• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strain-dependent resistance and giant gauge factor in monolayer WSe2?

    2021-09-28 02:18:20MaoSenQin秦茂森XingGuoYe葉興國PengFeiZhu朱鵬飛WenZhengXu徐文正JingLiang梁晶KaihuiLiu劉開輝andZhiMinLiao廖志敏
    Chinese Physics B 2021年9期
    關(guān)鍵詞:興國鵬飛

    Mao-Sen Qin(秦茂森),Xing-Guo Ye(葉興國),Peng-Fei Zhu(朱鵬飛),Wen-Zheng Xu(徐文正),Jing Liang(梁晶),Kaihui Liu(劉開輝),and Zhi-Min Liao(廖志敏)

    State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics,School of Physics,Peking University,Beijing 100871,China

    Keywords:strain engineering,van der Waals materials,symmetry breaking,orbital magnetization,Berry curvature

    1.Introduction

    Two-dimensional(2D)van der Waals(vdW)layered transition metal dichalcogenides(TMDCs),such as MoS2and WSe2,have demonstrated potential applications in the nextgeneration electronics owing to their remarkable electrical,optical,and mechanical properties.[1–5]Unlike the bulk semiconducting materials that are usually brittle,it is reported that TMDCs can exceptionally sustain in-plane strain as high as 11% in their monolayer counterparts,[6]promising for the high-performance flexible and transparent electronics.[7–10]Based on their high flexibility,extensive theoretical and experimental studies have recently been motivated by the interests for strain engineering.[11–28]It is found that strain can significantly affect the physical properties of TMDCs.Giant valley shift[21]and bandgap engineering[11,12,14,16]can be achieved by introducing uniaxial strain in monolayer TMDCs.Importantly,strain is also proposed to manipulate the Berry curvature,[21,28]which is generally important in the topological transport.The uniaxial strain can break the C3vsymmetry and thus induce an asymmetrically distributed Berry curvature in a single valley,i.e.,nonzero Berry curvature dipole in monolayer TMDCs,leading to the nonlinear Hall effect.[28]Furthermore,the strain is known to induce pseudo-magnetic field in 2D materials,which has been predicted and experimentally found to generate zero-field quantum Hall effect by forming Landau levels.[17,25,26]Additionally,for the TMDCs with orthorhombic phase,such as the Weyl semimetal MoTe2,it is reported that the strain can effectively tune the Weyl points,resulting in the phase transition from type-II to type-I Weyl semimetals.[29]Interestingly,in the twisted TMDCs proposed recently,the formation of moir′e pattern can be actually regarded as strain engineering as well,which can result in various exotic phenomena including spin-liquid states,emergent magnetic order,and chiral superconductors.[30]Due to their high flexibility and strain-tunability,TMDCs provide an ideal platform to study the strain engineering of transport properties.

    In this work,we investigate the strain-dependent resistance of the ionic gated monolayer WSe2,where giant gauge factor at various temperature ranges is obtained.We produce uniaxial strain by the inverse piezoelectric effect of(1?x)Pb(Mg1/3Nb2/3)O3]–x[PbTiO3](PMN-PT)with very high piezoelectric coefficient.[31–35]Under uniaxial tensile strain,the sheet resistance of WSe2dramatically changes.The extracted gauge factor is approximately 1100 at 140 K and is further enhanced to~2400 at 2 K.This giant gauge factor is attributed to the strain-modulated mobility,which is reduced by the magnetic scattering induced by net orbital magnetization associated with nonzero Berry curvature dipole.Our work paves the way to enhance the strain sensitivity by manipulating the Berry curvature in 2D materials.

    2.Experiment and method

    WSe2flakes were exfoliated from bulk crystals onto silicon wafer with 285 nm SiO2.Monolayer WSe2was identified by optical contrast and fluorescent microscopy.Then the monolayer WSe2was transferred onto the PMN-PT substrate by using a pick-up transfer technique.[36]Detailed topography of the transferred WSe2was imaged by the atomic force microscopy to resolve the possible ruptures and bubbles.Subsequently a uniform part of WSe2was selected to pattern into a standard Hall-bar geometry.Electrical contacts were made by e-beam lithography followed by e-beam evaporation of Ti(1 nm)/Au(50 nm)and lift-off in acetone.It is worth noting that the electrodes applying electric field to the PMN-PT substrate were designed along the[001]orientation of the PMNPT,by which the uniaxial strain can be produced.The strain in the monolayer WSe2introduced by the PMN-PT substrate was confirmed by the second-harmonic generation(SHG)spectroscopy.WSe2was heavily hole doped into metallic state by the ionic liquid technique and the low-temperature Ohmic contact was guaranteed.

