• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Barrier or easy-flow channel:The role of grain boundary acting on vortex motion in type-II superconductors?

    2021-09-28 02:18:28YuLiu劉宇XiaoFanGou茍曉凡andFengXue薛峰
    Chinese Physics B 2021年9期
    關(guān)鍵詞:薛峰劉宇

    Yu Liu(劉宇),Xiao-Fan Gou(茍曉凡),?,and Feng Xue(薛峰)

    College of Mechanics and Materials,Hohai University,Nanjing 211100,China

    Keywords:type-II superconductors,grain boundary(GB),vortex motion,competition effect,GB strength,the relative disorder strengthαp/αv

    1.Introduction

    The type-II superconductors allow for the penetration of quantized magnetic flux,viz.vortex lines(vortex for short hereafter)when being subjected to sufficiently strong external magnetic field.The motion of the vortices in superconductors is not only about the micro physics,more importantly,macroscopically dominates the superconductivity,for example the current-carrying capacity–critical current density Jc.[1–5]Essentially,vortex motion mainly results from the balance of the electromagnetic force(i.e.,the Lorentz force FL=J×B)and pining force at pining centers.The pining force on vortices,as an intrinsic characteristic of superconductors,is fundamentally determined by the pining strength of defects.These various defects in superconductors including second phases,grain boundaries,oxygen-vacancy clusters,irradiation-caused defects,dislocations,and growth flux inclusions are found to act as pinning sites for vortex motion against the driven electromagnetic force in type-II superconductors.[6–13]Among them,grain boundaries(GBs)are the most typical anisotropic pinning defects of the cuprate compound YBa2Cu3O7?x(YBCO).And therefore,study of the effect of GB on vortex motion in type-II superconductors has to be very significant not only for understanding their basic physics but also for the materials fabrication and many potential applications.

    GB in type-II superconductors and the effect on vortex motion have been studied in various researches performed on thin films and bulk samples.[14–22]By means of magnetooptical and magnetic hysteresis measurements,GB in superconductors was found to play a strong obstructive barrier for vortex motion in most cases,and later studies further indicated that GB can also be an easy-flow channel of vortices under certain conditions.[23,24]Recently more researches focused on the dependence of the GB angle on vortex motion.[25,26]Thus,a question arises that what is exactly the role of GB on vortex motion and how does it affect.So far it has been still unclear and remains to be future studied.

    In order to answer this question,deeply and completely understanding the effect of GB on vortex motion in superconductors has to be very significant.So,in the present work,we firstly developed a large scale molecular dynamic model,in which the GB structure was created by uniformly distributed special sites and an attractive well formed with the local electric fields.And besides,random structureless point pinning centers in superconductor were also taken into account in this model.Further performed with the LAMMPS code to deal with vortex–vortex,vortex–pin,and vortex–GB interactions,we tried to understand the role of GB on vortex motion,and reveal the effect mechanism of GB and the intrinsic correlations.In addition,on this molecular dynamic model and taking the superconductor YBCO as example with GB,we obtained a clear and visual knowledge of three typical trajectories of the vortices in the area near the grain boundary corresponding to the different relation of the average velocity with the driving force.

    2.Calculation model and approach

    Following the previous studies in regard to the GB effect on the vortex motion in the mixed state of superconductors,that is,the GB acting as easy-flow channels for vortices moving parallel to it and as an obstructive barrier for them perpendicular to it,here we consider the behavior of the vortices in the vicinity of the GB analogous to the motion of charge carriers induced by an electric field.As shown in Fig.1,the GB can be actually modeled as a potential well in which a series of dislocations(red dots)were arranged along the GB and meanwhile the local electric fields were applied to be perpendicular to the direction of the grain boundary on both sides.As charge carriers,all the vortices are subjected to an additional electric force when they move into the specific area to model the GB as a potential well showing that the GBs are anisotropic pinning centers.[27–29]The direction of the electric force that the vortices subjected to in the local electric field is perpendicular to the GB and always points to inside of the GB region since the local electric fields on both sides of the GB equal in magnitude(due to quantities of twin boundaries existing in the cuprate superconductors)but opposite in direction.

    Fig.1.The calculation model:a magnetic vortex pinning area of type-II superconductors with the grain boundary(GB).A large number of solid black spots represent magnetic vortices,and the rectangular band area between the red dotted lines indicates just the GB,2d andθare the width of the GB and the angle between the GB and the applied current respectively.In the GB region,a series of bigger red dots represent dislocations,and the red arrows on magnetic vortices represent the directions of electric forces.I and H present the transport current and applied magnetic field,respectively.

    Through the calculation model,we can study NvAbrikosov vortices interacting with the GB and Nprandom pins in a two-dimensional(2D)slice in the x–y rectangular system of the three-dimensional(3D)slab.The x axis is taken along the orientation of the applied current so that the Lorentz force only has a y component.In calculation,in order to use reasonably the periodic boundary conditions in the x-axis and y-axis directions for both GB and pinning sites,the slice is fixed with the GB in the center normal to the edge just as shown in Fig.1.And the variation of the angleθis realized by changing the direction of the applied current.Considering the London limitλL?ξs,whereλLis the penetration length andξsis the superconducting coherence length,we can treat vortices as point particles.In the present calculation,we employed the LAMMPS molecular dynamics code to perform numerical simulation.

