• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of grain boundary networks in vortex motion in superconducting films

    2023-12-15 11:48:14YuLiu劉宇FengXue薛峰andXiaoFanGou茍曉凡
    Chinese Physics B 2023年12期
    關(guān)鍵詞:薛峰劉宇

    Yu Liu(劉宇), Feng Xue(薛峰), and Xiao-Fan Gou(茍曉凡)

    College of Mechanics and Materials,Hohai University,Nanjing 211100,China

    Keywords: grain boundary network, Voronoi tessellation, synergistic effect, intensity factor of synergistic effect,vortex motion,combined channels

    1.Introduction

    In the mixed state of high-Tcsuperconductors, the quantized magnetic flux,viz.vortex lines,penetrates into the sample.The motion of the vortices driven by an external electric current leads to the associated Ohmic loss, increasing the resistivity of the superconductor.To preserve the material’ superconductivity,it is imperative to impede the current-induced motion of the vortices.Pinning plays a crucial role in determining the vortex dynamics in the mixed state of type-II superconductors, which is important for lossless transport in the applications of superconductors.[1-9]It has been suggested to introduce many defects as effective pinning centers against the driving force of magnetic flux flow.Of them,twin boundaries may be the most significant anisotropic pinning defects in the cuprate compound YBa2Cu3O7-x(YBCO).Because of the importance and attraction of grain boundaries,with the development of technology in this field,various theoretical calculations and experiments have been performed.[10-20]The effect of grain boundaries on critical current density was indicated by using the techniques of magneto-optical measurements and magnetic hysteresis measurements.From acting as easy flow pathways for longitudinal vortex motion and serving as barriers for transverse vortex motion to angular dependence of vortex motion relative to the grain boundary,the understanding of the GB behavior has been gradually improved.[21-23]

    Although numerous studies of thin films and bulk samples have evaluated the influence of grain boundaries(GBs)on vortex motion,they mainly focused on the circumstances of parallel GBs or a single GB.[22-25]As is well known,the role of the GB which can be changed from a barrier to an easy-flow channel is intrinsically determined by the competitive effect associated with the action on vortex between in the GB and intragranular region, and also affected by the angle between the grain boundary and the applied current based on previous work.[26]The investigations on random GB networks with complex orientations which can model polycrystalline materials also play a crucial role in gaining a deeper knowledge about grain boundary mechanism on vortex motion.[27,28]In the present work,the GB networks are generated in the coordinates of the nuclei of crystals by using Voronoi tessellation.In order to study the vortex dynamics in superconducting films,the GB is assumed to be composed of uniformly distributed special sites and an attraction well formed by the local electric fields.The synergistic effect of GB networks on vortex motion is introduced in detail.Besides,the effects of flux flow channel networks on vortex motion in the GB region formed in the depinning transition process are presented.In the next section,the influence of the magnetic field intensity,temperature,and the grain boundary density (or grain size) on the vortex flow patterns and transportation properties are discussed by analyzing the average vortex velocity and the Lorentz force which are related to macroscopically measured voltage and current respectively.

    2.Calculation model and approach

    2.1.Model for GB networks

    A series of random numbers that play a role in nucleation on crystal is generated in a given finite area.The Delaunay triangle is formed by triangles that do not contain any other points within the circumscribed circle of three vertices as shown in Fig.1.The circumcenter of the Delauny triangles are called Voronoi points.The grain boundaries are created through the coordinates of the nuclei of the crystals by employing Voronoi tessellation.[29-32]Figures 2(a) and 2(b)show the simulation results for the cases of the 10 grains and 20 grains generated, respectively.Considering the periodic boundary conditions required in the following calculations, the coordinates of the intersection points between the boundaries and the GBs are appropriately adjusted according to the symmetry.The average grain size is approximately 7λin Fig.2(a) and 5λin Fig.2(b), while the model size is selected as 20λ×20λ.

    Fig.1.Delauny triangle and Voronoi tessellation.

    Fig.2.Microstructure samples by Voronoi tessellation for(a)10 grains and(b)20 grains.

    2.2.Model for vortex dynamics

    The geometric structure we simulate is an infinite superconducting slab containing the GB networks with random angles, which belongs to the category of two-dimensional (2D)periodic system.According to previous researches,[26]the GBs are modelled as the potential wells, because the behavior of the vortices in the vicinity of the GB is similar to the motion of charge carriers caused by the electric field.We assume that the GB is composed of a series of dislocations(red dots)distributed along the GB and the local electric fields applied to the specific areas, normal to the direction of the GB as shown in Fig.3.The vortices moving into the specific areas would be subjected to an additional electric force whose direction is perpendicular to the GB and always points to the GB region since the local electric fields on both sides of the GB are identical in magnitude but opposite in direction.