    3.Results and discussion

    Fig.1.(a)Schematics of ionic gated monolayer WSe2 device.The polarization voltage was applied along the[001]orientation of the PMN-PT substrate to ensure the uniaxial tensile strain.(b)Polarization resolved second harmonic generation intensity pattern.Red line:unstrained monolayer WSe2.Blue line:strained monolayer WSe2.(c)The optical microscope image of the Ti/Au strain gauge.(d)Temperature dependence of the maximum tensile strain produced in the PMN-PT substrate with a fixed polarized electric field EP=18 kV/cm,measured by the Ti/Au strain gauge.

    The device structure and measurement scheme are depicted in Fig.1(a).The ionic gate voltageVGwas fixed at?5 V and thus the holes in the valence bands at K/K′valleys dominated the transport properties.[37]Besides the gate volatge VG,an extra voltage was applied on the PMN-PT substrate after the ionic liquid was freezed below 180 K.An electric field EPwas produced between the electrodes along the[001]direction of the PMN-PT with the distance of 50μm.The uniaxial strain was induced along EPdirection into monolayer WSe2by the inverse piezoeletric effect of PMN-PT.To verify the strain in the WSe2,the SHG spectroscopy was measured.Polarization resolved SHG reflects the lattice symmetry of the probed crystals and the SHG intensity is susceptible to the mechanical deformation of the crystal lattice.[38,39]As shown in Fig.1(b),the SHG of the monolayer WSe2on the poled PMN-PT substrate is distorted from that of unstrained WSe2with the perfect D3hsymmetry,establishing the induced strain in WSe2by PMN-PT.For the quantitative description of the strain level,we patterned and deposited a strain gauge made up of Ti/Au(1 nm/50 nm in thickness)on the same PMN-PT substrate[Fig.1(c)]besides the deposition of the contact metal.The strain measured from the strain gauge can roughly reflect the controllable strain level that we apply to the WSe2.Figure 1(d)shows the temperature dependence of the maximum tensile strainεon the strain gauge induced by the PMN-PT substrate at EP=18 kV/cm,which decreases from 0.14% to 0.02% upon decreasing temperature from 140 K to 2 K.The decrease of the strain with decreasing temperature is consistent with the fact that the piezoelectric coefficient of PMN-PT decreases by a factor of 0.2 between 140 K and 5 K.[40]

    Fig.2.(a)Sheet resistance of monolayer WSe2 as a function of EP measured at temperatures from 140 K to 2 K.The curves are shifted for clarity.(b)Ratio of percentual changes of the sheet resistanceΔR/Rmin×100%under the tensile strain and(c)gauge factor as a function of temperature.

    Figure 2(a)shows the sheet resistance of monolayer WSe2as a function of EPmeasured at different temperatures.Before sweeping EP,we first polarized the PMN-PT along the[001]direction by applying EP=18 kV/cm for 15 min at 140 K to achieve a well aligned state and hence the initial strain in WSe2was fixed to be moderately tensile.Then we sweeped EPwith multiple cycling between EP=±18 kV/cm until the strain-induced sheet resistance change stabilized into an unipolar hysteretic loop,as shown in Fig.2(a).The emergence of the hysteretic behavior is due to the ferroelectricity nature of PMN-PT.[41]It is worth noting that the coercive field of PMN-PT is strongly temperature dependent and it increases exponentially as the temperature decreases.[42]The coercive field at low temperatures is(~35 kV/cm at 40 K[42])beyond the range of electric field that is achievable(±18 kV/cm)in this work.So as backward sweeping EPto?18 kV/cm,the piezoelectric polarization cannot be switched to the opposite direction at low temperatures.In other words,the tensile strain varies monotonously without sign change by sweeping EPfrom positive to negative value.From 140 K to 2 K,the hysteresis grows weak and finally disappears,as shown in Fig.2(a),which is also attributed to the increased coercive field upon decreasing temperature.