    The equation of the time evolution of the vortex i at the position rican be given as[30,31]

    where kBis the Boltzmann constant,T is the temperature,and λ,μ=x,y.The vortex–vortex repulsive interaction is described by a modified Bessel function as[30,31]

    and the attractive pinning potential[30,31]is described by

    where Rpthe radius of the pins,andαvandαpare tunable parameters,which depend on the relative strengths of the vortex–vortex and vortex–pin interactions.The FGBis the GB force acting on the vortices,here we took account of the action of the local electric fields described in the calculation model and the effect of the series of dislocations acting as special uniform pinning centers.The related parameters E(the electric field intensity)and q(charge of the vortices)are tunable parameters.The pinning potential of the special pins along the GB is given by

    whereβis a tunable coefficient.The action of the local electric field occurs when the vortices moving into the specified area in the vicinity of the GB,and disappears after the vortices moving out the area.In simulation,we setαv=2.83×103λLε,whereεis an energy per unit length.The cutoff radius in the LAMMPS code rc=6.5λLand the radius of the pins Rp=0.22λL.A unit system was used here,in whichλL=1,ε=1,and kB=1.

    3.Results and discussion

    3.1.Vortex motion and the competition mechanism of determining the GB role

    The samples with the presence of pins or both GB and pins display different responses with the external driving force.However,there all exists the critical depinning force Fcabove which the system starts sliding from a pinned state.In order to check for the hysteresis behavior of vortex motion,several trial values can be chosen in the neighboring range of the force initially obtained to confirm its accurate value for each critical force.On previous researches,[31]we already know that,in the elastic regime,all the vortices depin together and move orderly as one,which forming a topologically ordered structure with coupled channels,but flow along the channels around pinned regions of vortices which indicates the integrity of the lattice being compromised in the plastic case.To completely understand the vortex motion,in this work we can study both the elastic and plastic dynamics of vortices through a combined parameter—the relative disorder strengthαp/αv.It is defined as the ratio of vortex–pin and vortex–vortex interactions,and can characterize the level of the relative disorder on vortex motion in a system.Generally,we can choose the value small enough(for example,αp/αv=5×10?3)to enforce elastic behavior or big enough(for example,αp/αv=5×10?2)to cause plastic behavior.

    Firstly,we calculated the critical driving force Fc,and obtained the normalized Fcby F0(i.e.,the critical driving force for the sample without GB)varying with the GB strength FGBboth in the elastic and plastic regimes under three different GB angles.Here the applied electric force FGB=Eq represents the total GB strength since the pinning force from the special pins along the GB keeps constant.As shown in Fig.2,the same things in common are that the normalized critical driving force varies with no obvious decrease when the GB strength is lower(less than about 10?1for elastic regime and 1.5 for plastic regime),while rapidly declines when the GB strength is much higher(larger than 10?1and close to 100for elastic regime and larger than 1.5 and close to 1.8 for plastic regime).The smaller the grain boundary angle is,the larger the normalized critical driving force is.And with referring to the result(identically equal to 1)for the sample without GB,generally,the critical driving forces vary from greater to lower than 1(no matter what regime it is in)except for the situation for the cases of GB angle 60°in the elastic regime(Fig.2(a))and GB angle 45°&60°in the plastic regime(Fig.2(b)),and in which the force keeps lower than 1 under no GB condition as the intrinsic behavior effected and concealed by the weight of the angle.

    Fig.2.The normalized critical driving force Fc/F0 versus the GB strength FGB in(a)the elastic regime and(b)plastic regime for the sample of size(Lx,Ly)=with 384 vortices in three cases of different GB angles(F0 is the critical driving force for the sample without GB corresponding to specific relative disorder strengthαp/αv,the same below).

    The results in Fig.3 show that,with the relative disorder strengthαp/αvincreasing for all three cases of GB angles,the critical driving force decreases across the value in the case of no GB,i.e.,the value from greater than 1 to less than 1,and the general trend is not affected by different GB angles.It means that the GB acts as an easy-flow channel for vortex motion as the critical driving force lower than that for the case of no GB,while as a strong barrier with the critical driving force higher than that in no GB situation.

    Fig.3.The normalized critical driving force Fc/F0 versus the relative disorder strengthαp/αv in three cases of different GB angles.The specific GB strength is fixed as 10?1.