    Fig.3.Calculation model showing a magnetic vortex pinning area of type-II polycrystalline superconductors with GB networks.The red magnified area represents the GB model and the GB is modeled as an attractive well, 2d is the effective width of the GB and d is taken as 0.15λ.[22,24,28] In the GB region, a series of red dots indicates dislocations, and the red arrows acting on vortices denote the directions of electric forces. H and I refer to the applied magnetic field and transport current,respectively.

    We studyNvAbrikosov vortices interacting with GB networks described above andNprandom pining centers in a 2D slice in thex-yrectangular system of the three-dimensional(3D) slab.Periodic boundary conditions are used for thexaxis direction andyaxis direction.The orientation of the applied current is taken along thexaxis.Taking the London limitλL?ξsinto account, the vortices can be regarded as point particles whereλLis the penetration length andξsis the superconducting coherence length.In the present work, the LAMMPS molecular dynamics code is employed to conduct the numerical calculation.

    The equation of the time evolution of a vortexiat a positionrican be written as[33,34]

    whereripis the distance between the vortexilocated atriand the pinning site located atrp,rijis the distance between the vorticesiandj, and ?iis the gradient operator acting onri,ηandmare the viscosity coefficient and the vortex mass,andm/η=0.1 is so chosen that the inertial term which is proportional to the particle mass is small enough compared with the viscous term in the second-order Newton’s vortex dynamics.Such a ratio can ensure that the results possess the same reliability as those from the overdamped equation which is used for the superconductor vortices.FLis the Lorentz force caused by an applied current and is given byFL=J×Φ0,[2,23]whereJis the external current density andΦ0is the magnetic flux quantum.All vortices are considered to be subjected to the

    whereαpandαvare the tunable parameters,andRpis the radius of the pins.TheFGBis the GB force acting on the vortices and it includes the influence of the local electric field described above and the effect of a series of dislocations acting as special uniform pinning centers.The related parametersE(the electric field intensity) andq(charge of the vortices) are tunable parameters.The pinning potential of the special pins along the GB is determined by[26]

    whereβis a tunable coefficient.The influence of the local electric field occurs when the vortices move into the specified areas in the vicinity of the GB, and disappears after the vortices have moved out of the areas.In fact, the form of vortex-vortex repulsive interaction in Eq.(3) can be derived from the London theory, and the coefficientΦ20/(8π2λ2L) is adjusted to the parameterαpwith a characteristic energy per unit lengthε0=(Φ0/(4πλL))2.[35]We cut off the long-range interaction force at 6.5λLsince the modified Bessel function K1decays quickly.[24,34]The radius of the pin isRp=0.22λL,which is comparable to the vortex superconducting coherence length.[34]We use a unit system in whichη= 1,λL= 1,ε0=1,andkB=1.

    3.Results and discussion

    3.1.Synergistic effect of adjacent GBs on limiting the vortex motion in no-GB region

    As is well known,the effect of grain boundary on vortices is derived from vortices trapped in the grain boundary region serving as an initial potential well on vortices in the intragranular region,as shown in Fig.4(a).Within the coverage range of the cutoff radius,the force exerted by the grain boundary on the vortex in the no-GB region can be expressed as

    “Y”-type structure can be selected as a typical sample to analyze the combined influence of adjacent grain boundaries as depicted in Fig.4(b).The overall force exerted by neighboring grain boundaries on the vortex in no-GB region can be written as

    The aforementioned Eqs.(6) and (7) demonstrate that there is a synergistic limitation influence on the vortex in no-GB region by the adjacent grain boundaries.In addition, equation(3)shows that the force exerted by a single trapped vortex on a vortex in no-GB region is inversely proportional to that the distance of the vortex from the grain boundary.In conclusion,the distance between the vortex in no-GB region and the grain boundary can indicate the strength of the synergistic effect of the adjacent GBs.Keepingd1(the distance between the vortex in no-GB region and the grain boundary 1,as shown in Fig.4(b))constant,the distance of the vortex from another neighboring grain boundary 2 is given by

    wherelis the distance from the vortex in no-GB region to the intersection of adjacent grain boundaries.The changes inθ2andθare consistent whenθ1is fixed.

    Fig.4.(a) Repulsive effect of trapped vortices in GB region on vortices in no-GB region in the coverage range of the cutoff radius,and(b)synergistic restriction on the vortex from the adjacent grain boundaries.

    The intensity factor of the synergistic effect is defined as

    whereγcharacterizes the strength of the synergistic restriction of adjacent grain boundaries on vortex in no-GB region.