    Fig.3.Sheet resistance of monolayer WSe2 as a function of EP measured at 140 K.The substrate is replaced by the non-piezoelectric SiO2/Si substrate.

    It is worth noting that in addition to the strain effect,extrinsic mechanisms,such as side gate effect and the influence of EPon the ionic liquid,may also contribute to the changes of the sheet resistance of WSe2.However,these extrinsic mechanisms can both be ruled out in this work.Although the side gate can effectively tune the carrier density near the sample edges in a range of a few tens of nanometers in materials like graphene and InSb nanowire,[43–45]the carrier density in the ionic gated WSe2(~1013cm?2)is at least two orders of magnitude higher than that in those materials and hence the screening effect is prominent,which makes the side gating effect negligible in principle.We have performed a contrast experiment by using SiO2/Si substrate to eliminate the influence of EPon the ionic liquid.As sweeping EP,the negligible resistance change(less than 4%)and no hysteresis were observed at 140 K,as shown in Fig.3.

    We have noticed that the strain-induced resistance change of TMDCs is previously ascribed to the bandgap engineering.[20]The gauge factor of monolayer MoS2has been reported by Kis et al.to be a relatively low negative value~?148 at 300 K.[20]However,the monolayer MoS2is undoped and semicoducting in that work.So the resistance change is attributed to the reduced bandgap induced by tensile strain.[14]We stress monolayer WSe2used here is in the metallic phase with heavily hole-doping.Since the Fermi level is far from the band edge,the bandgap engineering can be safely excluded as the main cause of the giant gauge factor here.

    Here we attribute the strain engineering of mobility to the strong magnetic scattering associated with nonzero Berry curvature dipole.For monolayer TMDCs,large Berry curvature emerges at K/K′valleys due to the spontaneous inversion symmetry breaking.[28]Berry curvature plays an important role in the topological transport,which would induce the transverse deflection of electron movement.[46]The presence of time-reversal symmetry in TMDCs leads to the opposite signs of Berry curvature in opposite valleys.Thus,driven by an in-plane electric field E,the electrons at opposite valleys will deflect along opposite directions and cancel with each other,leading to a charge neutral valley current,known as valley Hall effect.[46]In addition to Berry curvature,the dipole moment of Berry curvature,i.e.,Berry curvature dipole,would also induce anomalous transport phenomena.However,the Berry curvature has a symmetric distribution in a single valley constrained by the C3vsymmetry,leading to vanishing Berry curvature dipole,which exactly describes the asymmetric distributions of Berry curvature.[47]Applying uniaxial strain can break the C3vsymmetry in monolayer TMDCs,inducing nonzero Berry curvature dipole.The Berry curvature dipole D is proposed to generate a net out-of-plane orbital magnetization M∝D·E when an external electric field E is also applied.[47]The emergent orbital magnetization can induce a Hall current as a second-order response to E,that is,the nonlinear Hall effect.[46]As shown in Fig.4(c),the nonlinear Hall effect has been observed in a typical strained monolayer WSe2.The emergent second-harmonic Hall voltage can be well fitted by a parabolic curve[the red line presented in Fig.4(c)],suggesting the existence of nonlinear Hall effect.[28]Moreover,such orbital magnetization can also introduce additional magnetic scattering,thus reducing the mobility and longitudinal conductance.Obviously,a larger Berry curvature dipole means larger orbital magnetization,inducing the stronger suppression of mobility.Note previous studies on the nonlinear Hall effect in strained WSe2have shown that Berry curvature dipole could be significantly enhanced by increasing the tensile strain.[28,47]Thus,here the measured giant gauge factor can be ascribed to the strain induced additional magnetic scattering associated with a nonzero Berry curvature dipole.Furthermore,as shown in Fig.4(d),the temperature dependent resistance of WSe2shows a metallic behavior at high temperature,while it increases upon decreasing temperature below 40 K.Such temperature-dependent behavior is also consistent with the existence of magnetic moments,which can lead to the Kondo effect and a minimum resistance.