    Combined with the results in Fig.2,we discussed as follows:(i)the role of GB on vortex motion(or vortices start to move)is not unchangeable,but changes from obstruction(corresponding to the situation Fc/F0>1,it means obstructive action on vortices)to promotion(i.e.,Fc/F0<1,it means promotive action);(ii)the role changing on vortex motion is related to the relative disorder strengthαp/αvin no GB region,the GB angle and strength.In other words,this role changing depends on the relative strength of the restriction on vortices from pining centers in no GB region and GB region itself;(iii)more intrinsically,there actually exists a competition effect between the internal(in GB region)grain boundary strength and the external(in no GB region)effect intensity(the intensity can be characterized by the relative disorder strengthαp/αvor inversely the relative order strengthαv/αp).In conclusion,it is such the competitive behavior that determines the role of GB on vortex dynamics being a strong barrier or an easy-flow channel.Specifically,in the elastic depinning transition regime,the vortices have strong integrity and the pinning effect gets relatively weak,and consequently the long-range pattern is destroyed by GB.However,in the plastic depinning transition regime,the integrity of the vortices is relatively weak and the pinning effect is comparatively strong,and consequently GB primarily overcome the attraction of pinning centers.In a word,the competition exists in the contrast of the action on vortex dynamics from the GB region to no GB region.

    The competition effect has to be of crucial importance on the role of GB over the vortex dynamics in the mixed state.Moreover,the existence of the competition effect can offer a preferable foundation for the optimization of superconducting transport properties by adjusting the correlation between the internal grain boundary strength and the external effect intensity.Indeed,various approaches developed,such as doped grain boundary,artificial pinning sites,and the arrangement of the pinning centers for adjusting and controlling the nanostructure of type-II superconducting materials,have been verified to be viable to transform the pinning effects.

    Besides the competition effect,the relative orientation of flux movement with respect to the direction of GB has influence on the role of GB as well.As shown in Fig.4,no matter in which the elastic regime(Fig.4(a))or the plastic regime(Fig.4(b)),the critical driving forces sharply drops down when the angle is in the range of 0°–15°,and then gently decreases,and again rapidly goes down when the angle is close to 90°(for the plastic regime).And in other words,the critical driving forces decreases across the value in the case of no GB(i.e.,the Fc/F0varies from greater than 1 to less than 1).The variation of the critical driving force again indicates that the role of the GB on vortex motion can transform between a barrier and an easy-flow pathway.In addition,the lattice is more likely to move or be teared with the angleθgrowing,which means the system depinning transition becomes easier.

    Fig.4.The normalized critical driving force Fc/F0 varying with the angleθ in(a)the elastic regime and(b)the plastic regime.The specific GB strength is fixed as 10?1.

    3.2.Impact of GB on vortex motion in YBa2Cu3O7 conductors

    Specifically,taking the superconductor YBa2Cu3O7(YBCO)as an example,we investigated the effect of GB on vortex motion in the superconductor.In calculation,the essential parameterαp/αvis set as 5.0×10?2,which is reasonable for YBCO samples.[26]As a result,the average moving velocities of vortices in the transverse and longitudinal directions versus the driving force were respectively plot in Fig.5.As shown in Fig.5(a),all the transverse velocities vxin three cases of different GB angles present similar a parabolic variation with a maximum value.But for different GB angles,generally,the transverse velocity vxpresents slightly different variations:with the driving force,the whole curve of the transverse velocity vxgradually shifting to the right,and the larger the GB angle is,the higher the maximum vxis.Generally,to a large extent,the transverse vortex motion is restricted by the strength of the GB potentials.The transverse velocity vxincreases with driving force at first,but when the component force in longitudinal direction reaches a strong enough value at which the vxrises up to its maximum,vortices launch across the grain boundary,which causes a decrease in the transverse velocity vx.

    Fig.5.The average velocity(a)vx and(b)vy versus the driving force FL for the sample of size(Lx,Ly)= in three cases of different GB angles.

    While the variation of the average velocity of vortices vywith the driving force is quite different.As shown in Fig.5(b),the velocity vymonotonically increases with the driving force for all three cases of GB angles.And in terms of magnitude,most of the velocity vy,as a whole,are one to two orders greater than the transverse velocity vx,and the velocities vyfor the two cases of the GB angle 60°and 45°,are close to each other,and slightly larger than that for the case of the GB angle 30°.Actually,more results show that the velocities vyincrease with the GB angle growing,and reaches maximum value at the angle reaching 90°,which corresponding to the moving direction of vortices parallel to the grain boundary.The results just indicate that the GB acts as easy flow channels for vortices moving parallel to the GB.More significantly,to deeply investigate vortex dynamics,on the calculated results we demonstrated three typical trajectories of vortices as shown in Fig.7,which is just matched up with three featured stages in Fig.5(b).In order to make the relationship between the GB and the trajectories more intuitive,the sample is revolved to the position where its edge parallel to the orientation of the applied current as the GB fixed(shown in Fig.6).The transformed sample still respect the original periodic boundary conditions.Here we try to make a complete illustration and in-depth discussion of the vortex dynamics in the YBCO sample with GB existing on the results of combined Figs.5(b)and 7.A channel occurs along the GB or in the vicinity of the GB when the driving force reaches the critical value(stage I).The vortices in the channel flow regularly past a series of fixed positions on the channel,viz.the trajectory of one given vortex on the channel fully displays the whole channel,as shown in stage I(Fig.7(b)).In this stage,the average velocities of vortices of the longitudinal component(i.e.,vy)presents an approximately linear increasing with the Lorentz driving force FL,which is shown as stage I in Fig.5(b).With FLincreasing,new channels which are generated as interconnected forms in the previous pinned area(stage II in Fig.7(c)).In this stage,the motion of vortices is somewhat disordered,which should be resulted from the average velocities of vortices nonlinearly increasing with the driving force in stage II shown in Fig.5(b).In stage III,the vortices flow orderly along the independent channels(Fig.7(d))as the driving force reaching to a sufficiently large value.And the average velocities of vortices for all three cases of the GB angles present an almost perfectly linear increasing with the driving force in stage III shown in Fig.5(b).