    Firstly,the strength of the synergistic effect varying with the angle between the adjacent GBs and with the distance from the intersection point of nearby GBs to the vortex are calculated.As shown in Fig.5(a),the intensity factorγdecreases as the angleθbetween adjacent GBs increases.The angle corresponds to grain size,in other words,the smaller the gain size,the stronger the synergistic effect is.It should be noted that the strength of synergistic effect is no longer determined by the distance of the vortex from the grain boundary while the angleθ2exceeds 90?.Afterθ2reaches to 90?,the nominal distance between the vortex and the grain boundary decreases, while the actual distance between them expands,and the strength of the limiting effect correspondingly declines.From Fig.5(b),it can be seen that the intensity factorγdeclines with distancelincreasing.That is to say,the restriction is strengthened with the vortex approaching to the grain boundary.In summary,the synergistic effect strength of adjacent GBs on limiting the vortex motion in no-GB region is negatively related to the angle of adjacent grain boundaries and the distance from vortex to the grain boundaries, viz.The stronger synergistic restriction effect on vortex in no-GB region results from smaller grain sizes and closer distance between the vortex and the grain boundaries.

    Fig.5.The intensity factor γ versus(a)angle θ of adjacent grain boundaries and(b)distance from the intersection of neighboring grain boundaries to the vortex in no-GB region,respectively,with θ1 fixed at 30?.

    3.2.Effect of combined channels and flow channel networks on vortex motion in GB region

    In the depinning transition process, easy-flow channels will be formed between adjacent grain boundaries as shown in Fig.6(a).With the Lorentz force increasing, more grain boundaries form part of the interconnection network as shown in Fig.6(b).In this complex network,it can be found that the flow path of vortex is related to the angle between the current direction and the grain boundary.When the grain boundary tends to be parallel to the current direction, the grain boundary restricts the vortex flow strongly,which is not conducive to the formation of channels.Consequently,unlike point pinning centers, the interconnected GBs provide easy-flow pathways in addition to pinning effect on the vortices.

    Fig.6.(a) Combined channels formed by adjacent grain boundaries, (b)Influence of the angular relationship between grain boundary and vortex direction on combined channel.

    3.3.Typical flow patterns in the superconducting film at different applied magnetic fields

    By varying the Lorentz force, the flowing states of the vortices in the sample with the random GB network are simulated.Both the large average grain size 7λand the small average grain size 5λare taken into account,and the random GB network structure with the former one is chosen to illustrate the flux flow condition under various magnetic fields.At low magnetic field,vortices flow along the GBs when the Lorentz force exceeds the critical depinning forceFcover which the system begins to slid from a pinned state as demonstrated in Fig.7(a).With applied current increasing,the vortices can escape from the GBs, viz.transfer from one grain to another across the GB as shown in Fig.7(b).At higher magnetic field,the depinning behavior occurs at a certain threshold current,specifically, the vortices in GB region flow slowly along the GB and the vortices in no-GB region do not move out just as represented in Fig.7(c).When the applied current is large enough, the vortices move across the GBs and all vortices move quickly along the direction of the Lorentz force as shown in Fig.7(d).The flow patterns and typical trajectories in our work accord with the results in Refs.[22,27].

    Fig.7.Typical flow trajectories(red lines)for Nv =48(a)in initial state of vortices(black dots)moving along the GBs and(b)in state of vortices escaping from GBs,and for Nv=460(c)in stage of vortices flow slowly along the GB networks and(d)in stage of vortices moving fast along the direction of the Lorentz force,with dash lines representing the position of GB networks and the red arrows showing the vortices moving across the GBs.

    3.4.Influence of Nv,T,and average grain size on transport properties in compound YBCO

    The macroscopic current-voltage properties of the YBCO conductors can be described by the relationship between the average velocityvyand the driving forceFL.Accordingly,the variations of the average velocityvywith the driving forceFLin three cases of the magnetic field:Nv=115, 230, and 460 for the samples atT=0 K, and 10 grains, 20 grains or no GB,respectively,are used to observe correspondingly diverse current-voltage properties.As shown in Fig.8,the average velocityvyincreases when the Lorentz force exceeds the critical driving force, which implies that the unpinned vortices move into the flow state.The threshold of the vortex motion shifts into the higher Lorentz force range as the vortex number decreases,this indicates that the critical current increases as the magnetic field intensity decreases.The removal of vortices from the GBs is thought to be the cause of this behavior owing to the enhanced repulsive force caused by a large number of vortices.

    In addition, the effect of temperature on current-voltage characteristics in the superconducting film is also important.Therefore,the relationships of the average velocityvywith the Lorentz forceFLfor the samples of 10 grains, andNv=115,230 or 460 at temperatureT=0 K, 50 K, and 90 K respectively, are given in Fig.9.The intensity of thevyfluctuation increases as the temperature rises when the vortices numberNvis relatively small,as illustrated in Fig.9(a),suggesting that the vortex motion is becoming more disordered and the system tends to be unstable.However,as the density of vortices is increased,the motion of the vortices progressively tends to stabilize as depicted in Figs.9(b)and 9(c),indicating that the longrange order of the vortices arrangement plays a certain role.The depinning transition process transfers toward the lower Lorentz force range with the temperature increasing,implying that the thermal depinning from GBs occurs more easily.