    4.Conclusions

    We have demonstrated a strong dependence of resistance on uniaxial strain in monolayer WSe2at various temperatures.The gauge factor can reach as large as 2400,demonstrating great application potential for the next-generation ultrasensitive sensors.We attribute this strain-dependent resistance to the strong magnetic scattering associated with nonzero Berry curvature dipole induced by strain.Our work indicates that the performance of strain sensors can be effectively improved by modulating the Berry curvature via changing the symmetry in 2D vdW materials,which should be promising for highly sensitive strain sensors and flexible electronics.

    猜你喜歡
    興國鵬飛
    In-flight deformation measurement for high-aspect-ratio wing based on 3D speckle correlation①
    山歌迎你到興國
    心聲歌刊(2022年4期)2022-12-16 07:11:00
    西和贊歌
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    執(zhí)“迷”不悟
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    興國之歌
    心聲歌刊(2018年1期)2018-04-17 07:22:54
    手術(shù)病人大多吃錯了
    亚洲成人久久爱视频| 中文精品一卡2卡3卡4更新| 日韩一区二区视频免费看| 日韩 亚洲 欧美在线| 毛片一级片免费看久久久久| 听说在线观看完整版免费高清| 久久99热这里只有精品18| 2021天堂中文幕一二区在线观| 在线天堂最新版资源| 亚洲最大成人中文| 国产免费又黄又爽又色| 亚洲精品乱码久久久v下载方式| 亚洲成人一二三区av| 久久久久久久精品精品| 丰满人妻一区二区三区视频av| 日韩精品有码人妻一区| 亚洲成人精品中文字幕电影| 18+在线观看网站| 免费黄色在线免费观看| 久久精品夜色国产| 欧美丝袜亚洲另类| 色播亚洲综合网| 国产视频首页在线观看| 99久久中文字幕三级久久日本| 少妇丰满av| 国产精品福利在线免费观看| 国内少妇人妻偷人精品xxx网站| 两个人的视频大全免费| 全区人妻精品视频| 一个人看视频在线观看www免费| 久久久久久久国产电影| 特大巨黑吊av在线直播| 亚洲欧美日韩另类电影网站 | 亚洲精品久久久久久婷婷小说| 高清午夜精品一区二区三区| 插逼视频在线观看| 欧美激情国产日韩精品一区| 欧美变态另类bdsm刘玥| 一级毛片aaaaaa免费看小| 亚洲国产成人一精品久久久| 成年av动漫网址| 热re99久久精品国产66热6| 久久99热6这里只有精品| 一区二区三区乱码不卡18| 五月玫瑰六月丁香| 亚洲怡红院男人天堂| 国内精品美女久久久久久| 伦理电影大哥的女人| 久久亚洲国产成人精品v| 伊人久久国产一区二区| 国产大屁股一区二区在线视频| 亚洲四区av| 日韩成人av中文字幕在线观看| 亚洲一级一片aⅴ在线观看| 黄片无遮挡物在线观看| 国产一区二区三区av在线| 男人舔奶头视频| 成人毛片60女人毛片免费| 老司机影院毛片| 成年版毛片免费区| 国产精品一区二区性色av| 国产女主播在线喷水免费视频网站| 婷婷色麻豆天堂久久| 国产黄片美女视频| 国产熟女欧美一区二区| 在线a可以看的网站| 色网站视频免费| 熟女电影av网| 国产有黄有色有爽视频| 