    Fig.6.The sample revolved on the z axis to make the edge parallel to the direction of the applied current by fixing the GB.

    Combining Figs.5 and 7,complete vortex motion in the area near GB should be understood as follows.The vortices begin to move firstly occurring in the vicinity of the GB,then with the Lorentz force growing,more interconnected moving channels are formed in the second stage,and finally all the vortices flow steadily.When the driving force gets strong enough,the vortices are able to cross through the GB,which causes a decrease in the transverse velocity.

    Fig.7.Typical trajectories of vortices in the YBCO sample with the GB of θ=30°during the three vortex movement stages:(a)the position of GB,(b)a channel along the GB(stage I),(c)interconnected channels formed(stage II),and(d)decoupled channels(stage III).

    Besides the vortex dynamics,the resulted in macro transport properties of type-II superconductors should be much more concerned.Therefore,we furthermore investigate how the GB acts on the properties correlated to the transport current.For a type-II superconductor in the mixed state,the flux lines are subjected to the Lorentz force if the superconductor carries a transport current.If the vortices are driven by this Lorentz force with the velocity v,the electric field induced is as follows:

    where B is the macroscopic magnetic flux density,and can be usually written as

    whereφ0is the magnetic flux quantum and S is the area of the sample surface.N is the number of flux lines penetrating the superconductor sample.The Lorentz force acting on the flux lines can be calculated by

    where J is the external current density.The practical critical current density is determined by the flux pinning in superconductors,fundamentally,and it is not an essential attribute,but depends on the flux pining,specifically the type,density,and configuration of pinning centers.According to Eqs.(6)–(8),the current–voltage characteristic of the YBCO superconductor with grain boundaries of various angles just corresponds to the relationship of the Lorentz force FLversus the velocityv.Thus,to reveal the current–voltage characteristic,we calculated the average velocity vyversus the driving force FLin the three cases of different magnetic field densities ranging from 0.025 T to 0.2 T for the GB angle 30°,which can be used for observing corresponding diverse characteristics of I–V curves.As shown in Fig.8,with the Lorentz force FLincreasing,the average velocity vyincreases slowly in the beginning,and then grows up gradually.Under smaller magnetic field,the vortices are more difficult to unpin and enter the flow state and match with lower average velocity.Particularly,several obvious fluctuations occur in the curve for the case of the smallest magnetic field intensity as 0.025 T,and this finding is nearly identical with the experiment observation.[26]This interesting phenomenon actually reflects the fact of the special feature of vortex dynamics in this case.As an intrinsic behavior for lower vortex densities which is proportional to the magnitude of the applied field,the strong fluctuations as well as sharp jumps are considered resulting from the melting transition of vortex lattice in high-Tcsuperconductors.[32]

    Fig.8.The average velocity vy versus the driving force FL for the YBCO sample with the GB ofθ=30°under three cases of different magnetic fields.

    4.Summary

    In this article,we have studied the effect of GBs on vortex motion in type-II superconductors through molecular dynamical modeling.The most significant finding is that the role of GB on vortex motion can be changeable,in other words,it can transform between the two roles of strong barrier and easyflow channel.And the role change is intrinsically determined by the competition effect that the GB action on vortex motion is resulted from the two aspects:the internal GB strength in GB region and the external effect intensity(which can be characterized by the relative disorder strengthαp/αv)in no GB region.In conclusion,it is such the competition mechanism that determines the role of GB on vortex dynamics and transition between strong barrier or easy-flow channel.

    For a superconductor YBCO sample with GBs,on molecular dynamical model and through the simulation of the depinning transition of vortices,we found three typical dynamical regimes and exhibited corresponding motion trajectories of vortices.The simulated results clearly revealed the role changing of GB on vortex motion and dominated by the competition effect between the GB and no-GB regions,which depends on essential characteristics of the grain boundary strength,angleθ,and the relative disorder strengthαp/αv.Further,we obtained the relation of the average velocity vyof vortices with their driving force FL,which is physically corresponding to the macroscopic current–voltage characteristics of YBCO conductors.Practically,in order to obtain a complete understanding of vortex motion in type-II superconductors,constructing the model containing multigrain boundary network is very necessary,and further relative studies are more significant for controlling artificial nanostructured pining defects,especially in coated conductors.