    Fig.8.Variations of the average velocity vy with Lorentz force in the superconducting film at vortex number Nv of 115,230,and 460 for T =0 K,and for(a)10 grains,(b)20 grains,and(c)no GB.

    Fig.9.Variations of the average velocity vy with Lorentz force in the superconducting film at temperature T of 0 K, 50 K, 90 K for 10 grains, and Nv=115(a),230(b),and 460(c).

    Fig.10.Variations of average velocity vy with Lorentz force in superconducting film at different grain sizes of no GB,10 grains,20 grains for T =0 K,and Nv=115(a),230(b),and(c)460.

    Finally, the variations of the transport properties with grain size forT=0 K, andNv=115, 230 or 460, respectively, are discussed in Fig.10.At a low applied magnetic field, the critical current density increases as the number of GBs pinning centers augments, viz.the grain size decreases.The GB with an angle that is close to a right angle with respect to the direction of vortex motion,plays a barrier role in limiting the motion of vortices.With the decrease of grain size,the number of GBs increases and the orientations of GBs become complicated(including the GBs with large angle relative to the vortex motion),leading the critical current density to increase.The pinning effect of GB network dominates in a low magnetic field, and the increase of critical current density can be achieved by optimizing the grain size.

    In fact,in addition to the grain boundary landscapes used in this work,we also create two other random grain boundary landscapes using Vonoroi diagrams for specific average grain sizes (10 grains and 20 grains), and their simulation results are almost the same because the fluctuation of the calculation values is so small that it cannot change the simulation results.This indicates that with sufficient GBs,the grain boundary orientations tend to be disordered,and the simulated current voltage relationship is a statistical result,which is not substantially related to the grain boundary landscapes randomly.

    4.Summary

    We have investigated the flux pinning in polycrystalline YBCO with the large-scaled pinning landscape including both point pinning centers and GB networks generated by using the Voronoi method.The synergistic effect of adjacent GBs on limiting vortex motion in intragranular region is proposed,and the intensity factor of the synergistic effect which is associated with the angle between the adjacent GBs and the distance of the intersection point of nearby GBs to the vortex is determined in our work.Then we analyze the vortex flow patterns through the polycrystalline sample with random GB networks.The combined channels formed by adjacent grain boundaries and flow channel networks for vortex motion in GB region are introduced in the depinning transition process.The angle between the vortex motion direction and the grain boundary affects the vortex’s flow pathway.The GBs with large angles relative to the vortex motion is incompatible with the development of channels since they limit the vortex flow intensely.Moreover,typical flow patterns driven by the Lorentz force in the superconducting film in different applied magnetic fields in the case of large grain size are discussed in detail.Finally,in order to improve superconducting transport properties, the relationships of the average velocityvywith the driving forceFLare calculated and discussed by varying the magnetic field,temperature,and grain size.The critical current decreases with the augment of magnetic field intensity, which is because the vortices move out through the GBs by the enhanced repulsive force resulting from the large distribution density of vortices.With the increase of temperature,the thermal depinning from GBs results in the lower Lorentz force range.The critical current density increases as the grain size decreases,for the number of GBs increases and the pinning effect of GB network dominates at low magnetic field.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12232005 and 12072101).