日本免费在线观看一区| 伦理电影大哥的女人| 精品酒店卫生间| av在线亚洲专区| 欧美人与善性xxx| 国产有黄有色有爽视频| 哪个播放器可以免费观看大片| 亚洲自偷自拍三级| 91久久精品国产一区二区三区| 亚洲精品色激情综合| 爱豆传媒免费全集在线观看| 高清av免费在线| 国国产精品蜜臀av免费| 欧美一区二区亚洲| 久久ye,这里只有精品| 国产亚洲最大av| 舔av片在线| 激情 狠狠 欧美| 亚洲,一卡二卡三卡| 国产av国产精品国产| 亚洲婷婷狠狠爱综合网| 国产精品嫩草影院av在线观看| 毛片一级片免费看久久久久| 六月丁香七月| 最近手机中文字幕大全| 王馨瑶露胸无遮挡在线观看| 日韩欧美精品免费久久| 国产精品嫩草影院av在线观看| 亚洲国产色片| 人妻系列 视频| 韩国av在线不卡| 国产亚洲av片在线观看秒播厂| 久久久欧美国产精品| 欧美激情久久久久久爽电影| 99视频精品全部免费 在线| 2022亚洲国产成人精品| 国产精品av视频在线免费观看| 国国产精品蜜臀av免费| 听说在线观看完整版免费高清| 亚洲综合精品二区| 在线免费观看不下载黄p国产| 欧美极品一区二区三区四区| 观看免费一级毛片| 国产午夜精品一二区理论片| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 国产精品女同一区二区软件| 男人舔奶头视频| 久久这里有精品视频免费| 精品国产一区二区三区久久久樱花 | 欧美bdsm另类| 亚洲最大成人av| 久久久久网色| 一级爰片在线观看| 免费大片黄手机在线观看| 国产精品成人在线| 中国国产av一级| 在线免费观看不下载黄p国产| 看黄色毛片网站| 国产黄片美女视频| 91午夜精品亚洲一区二区三区| 一本色道久久久久久精品综合| 毛片女人毛片| 丝袜喷水一区| 五月开心婷婷网| 内射极品少妇av片p| 波野结衣二区三区在线| 欧美日韩视频精品一区| 日本猛色少妇xxxxx猛交久久| 亚洲av免费高清在线观看| 成人美女网站在线观看视频| 国产毛片a区久久久久| 永久免费av网站大全| 亚洲综合色惰| 天天躁日日操中文字幕| 中文字幕制服av| 亚洲,欧美,日韩| 亚洲真实伦在线观看| 大片电影免费在线观看免费| 亚洲国产精品成人久久小说| 老女人水多毛片| 伊人久久精品亚洲午夜| 日本与韩国留学比较| 最近最新中文字幕免费大全7| 视频中文字幕在线观看| 男人爽女人下面视频在线观看| 亚洲成人一二三区av| 天堂网av新在线| 大香蕉久久网| 亚洲精品久久久久久婷婷小说| 一级片'在线观看视频| 久久午夜福利片| 美女视频免费永久观看网站| 小蜜桃在线观看免费完整版高清| 国产av码专区亚洲av| 看非洲黑人一级黄片| 青春草亚洲视频在线观看| 国产乱来视频区| 另类亚洲欧美激情| 91午夜精品亚洲一区二区三区| 成人特级av手机在线观看| 丝袜脚勾引网站| 男人添女人高潮全过程视频| 伦理电影大哥的女人| 国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 日韩 亚洲 欧美在线| 亚洲三级黄色毛片| 99精国产麻豆久久婷婷| 97人妻精品一区二区三区麻豆| 大码成人一级视频| 精品久久久精品久久久| 99热这里只有精品一区| 久久精品国产亚洲av涩爱| 亚洲欧美精品专区久久| 偷拍熟女少妇极品色| 国产日韩欧美亚洲二区| 精华霜和精华液先用哪个| 2021少妇久久久久久久久久久| 亚洲国产精品999| 99热网站在线观看| 建设人人有责人人尽责人人享有的 | 国产爽快片一区二区三区| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 新久久久久国产一级毛片| 男女边摸边吃奶| 女人十人毛片免费观看3o分钟| 日本一本二区三区精品| 在线观看一区二区三区| 亚洲欧美日韩另类电影网站 | 成人毛片60女人毛片免费| 校园人妻丝袜中文字幕| 天堂网av新在线| 亚洲精品日韩av片在线观看| 国产精品一区www在线观看| 搞女人的毛片| 一边亲一边摸免费视频| 99热这里只有精品一区| 久久久久国产网址| 97在线视频观看| 国产91av在线免费观看| 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| 日韩电影二区| 七月丁香在线播放| 建设人人有责人人尽责人人享有的 | 免费看不卡的av| 少妇人妻 