    猜你喜歡
    薛峰劉宇
    Role of grain boundary networks in vortex motion in superconducting films
    最有耐心的兔子
    快樂(lè)的事
    不怕打針
    我沒(méi)有不聽(tīng)話
    下雨了
    薛峰 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:50:56
    女白領(lǐng)“名??亍斌@魂,倒追的“清華男”你是誰(shuí)?(下)
    女白領(lǐng)“名??亍斌@魂,倒追的“清華男”你是誰(shuí)?(上)
    從《你怎么也想不到》看路遙筆下的女性形象塑造
    青春歲月(2017年2期)2017-03-15 16:49:59
    最近最新免费中文字幕在线| 精品人妻在线不人妻| 一边摸一边做爽爽视频免费| 怎么达到女性高潮| 99热国产这里只有精品6| 国产精品九九99| 亚洲少妇的诱惑av| 下体分泌物呈黄色| 午夜免费鲁丝| 热99re8久久精品国产| 天堂中文最新版在线下载| 国产不卡av网站在线观看| 三上悠亚av全集在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美中文综合在线视频| 欧美色视频一区免费| 黄频高清免费视频| 18禁国产床啪视频网站| 大型黄色视频在线免费观看| 欧美日韩瑟瑟在线播放| 高潮久久久久久久久久久不卡| 日本vs欧美在线观看视频| 亚洲国产欧美一区二区综合| 19禁男女啪啪无遮挡网站| 免费少妇av软件| 国产无遮挡羞羞视频在线观看| 亚洲av成人一区二区三| 久久ye,这里只有精品| 黄色片一级片一级黄色片| cao死你这个sao货| 日韩三级视频一区二区三区| 久久狼人影院| 欧美 日韩 精品 国产| 久久久久国产精品人妻aⅴ院 | 伦理电影免费视频| 18禁黄网站禁片午夜丰满| cao死你这个sao货| 亚洲av日韩精品久久久久久密| 久久狼人影院| 伊人久久大香线蕉亚洲五| 777久久人妻少妇嫩草av网站| av国产精品久久久久影院| 91麻豆av在线| 欧美日韩福利视频一区二区| 亚洲五月天丁香| 免费高清在线观看日韩| 欧美午夜高清在线| 91成人精品电影| 一边摸一边做爽爽视频免费| 亚洲一区二区三区不卡视频| 国产精品一区二区免费欧美| 久久久久视频综合| 国产欧美日韩一区二区精品| 久久亚洲真实| 在线观看免费高清a一片| netflix在线观看网站| 久久精品亚洲精品国产色婷小说| 色播在线永久视频| xxx96com| av网站在线播放免费| 如日韩欧美国产精品一区二区三区| 国产97色在线日韩免费| 欧美成狂野欧美在线观看| 成在线人永久免费视频| 99精品欧美一区二区三区四区| 国产一区有黄有色的免费视频| 成人av一区二区三区在线看| 国产精品98久久久久久宅男小说| 亚洲av片天天在线观看| 亚洲情色 制服丝袜| 熟女少妇亚洲综合色aaa.| 日本vs欧美在线观看视频| 制服诱惑二区| 一级片免费观看大全| 午夜亚洲福利在线播放| 亚洲熟妇熟女久久| a级片在线免费高清观看视频| tube8黄色片| 韩国精品一区二区三区| 亚洲精品国产区一区二| 国产乱人伦免费视频| 咕卡用的链子| 精品国内亚洲2022精品成人 | 欧美日韩国产mv在线观看视频| 淫妇啪啪啪对白视频| 免费久久久久久久精品成人欧美视频| 亚洲欧美激情综合另类| 欧美人与性动交α欧美精品济南到| av超薄肉色丝袜交足视频| 少妇裸体淫交视频免费看高清 | 国产单亲对白刺激| 精品国产一区二区久久| 男人操女人黄网站| 欧美亚洲 丝袜 人妻 在线| 最近最新中文字幕大全免费视频| 人人妻人人澡人人爽人人夜夜| 一本一本久久a久久精品综合妖精| 人妻 亚洲 视频| 99re在线观看精品视频| 99国产极品粉嫩在线观看| 亚洲专区中文字幕在线| 国产一区二区三区视频了| 一边摸一边做爽爽视频免费| 激情在线观看视频在线高清 | 国产精品九九99| 亚洲久久久国产精品| 另类亚洲欧美激情| 亚洲精品久久成人aⅴ小说| 午夜福利视频在线观看免费| 好男人电影高清在线观看| 999久久久精品免费观看国产| 欧美日韩精品网址| 色老头精品视频在线观看| 免费在线观看视频国产中文字幕亚洲| 黑人操中国人逼视频| 中文字幕高清在线视频| av国产精品久久久久影院| 淫妇啪啪啪对白视频| 两个人看的免费小视频| 正在播放国产对白刺激| 亚洲avbb在线观看| 91麻豆av在线| 色综合欧美亚洲国产小说| 18禁裸乳无遮挡动漫免费视频| 国产精品秋霞免费鲁丝片| 黄色片一级片一级黄色片| 日本一区二区免费在线视频| 日韩有码中文字幕| 日韩有码中文字幕| 久99久视频精品免费| 在线观看免费午夜福利视频| tocl精华| 一区在线观看完整版| 两性夫妻黄色片| 两性夫妻黄色片| 男人操女人黄网站| 国产欧美日韩一区二区精品| 欧美日韩视频精品一区| 如日韩欧美国产精品一区二区三区| 久久九九热精品免费| 