    猜你喜歡
    薛峰劉宇
    Barrier or easy-flow channel:The role of grain boundary acting on vortex motion in type-II superconductors?
    最有耐心的兔子
    快樂的事
    不怕打針
    我沒有不聽話
    下雨了
    薛峰 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:50:56
    女白領(lǐng)“名??亍斌@魂,倒追的“清華男”你是誰?(下)
    女白領(lǐng)“名??亍斌@魂,倒追的“清華男”你是誰?(上)
    從《你怎么也想不到》看路遙筆下的女性形象塑造
    青春歲月(2017年2期)2017-03-15 16:49:59
    免费看a级黄色片| 中文字幕av成人在线电影| 麻豆成人av视频| 国产亚洲精品久久久com| 国产黄a三级三级三级人| av在线天堂中文字幕| 欧美性感艳星| 高清日韩中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄 | 欧美性感艳星| 久久久精品94久久精品| 99热只有精品国产| 99riav亚洲国产免费| 欧美极品一区二区三区四区| 国产成人freesex在线| 国产极品天堂在线| 中文字幕熟女人妻在线| 国产成人aa在线观看| 国产精品麻豆人妻色哟哟久久 | 亚洲无线观看免费| 黄片无遮挡物在线观看| 深爱激情五月婷婷| 美女高潮的动态| 一级毛片aaaaaa免费看小| 亚洲三级黄色毛片| 全区人妻精品视频| 亚洲欧美日韩无卡精品| 国产国拍精品亚洲av在线观看| 亚洲精品久久国产高清桃花| 真实男女啪啪啪动态图| 成人毛片60女人毛片免费| 日日撸夜夜添| 国产成人a∨麻豆精品| 热99re8久久精品国产| 精华霜和精华液先用哪个| 久久久久久九九精品二区国产| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久久久久婷婷小说 | 成人毛片60女人毛片免费| av免费在线看不卡| 欧美性感艳星| 熟女人妻精品中文字幕| 能在线免费看毛片的网站| 午夜激情欧美在线| 少妇熟女欧美另类| 麻豆国产97在线/欧美| 大型黄色视频在线免费观看| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 免费观看的影片在线观看| 中文欧美无线码| 成人特级av手机在线观看| 美女xxoo啪啪120秒动态图| 久久久久九九精品影院| 精品人妻熟女av久视频| av在线播放精品| 亚洲性久久影院| av专区在线播放| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办| 日韩大尺度精品在线看网址| 国产欧美日韩精品一区二区| 亚洲第一电影网av| 亚洲欧美成人精品一区二区| 欧美日本视频| 熟女电影av网| 精品人妻视频免费看| 亚州av有码| 中文精品一卡2卡3卡4更新| 搡女人真爽免费视频火全软件| 97超视频在线观看视频| 丰满人妻一区二区三区视频av| 天美传媒精品一区二区| 春色校园在线视频观看| 最近2019中文字幕mv第一页| 午夜爱爱视频在线播放| 人妻系列 视频| 老师上课跳d突然被开到最大视频| 国产av麻豆久久久久久久| 一个人看视频在线观看www免费| 悠悠久久av| 色吧在线观看| 狠狠狠狠99中文字幕| 日本爱情动作片www.在线观看| 国产精品三级大全| 九色成人免费人妻av| 亚洲精品久久久久久婷婷小说 | 久久精品国产亚洲网站| 国产视频首页在线观看| 3wmmmm亚洲av在线观看| 日本免费一区二区三区高清不卡| 高清午夜精品一区二区三区 | 亚洲欧洲日产国产| 久久久成人免费电影| 久久久成人免费电影| 久久中文看片网| 少妇猛男粗大的猛烈进出视频 | 99久久成人亚洲精品观看| 成人亚洲精品av一区二区| 精品99又大又爽又粗少妇毛片| 欧美激情国产日韩精品一区| 天天躁夜夜躁狠狠久久av| 久久亚洲精品不卡| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 天堂影院成人在线观看| 麻豆一二三区av精品| h日本视频在线播放| 婷婷色综合大香蕉| 久久精品影院6| 男插女下体视频免费在线播放| 日韩一区二区三区影片| 校园春色视频在线观看| 久久鲁丝午夜福利片| 麻豆久久精品国产亚洲av| 男女做爰动态图高潮gif福利片| 精品一区二区免费观看| 美女内射精品一级片tv| 性色avwww在线观看| 国内精品宾馆在线| 国产久久久一区二区三区| 97超碰精品成人国产| 亚洲性久久影院| 亚洲欧美日韩东京热| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看 | 国内精品一区二区在线观看| 欧美精品一区二区大全| 精品国产三级普通话版| 欧美日韩乱码在线| 麻豆成人午夜福利视频| 免费看日本二区| 亚洲精华国产精华液的使用体验 | 51国产日韩欧美| 精品无人区乱码1区二区| 99久久人妻综合| 天堂网av新在线| 日本熟妇午夜| 日韩人妻高清精品专区| 久久欧美精品欧美久久欧美| 五月玫瑰六月丁香| 久久久久网色| 精品国内亚洲2022精品成人| 国产午夜精品论理片| av.