视频| 最近2019中文字幕mv第一页| 精品国产露脸久久av麻豆| 搡老乐熟女国产| 涩涩av久久男人的天堂| av国产免费在线观看| 毛片女人毛片| 欧美最新免费一区二区三区| 久久久久久久午夜电影| 在线观看人妻少妇| 精品人妻视频免费看| 高清欧美精品videossex| 久久久久久久久久成人| 午夜激情久久久久久久| 亚洲美女搞黄在线观看| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 看免费成人av毛片| 亚洲精品国产色婷婷电影| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区精品91| 18禁在线无遮挡免费观看视频| 国产伦精品一区二区三区四那| 国内揄拍国产精品人妻在线| 少妇 在线观看| 色网站视频免费| 一级毛片久久久久久久久女| 日本欧美国产在线视频| 成人午夜精彩视频在线观看| 我的女老师完整版在线观看| 如何舔出高潮| 亚洲自拍偷在线| 中文乱码字字幕精品一区二区三区| 亚洲色图av天堂| 精品久久国产蜜桃| 日日啪夜夜爽| 亚洲精品,欧美精品| 99久国产av精品国产电影| 尾随美女入室| 精品一区在线观看国产| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 美女视频免费永久观看网站| av在线观看视频网站免费| 亚洲最大成人手机在线| 国产成人精品福利久久| 精品一区二区免费观看| 亚洲av免费高清在线观看| 日韩不卡一区二区三区视频在线| 国产一区亚洲一区在线观看| 亚洲精品日本国产第一区| 丝瓜视频免费看黄片| 免费av不卡在线播放| 99久久精品热视频| 一区二区三区四区激情视频| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 草草在线视频免费看| 一个人观看的视频www高清免费观看| 久久久久久久久久久丰满| 亚洲成色77777| 少妇人妻一区二区三区视频| 亚洲,一卡二卡三卡| 亚洲久久久久久中文字幕| www.av在线官网国产| 亚洲av.av天堂| 女人十人毛片免费观看3o分钟| 男人和女人高潮做爰伦理| 美女高潮的动态| 麻豆成人av视频| 久久精品国产自在天天线| 国产av国产精品国产| 99热这里只有精品一区| 国产白丝娇喘喷水9色精品| 一区二区av电影网| 国产在视频线精品| 久久久精品免费免费高清| 99久久九九国产精品国产免费| 国产乱人视频| 嫩草影院新地址| 国产爽快片一区二区三区| 亚洲第一区二区三区不卡| 搡女人真爽免费视频火全软件| av在线天堂中文字幕| 少妇人妻精品综合一区二区| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 黄色怎么调成土黄色| 香蕉精品网在线| 欧美激情国产日韩精品一区| 亚洲欧美成人综合另类久久久| 免费不卡的大黄色大毛片视频在线观看| 18禁在线无遮挡免费观看视频| videos熟女内射| 欧美日韩一区二区视频在线观看视频在线 | 成人免费观看视频高清| 国产成人免费观看mmmm| 久久精品综合一区二区三区| 亚洲精品国产av成人精品| 伊人久久国产一区二区| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久| 亚洲高清免费不卡视频| 夜夜爽夜夜爽视频| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频 | 国产成人一区二区在线| 黑人高潮一二区| 狠狠精品人妻久久久久久综合| 亚洲欧美精品专区久久| 成人二区视频| 久久99蜜桃精品久久| 午夜激情福利司机影院| 2022亚洲国产成人精品| 天堂俺去俺来也www色官网| 男的添女的下面高潮视频| 亚洲av免费高清在线观看| av天堂中文字幕网| 在线观看免费高清a一片| 免费看光身美女| 偷拍熟女少妇极品色| 91精品一卡2卡3卡4卡| 激情五月婷婷亚洲| 久热这里只有精品99| 久久人人爽人人爽人人片va| 美女被艹到高潮喷水动态| 中文精品一卡2卡3卡4更新| 久久精品国产鲁丝片午夜精品| 日韩伦理黄色片| 国产精品一二三区在线看| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 亚洲欧美精品自产自拍| 搡老乐熟女国产| 国产大屁股一区二区在线视频| 