欧美精品一区二区免费开放| 大香蕉久久成人网| 这个男人来自地球电影免费观看| 电影成人av| 这个男人来自地球电影免费观看| 国产成人影院久久av| 精品熟女少妇八av免费久了| 色婷婷av一区二区三区视频| 99久久精品国产亚洲精品| 久久这里只有精品19| 精品国产一区二区久久| 精品久久久久久电影网| 99热网站在线观看| 亚洲一区高清亚洲精品| √禁漫天堂资源中文www| 国产男女内射视频| 久久久国产一区二区| 午夜久久久在线观看| av一本久久久久| 丰满迷人的少妇在线观看| 精品国内亚洲2022精品成人 | 亚洲五月色婷婷综合| 亚洲三区欧美一区| 欧美日韩黄片免| 18禁观看日本| 十八禁高潮呻吟视频| 波多野结衣av一区二区av| 国产xxxxx性猛交| 啦啦啦免费观看视频1| 日韩欧美一区视频在线观看| 国产av一区二区精品久久| 精品国产美女av久久久久小说| 久久精品国产清高在天天线| 国产精品免费一区二区三区在线 | 久久久久久久久久久久大奶| 免费看十八禁软件| 最新的欧美精品一区二区| 青草久久国产| 亚洲人成电影免费在线| 日本vs欧美在线观看视频| 久久久久视频综合| √禁漫天堂资源中文www| 国产日韩一区二区三区精品不卡| 亚洲精品久久午夜乱码| 日日摸夜夜添夜夜添小说| 看黄色毛片网站| 亚洲自偷自拍图片 自拍| 欧美精品亚洲一区二区| 久热爱精品视频在线9| 999久久久精品免费观看国产| 精品电影一区二区在线| 免费黄频网站在线观看国产| 美女午夜性视频免费| 91麻豆精品激情在线观看国产 | 91麻豆精品激情在线观看国产 | 人妻一区二区av| 黄色视频不卡| 香蕉丝袜av| 母亲3免费完整高清在线观看| 欧美亚洲 丝袜 人妻 在线| 操出白浆在线播放| 中文字幕色久视频| 黑人猛操日本美女一级片| 黄色怎么调成土黄色| 美女福利国产在线| 欧美 亚洲 国产 日韩一| 又紧又爽又黄一区二区| 亚洲国产欧美日韩在线播放| 日韩制服丝袜自拍偷拍| 久久国产乱子伦精品免费另类| 国产av一区二区精品久久| 国产欧美日韩精品亚洲av| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲综合一区二区三区_| 欧美精品人与动牲交sv欧美| 国产精品成人在线| 99久久精品国产亚洲精品| 午夜成年电影在线免费观看| 免费在线观看日本一区| 国产在视频线精品| 国产精品1区2区在线观看. | a级片在线免费高清观看视频| 女人久久www免费人成看片| 中文字幕人妻丝袜制服| 日韩大码丰满熟妇| 18禁黄网站禁片午夜丰满| 亚洲综合色网址| 国产成人av激情在线播放| av电影中文网址| 国产视频一区二区在线看| 午夜精品国产一区二区电影| 日韩 欧美 亚洲 中文字幕| 亚洲久久久国产精品| 欧美激情高清一区二区三区| 在线观看午夜福利视频| 国产成人一区二区三区免费视频网站| 高清av免费在线| xxxhd国产人妻xxx| 国产免费男女视频| 亚洲色图av天堂| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久,| 高清视频免费观看一区二区| 久久人妻福利社区极品人妻图片| 18在线观看网站| e午夜精品久久久久久久| 制服人妻中文乱码| 国产在视频线精品| 国产精品久久视频播放| 日本一区二区免费在线视频| 日韩欧美在线二视频 | 亚洲,欧美精品.| 国产av精品麻豆| 一边摸一边抽搐一进一小说 | 亚洲精品中文字幕在线视频| 亚洲国产毛片av蜜桃av| 亚洲欧美一区二区三区黑人| 国产成人免费观看mmmm| 夫妻午夜视频| 一级毛片高清免费大全| 国产乱人伦免费视频| 嫩草影视91久久| 黄色女人牲交| 成在线人永久免费视频| 久久精品亚洲av国产电影网| 精品久久蜜臀av无| 怎么达到女性高潮| 水蜜桃什么品种好| www.自偷自拍.com| 欧美激情 高清一区二区三区| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美精品济南到| 国产男女内射视频| 色综合婷婷激情| 动漫黄色视频在线观看| 亚洲国产看品久久| 露出奶头的视频| 在线观看免费日韩欧美大片| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月欧美| 精品少妇一区二区三区视频日本电影| 新久久久久国产一级毛片| 99热只有精品国产| cao死你这个sao货| 性少妇av在线| 精品国产乱子伦一区二区三区| 亚洲色图av天堂| 午夜影院日韩av| 欧美激情极品国产一区二区三区| 午夜福利在线观看吧| 日本vs欧美在线观看视频| 精品国产乱子伦一区二区三区| 欧美日韩av久久| 亚洲成人免费av在线播放| 国产一区二区三区综合在线观看| 天天操日日干夜夜撸| 操美女的视频在线观看| 欧美最黄视频在线播放免费 | 亚洲国产中文字幕在线视频| 丝袜美足系列| 12—13女人毛片做爰片一| 久久天堂一区二区三区四区| 满18在线观看网站| 