在线天堂| 亚洲av男天堂| 淫秽高清视频在线观看| 亚洲欧美中文字幕日韩二区| 亚洲五月天丁香| а√天堂www在线а√下载| 嘟嘟电影网在线观看| 成人午夜精彩视频在线观看| 欧美不卡视频在线免费观看| 国产一区二区三区av在线 | 精品久久久噜噜| 网址你懂的国产日韩在线| 色综合亚洲欧美另类图片| 好男人视频免费观看在线| 久久久久久国产a免费观看| 国产成年人精品一区二区| 麻豆国产97在线/欧美| 亚洲av免费高清在线观看| 高清在线视频一区二区三区 | av天堂中文字幕网| 国产精品一区二区三区四区免费观看| 日韩av不卡免费在线播放| 成人三级黄色视频| 日韩国内少妇激情av| 国产成人精品久久久久久| 久久99蜜桃精品久久| 日本五十路高清| 3wmmmm亚洲av在线观看| 久久精品国产清高在天天线| 亚洲av免费在线观看| 精品一区二区三区视频在线| 久久久久久久亚洲中文字幕| 欧美日本亚洲视频在线播放| 精品欧美国产一区二区三| 亚洲丝袜综合中文字幕| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 国产日本99.免费观看| 两个人视频免费观看高清| 久久九九热精品免费| 日日摸夜夜添夜夜添av毛片| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 国产在线男女| 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 亚洲欧美成人精品一区二区| 国产精品人妻久久久影院| 我要看日韩黄色一级片| 久久久久性生活片| 久久草成人影院| 免费电影在线观看免费观看| 精品午夜福利在线看| 久久韩国三级中文字幕| 色视频www国产| 亚洲美女视频黄频| av免费在线看不卡| 精品免费久久久久久久清纯| 最近中文字幕高清免费大全6| 午夜老司机福利剧场| 国产69精品久久久久777片| 久久精品国产99精品国产亚洲性色| 国内久久婷婷六月综合欲色啪| 在线国产一区二区在线| 黄色日韩在线| 精品熟女少妇av免费看| 国产蜜桃级精品一区二区三区| 欧美一区二区国产精品久久精品| 少妇人妻精品综合一区二区 | 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 久久久精品大字幕| 亚洲精品日韩av片在线观看| 国产亚洲av嫩草精品影院| 亚洲人成网站在线观看播放| 亚洲综合色惰| 人妻久久中文字幕网| 真实男女啪啪啪动态图| 国产一级毛片七仙女欲春2| 欧美精品国产亚洲| 亚洲丝袜综合中文字幕| 少妇猛男粗大的猛烈进出视频 | 久久热精品热| 国产精品综合久久久久久久免费| 亚洲精品乱码久久久久久按摩| 免费电影在线观看免费观看| 变态另类丝袜制服| 69人妻影院| 成年版毛片免费区| 中文字幕av在线有码专区| 国产成人freesex在线| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 人妻夜夜爽99麻豆av| 欧美日韩精品成人综合77777| 99九九线精品视频在线观看视频| 国产真实乱freesex| 69人妻影院| 能在线免费看毛片的网站| 日韩成人伦理影院| 国产男人的电影天堂91| 亚洲精品乱码久久久v下载方式| 欧美最新免费一区二区三区| 国产高清有码在线观看视频| 小蜜桃在线观看免费完整版高清| 亚洲熟妇中文字幕五十中出| 久久精品国产鲁丝片午夜精品| 蜜臀久久99精品久久宅男| 久久国内精品自在自线图片| 欧美激情国产日韩精品一区| 亚洲精品国产成人久久av| 中文在线观看免费www的网站| 2022亚洲国产成人精品| 欧美激情国产日韩精品一区| 麻豆国产97在线/欧美| 亚洲第一电影网av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美中文字幕日韩二区| 亚洲中文字幕一区二区三区有码在线看| 一级毛片久久久久久久久女| 免费av观看视频| 99热只有精品国产| 一本精品99久久精品77| 搡女人真爽免费视频火全软件| 人妻系列 视频| 日本黄大片高清| 亚洲七黄色美女视频| 少妇的逼水好多| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲网站| 日韩欧美 国产精品| 欧美成人a在线观看| 欧美日韩国产亚洲二区| 97在线视频观看| 日本三级黄在线观看| 日韩欧美精品v在线| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区| 一个人观看的视频www高清免费观看| 久久久久久久久中文| 免费电影在线观看免费观看| 天堂影院成人在线观看| 国产成人91sexporn| 国产v大片淫在线免费观看| 麻豆久久精品国产亚洲av| 亚洲婷婷狠狠爱综合网| www.av在线官网国产| 