幕在线| 我的老师免费观看完整版| 欧美中文日本在线观看视频| 91麻豆精品激情在线观看国产| 99国产精品99久久久久| 最近视频中文字幕2019在线8| 少妇熟女aⅴ在线视频| 欧美成人一区二区免费高清观看 | 久久婷婷成人综合色麻豆| 国产亚洲欧美98| 国产精品一及| 欧美高清成人免费视频www| 亚洲七黄色美女视频| 欧美日韩黄片免| 成人国语在线视频| 美女黄网站色视频| 国产99久久九九免费精品| 极品教师在线免费播放| 国产精品乱码一区二三区的特点| 一边摸一边抽搐一进一小说| 嫩草影视91久久| 熟女少妇亚洲综合色aaa.| 亚洲国产欧洲综合997久久,| 91在线观看av| 色精品久久人妻99蜜桃| 亚洲全国av大片| 校园春色视频在线观看| 五月玫瑰六月丁香| 无限看片的www在线观看| 国产精华一区二区三区| 成人国产一区最新在线观看| 法律面前人人平等表现在哪些方面|