久久久精品国产亚洲av高清涩受| xxx96com| 国产精品一区二区精品视频观看| 亚洲少妇的诱惑av| 大香蕉久久网| tocl精华| 成人18禁高潮啪啪吃奶动态图| 欧美激情久久久久久爽电影 | 亚洲成a人片在线一区二区| 黄色a级毛片大全视频| 黄色成人免费大全| 欧美在线黄色| 国产成人精品在线电影| 午夜精品久久久久久毛片777| 成人18禁高潮啪啪吃奶动态图| 老熟妇乱子伦视频在线观看| 精品人妻1区二区| 十八禁网站免费在线| 高清毛片免费观看视频网站 | 中文字幕人妻丝袜制服| 久久这里只有精品19| 啦啦啦在线免费观看视频4| 激情视频va一区二区三区| 日韩欧美一区二区三区在线观看 | 久久久久久亚洲精品国产蜜桃av| 免费一级毛片在线播放高清视频 | 后天国语完整版免费观看| 高清在线国产一区| 成年版毛片免费区| 美女午夜性视频免费| 性色av乱码一区二区三区2| e午夜精品久久久久久久| 国产成人精品久久二区二区免费| 美女视频免费永久观看网站| 热99久久久久精品小说推荐| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 757午夜福利合集在线观看| 国产成人系列免费观看| 免费观看人在逋| 欧美黄色淫秽网站| 精品久久久精品久久久| 人人妻,人人澡人人爽秒播| videosex国产| 操出白浆在线播放| 国精品久久久久久国模美| 动漫黄色视频在线观看| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片 | 国产精华一区二区三区| 最近最新中文字幕大全电影3 | 人人妻人人添人人爽欧美一区卜| 亚洲精品成人av观看孕妇| 一进一出好大好爽视频| 最新的欧美精品一区二区| 国产欧美日韩一区二区三区在线| 99国产精品免费福利视频| 国产精品成人在线| 黄片播放在线免费| 在线观看www视频免费| 欧美黑人欧美精品刺激| 久久久久国内视频| 最近最新中文字幕大全电影3 | 欧美乱色亚洲激情| 在线观看免费视频网站a站| 久久精品国产亚洲av高清一级| 大码成人一级视频| 搡老熟女国产l中国老女人| 午夜福利视频在线观看免费| 免费女性裸体啪啪无遮挡网站| 女人精品久久久久毛片| 91九色精品人成在线观看| 色在线成人网| 亚洲国产精品一区二区三区在线| 老司机午夜福利在线观看视频| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 91精品三级在线观看| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 亚洲成人免费av在线播放| 狠狠狠狠99中文字幕| 国产激情久久老熟女| 亚洲五月色婷婷综合| 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 王馨瑶露胸无遮挡在线观看| 波多野结衣av一区二区av| 国产成人精品无人区| 法律面前人人平等表现在哪些方面| 一级a爱视频在线免费观看| 精品国产美女av久久久久小说| 中文欧美无线码| 国产激情欧美一区二区| 婷婷精品国产亚洲av在线 | 午夜日韩欧美国产| 天天躁狠狠躁夜夜躁狠狠躁| 男女下面插进去视频免费观看| 国产精品永久免费网站| 妹子高潮喷水视频| 99在线人妻在线中文字幕 | 丝袜在线中文字幕| 露出奶头的视频| 婷婷丁香在线五月| 在线观看免费视频日本深夜| 高清视频免费观看一区二区| 操出白浆在线播放| 无限看片的www在线观看| 久热这里只有精品99| 国产精品成人在线| 中文字幕高清在线视频| 亚洲欧美色中文字幕在线| 老鸭窝网址在线观看| 国产成人av激情在线播放| av线在线观看网站| 国产伦人伦偷精品视频| av一本久久久久| 午夜视频精品福利| 国产亚洲精品久久久久5区| 国产精品欧美亚洲77777| 午夜两性在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 色94色欧美一区二区| 一级,二级,三级黄色视频| 9色porny在线观看| 日韩欧美国产一区二区入口| 亚洲av日韩在线播放| 欧美久久黑人一区二区| 自线自在国产av| 高清黄色对白视频在线免费看| 制服人妻中文乱码| www.自偷自拍.com| 欧美在线一区亚洲| 看免费av毛片| 国产成人系列免费观看| 高清毛片免费观看视频网站 | 一级作爱视频免费观看| 亚洲专区字幕在线| 国产一卡二卡三卡精品| 99热国产这里只有精品6| 老司机亚洲免费影院| 亚洲男人天堂网一区| 色婷婷av一区二区三区视频| 国产精品1区2区在线观看. | 欧美乱妇无乱码| 精品国产国语对白av| 人妻 亚洲 视频| 免费在线观看黄色视频的| 久久久久国产精品人妻aⅴ院 | 国产精品永久免费网站| 亚洲全国av大片| 交换朋友夫妻互换小说| 99精品在免费线老司机午夜| 啦啦啦免费观看视频1| 如日韩欧美国产精品一区二区三区| 搡老熟女国产l中国老女人| 精品国产美女av久久久久小说| 国产成人av教育| 