久久人人爽人人爽人人片va| 天堂影院成人在线观看| 国产成人91sexporn| 晚上一个人看的免费电影| 精品一区二区三区人妻视频| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 亚洲性久久影院| 久久久久久久午夜电影| 成人综合一区亚洲| 爱豆传媒免费全集在线观看| av在线老鸭窝| 99热网站在线观看| 国产v大片淫在线免费观看| 2022亚洲国产成人精品| 久久久久性生活片| 日产精品乱码卡一卡2卡三| 男人和女人高潮做爰伦理| 亚洲欧美日韩东京热| 欧美性猛交╳xxx乱大交人| 日韩大尺度精品在线看网址| 国产亚洲91精品色在线| 国产高清三级在线| 深夜精品福利| 国产日韩欧美在线精品| 久久久成人免费电影| 午夜福利成人在线免费观看| 色噜噜av男人的天堂激情| 女人被狂操c到高潮| 国产三级中文精品| 熟女人妻精品中文字幕| 成人毛片60女人毛片免费| 一本久久中文字幕| 精品熟女少妇av免费看| 男人和女人高潮做爰伦理| 国产亚洲精品久久久久久毛片| 毛片一级片免费看久久久久| 人人妻人人澡人人爽人人夜夜 | 男的添女的下面高潮视频| 国内精品宾馆在线| 国产精品一区二区性色av| 最近手机中文字幕大全| 99视频精品全部免费 在线| 性插视频无遮挡在线免费观看| 久久久久久久久久成人| 国产黄片视频在线免费观看| 欧美人与善性xxx| 听说在线观看完整版免费高清| 亚洲丝袜综合中文字幕| 色综合站精品国产| 免费人成在线观看视频色| 亚洲自偷自拍三级| 在线播放国产精品三级| 国产精品,欧美在线| 亚洲天堂国产精品一区在线| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久 | 熟女电影av网| 亚洲欧美成人综合另类久久久 | 亚洲最大成人中文| 亚洲av第一区精品v没综合| 亚洲精华国产精华液的使用体验 | 亚洲国产日韩欧美精品在线观看| 欧美又色又爽又黄视频| 精品人妻视频免费看| 欧美日韩综合久久久久久| av在线观看视频网站免费| 一级二级三级毛片免费看| 日本黄色片子视频| 三级经典国产精品| 欧美一区二区国产精品久久精品| 99热这里只有是精品在线观看| 国产精品1区2区在线观看.| 久久精品综合一区二区三区| 午夜福利成人在线免费观看| ponron亚洲| 中国美女看黄片| 久久这里有精品视频免费| 少妇被粗大猛烈的视频| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 国产一区亚洲一区在线观看| 国产一级毛片在线| 精品熟女少妇av免费看| 一个人免费在线观看电影| 成熟少妇高潮喷水视频| 老熟妇乱子伦视频在线观看| 色哟哟·www| 国产亚洲精品久久久com| 波多野结衣巨乳人妻| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品久久久久久噜噜老黄 | 麻豆成人av视频| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 日日撸夜夜添| 成人亚洲精品av一区二区| 此物有八面人人有两片| av视频在线观看入口| a级毛色黄片| 亚洲成av人片在线播放无| 国产不卡一卡二| 一进一出抽搐动态| 国产精品久久久久久久电影| 亚洲七黄色美女视频| 久久久久免费精品人妻一区二区| 中文精品一卡2卡3卡4更新| 欧美高清性xxxxhd video| 亚洲国产高清在线一区二区三| av在线天堂中文字幕| 99热精品在线国产| 波多野结衣高清无吗| 91在线精品国自产拍蜜月| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区| 亚洲婷婷狠狠爱综合网| av在线亚洲专区| 一边亲一边摸免费视频| 亚洲久久久久久中文字幕| 日本五十路高清| 久久久国产成人免费| 美女 人体艺术 gogo| 免费观看精品视频网站| 国产成人91sexporn| 亚洲av不卡在线观看| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 国产亚洲av片在线观看秒播厂 | 午夜久久久久精精品| 国产精品国产三级国产av玫瑰| 亚洲在线观看片| 久久精品影院6| 中文字幕av在线有码专区| 欧美一区二区亚洲| 三级经典国产精品| 亚洲av成人精品一区久久| 亚洲一级一片aⅴ在线观看| 久久人妻av系列| 天堂√8在线中文| 日韩欧美在线乱码| 亚洲av熟女| 一个人看视频在线观看www免费| 91久久精品国产一区二区成人| 亚洲丝袜综合中文字幕| 亚洲av一区综合| 亚洲丝袜综合中文字幕| 超碰av人人做人人爽久久| 色综合色国产| 国产亚洲精品久久久com| 精品人妻偷拍中文字幕| 免费看日本二区| 久久这里只有精品中国| 啦啦啦观看免费观看视频高清| 91久久精品国产一区二区三区| 欧美激情国产日韩精品一区| videossex国产| 国产精品一区二区性色av| 午夜激情欧美在线| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 