九色亚洲精品在线播放| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | 国产精品乱码一区二三区的特点 | 夜夜躁狠狠躁天天躁| 午夜影院日韩av| 国产精华一区二区三区| 久久精品亚洲精品国产色婷小说| 黄片小视频在线播放| 女人被狂操c到高潮| 国产无遮挡羞羞视频在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲 欧美一区二区三区| 久久国产乱子伦精品免费另类| 一边摸一边抽搐一进一小说 | 亚洲av成人av| 老司机福利观看| 午夜精品国产一区二区电影| 亚洲黑人精品在线| 成人精品一区二区免费| 一进一出好大好爽视频| 久久久久久亚洲精品国产蜜桃av| 日本黄色视频三级网站网址 | 中文字幕高清在线视频| 亚洲男人天堂网一区| 成熟少妇高潮喷水视频| 纯流量卡能插随身wifi吗| 69av精品久久久久久| 成人精品一区二区免费| 午夜免费观看网址| 久久久国产成人精品二区 | 精品国产亚洲在线| 亚洲七黄色美女视频| 91精品国产国语对白视频| 精品国产美女av久久久久小说| 国产亚洲欧美98| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| 亚洲av成人一区二区三| 亚洲男人天堂网一区| av网站在线播放免费| 丝瓜视频免费看黄片| 在线观看午夜福利视频| 欧美人与性动交α欧美软件| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| 亚洲国产精品sss在线观看 | 日本黄色日本黄色录像| 国产精品欧美亚洲77777| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 国产精品一区二区精品视频观看| 久久中文字幕人妻熟女| 亚洲 欧美一区二区三区| 热99久久久久精品小说推荐| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 国产精品成人在线| 九色亚洲精品在线播放| 性色av乱码一区二区三区2| 一区二区三区国产精品乱码| 一本一本久久a久久精品综合妖精| 高清av免费在线| 久久国产乱子伦精品免费另类| 国产精品美女特级片免费视频播放器 | 搡老乐熟女国产| avwww免费| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区| 黄片大片在线免费观看| 亚洲色图av天堂| 精品免费久久久久久久清纯 | 天堂√8在线中文| 丰满迷人的少妇在线观看| 一区二区日韩欧美中文字幕| 亚洲第一欧美日韩一区二区三区| 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 丰满饥渴人妻一区二区三| 交换朋友夫妻互换小说| 欧美 亚洲 国产 日韩一| 国产av精品麻豆| 丝袜美足系列| 五月开心婷婷网| 黄片播放在线免费| 宅男免费午夜| 午夜成年电影在线免费观看| 日本欧美视频一区| 亚洲精品乱久久久久久| 女人高潮潮喷娇喘18禁视频| 视频区图区小说| 日韩免费av在线播放| 麻豆国产av国片精品| 超碰97精品在线观看| 国产精华一区二区三区| 中文亚洲av片在线观看爽 | 欧美精品啪啪一区二区三区| 久久人妻福利社区极品人妻图片| 亚洲av片天天在线观看| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 大香蕉久久网| 日日摸夜夜添夜夜添小说| 久久久水蜜桃国产精品网| 亚洲欧美日韩高清在线视频| 人人妻人人爽人人添夜夜欢视频| 久久人妻av系列| 在线免费观看的www视频| 最新美女视频免费是黄的| 18禁国产床啪视频网站| 久久影院123| 99热只有精品国产| 国产在线精品亚洲第一网站| 午夜免费观看网址| 制服人妻中文乱码| 亚洲成人国产一区在线观看| 国产高清国产精品国产三级| 国产av一区二区精品久久| 成人18禁在线播放| 欧美午夜高清在线| 国产日韩一区二区三区精品不卡| 欧美老熟妇乱子伦牲交| 欧美久久黑人一区二区| 男女床上黄色一级片免费看| 午夜免费鲁丝| 在线天堂中文资源库| 黄色毛片三级朝国网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久人人爽av亚洲精品天堂| 人妻一区二区av| 高潮久久久久久久久久久不卡| 国产欧美日韩精品亚洲av| 日日夜夜操网爽| 91成年电影在线观看| 咕卡用的链子| 精品免费久久久久久久清纯 | 国产精品av久久久久免费| 久久精品亚洲精品国产色婷小说| 男女之事视频高清在线观看| 女性被躁到高潮视频| 国产精品久久久久久人妻精品电影| 国产精品99久久99久久久不卡| 这个男人来自地球电影免费观看| 黄网站色视频无遮挡免费观看| 制服诱惑二区| 91字幕亚洲| 久久久久久亚洲精品国产蜜桃av| 在线观看一区二区三区激情| 成人国语在线视频| 精品视频人人做人人爽| 国产高清videossex|