国产男人的电影天堂91| 国产午夜精品论理片| 久久韩国三级中文字幕| 精品一区二区三区人妻视频| 国产亚洲欧美98| 一区福利在线观看| 欧美一级a爱片免费观看看| 亚洲精品国产成人久久av| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 男的添女的下面高潮视频| 成年免费大片在线观看| 一区福利在线观看| 啦啦啦观看免费观看视频高清| 舔av片在线| 伦理电影大哥的女人| 午夜老司机福利剧场| 成人毛片a级毛片在线播放| 麻豆av噜噜一区二区三区| 看非洲黑人一级黄片| 99久久成人亚洲精品观看| 国产国拍精品亚洲av在线观看| 日日摸夜夜添夜夜添av毛片| 18禁在线无遮挡免费观看视频| 亚洲电影在线观看av| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看| 十八禁国产超污无遮挡网站| 听说在线观看完整版免费高清| 成年版毛片免费区| 麻豆成人午夜福利视频| 91av网一区二区| 高清毛片免费看| 高清日韩中文字幕在线| 18+在线观看网站| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热| 亚洲欧美清纯卡通| 亚洲av中文av极速乱| 蜜桃亚洲精品一区二区三区| 久久久久久久久大av| 午夜视频国产福利| 国产高清有码在线观看视频| 寂寞人妻少妇视频99o| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 十八禁国产超污无遮挡网站| 99九九线精品视频在线观看视频| 亚洲成人av在线免费| av女优亚洲男人天堂| 美女大奶头视频| 男女那种视频在线观看| 亚洲内射少妇av| 熟妇人妻久久中文字幕3abv| 午夜老司机福利剧场| 男人舔奶头视频| 精品日产1卡2卡| 97超视频在线观看视频| 国产伦一二天堂av在线观看| 男插女下体视频免费在线播放| 亚洲精品久久久久久婷婷小说 | 久久这里有精品视频免费| 日日干狠狠操夜夜爽| 寂寞人妻少妇视频99o| 干丝袜人妻中文字幕| 成人三级黄色视频| 国产日韩欧美在线精品| 一夜夜www| 国产高清不卡午夜福利| 少妇熟女欧美另类| 久久亚洲精品不卡| 麻豆一二三区av精品| 少妇猛男粗大的猛烈进出视频 | 校园春色视频在线观看| 亚洲精品粉嫩美女一区| 亚洲色图av天堂| 亚洲成人久久爱视频| 精华霜和精华液先用哪个| 国内精品久久久久精免费| 搡老妇女老女人老熟妇| 天堂中文最新版在线下载 | 亚洲欧美精品自产自拍| 国产精品一二三区在线看| 成人国产麻豆网| a级一级毛片免费在线观看| av卡一久久| 身体一侧抽搐| 午夜福利成人在线免费观看| 色哟哟·www| 看十八女毛片水多多多| 午夜爱爱视频在线播放| 搡女人真爽免费视频火全软件| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩卡通动漫| 日本免费一区二区三区高清不卡| 国产久久久一区二区三区| 成人特级av手机在线观看| av福利片在线观看| 青春草国产在线视频 | 国产精品久久久久久久久免| 少妇的逼好多水| 久久久久久久久久久免费av| 国产精品嫩草影院av在线观看| 国产一区二区三区av在线 | 综合色丁香网| 1000部很黄的大片| 国产精品蜜桃在线观看 | 级片在线观看| 国产成人精品婷婷| 老熟妇乱子伦视频在线观看| 最近的中文字幕免费完整| 在线观看一区二区三区| 亚洲三级黄色毛片| 久久韩国三级中文字幕| 久久久午夜欧美精品| 高清在线视频一区二区三区 | 99riav亚洲国产免费| 久久人人精品亚洲av| 亚洲欧美日韩高清在线视频| 听说在线观看完整版免费高清| 免费观看在线日韩| 亚洲av不卡在线观看| 丰满乱子伦码专区| www.av在线官网国产| 三级毛片av免费| 精品国产三级普通话版| 欧美高清成人免费视频www| 国产精品女同一区二区软件| 国产精品一区二区在线观看99 | 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| av又黄又爽大尺度在线免费看 | 麻豆av噜噜一区二区三区| 97人妻精品一区二区三区麻豆| 特大巨黑吊av在线直播| 色吧在线观看| 国产亚洲av片在线观看秒播厂 | 国产精品野战在线观看| 我要看日韩黄色一级片| 久久久久国产网址| 日本一二三区视频观看| 久久久久久九九精品二区国产| 中出人妻视频一区二区| 丰满人妻一区二区三区视频av| 99热这里只有是精品50| 久久久久久久午夜电影| 天天一区二区日本电影三级| а√天堂www在线а√下载| 全区人妻精品视频| 欧美xxxx性猛交bbbb| 国产 一区精品| 青春草国产在线视频 | 最近中文字幕高清免费大全6| 欧美高清成人免费视频www| 91久久精品国产一区二区成人| 亚洲欧美精品自产自拍| 麻豆精品久久久久久蜜桃| 一区福利在线观看| 免费观看精品视频网站| 亚洲av一区综合| 亚洲人成网站在线播放欧美日韩| 简卡轻食公司| 看非洲黑人一级黄片|