熟女电影av网| 亚洲自偷自拍三级| 干丝袜人妻中文字幕| 国产午夜精品一二区理论片| 日韩人妻高清精品专区| 欧美性感艳星| 69av精品久久久久久| 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 一级毛片久久久久久久久女| 极品教师在线视频| 纵有疾风起免费观看全集完整版| 国产精品一及| 麻豆成人午夜福利视频| 国产毛片在线视频| 一区二区三区精品91| 免费观看无遮挡的男女| 国产淫语在线视频| eeuss影院久久| 国产片特级美女逼逼视频| 亚洲在久久综合| 精品一区二区免费观看| 国产乱来视频区| 内射极品少妇av片p| 国产成人精品婷婷| 亚洲精品国产av蜜桃| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 乱码一卡2卡4卡精品| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 国产视频首页在线观看| 天堂俺去俺来也www色官网| 在线天堂最新版资源| 亚洲精品国产成人久久av| 国产91av在线免费观看| 国产精品嫩草影院av在线观看| 免费看光身美女| 我的女老师完整版在线观看| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 狠狠精品人妻久久久久久综合| 中文字幕av成人在线电影| 国产精品一区www在线观看| 亚洲精品乱码久久久久久按摩| 少妇 在线观看| 2021天堂中文幕一二区在线观| 啦啦啦啦在线视频资源| 久久久久精品久久久久真实原创| 极品少妇高潮喷水抽搐| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 久久久精品94久久精品| 亚洲欧美成人精品一区二区| 嫩草影院新地址| 女人久久www免费人成看片| 大片免费播放器 马上看| 美女脱内裤让男人舔精品视频| 99久久精品国产国产毛片| 午夜福利网站1000一区二区三区| 亚洲最大成人手机在线| 亚洲激情五月婷婷啪啪| 热re99久久精品国产66热6| 精华霜和精华液先用哪个| 亚洲美女搞黄在线观看| 爱豆传媒免费全集在线观看| 久久精品熟女亚洲av麻豆精品| 久久久精品94久久精品| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 精品酒店卫生间| 欧美成人一区二区免费高清观看| av在线蜜桃| 少妇 在线观看| 91aial.com中文字幕在线观看| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件| 中文在线观看免费www的网站| xxx大片免费视频| 亚洲av中文字字幕乱码综合| 日韩成人av中文字幕在线观看| 女人久久www免费人成看片| 精品久久久精品久久久| 成人毛片a级毛片在线播放| 狂野欧美激情性bbbbbb| 亚洲欧美精品专区久久| 久久精品国产a三级三级三级| 国产色爽女视频免费观看| 国产伦精品一区二区三区视频9| 别揉我奶头 嗯啊视频| 亚州av有码| 亚洲av成人精品一区久久| 男女边吃奶边做爰视频| 亚洲在久久综合| 亚洲婷婷狠狠爱综合网| 日本黄大片高清| 亚洲成人久久爱视频| 日韩av在线免费看完整版不卡| 欧美3d第一页| 菩萨蛮人人尽说江南好唐韦庄| 成人美女网站在线观看视频| 搡老乐熟女国产| 亚洲在久久综合| 欧美xxxx黑人xx丫x性爽| 国内精品美女久久久久久| 午夜激情福利司机影院| 26uuu在线亚洲综合色| 久久久久久久国产电影| 精品午夜福利在线看| 亚洲av中文字字幕乱码综合| 嫩草影院新地址| 国产高清不卡午夜福利| 亚洲国产精品成人久久小说| 一区二区三区精品91| 女人被狂操c到高潮| 美女主播在线视频| 又黄又爽又刺激的免费视频.| 97在线视频观看| 久久久久久久久久成人| 欧美zozozo另类| 欧美日韩一区二区视频在线观看视频在线 | 九九爱精品视频在线观看| 最近最新中文字幕免费大全7| 成人一区二区视频在线观看| 99九九线精品视频在线观看视频| 亚洲欧美日韩东京热| 精品久久久久久久末码| 午夜福利高清视频| 婷婷色av中文字幕| 最新中文字幕久久久久| 国产 一区 欧美 日韩| 亚洲内射少妇av| 亚洲在久久综合| 亚洲综合精品二区| 免费高清在线观看视频在线观看| 99久久人妻综合| 有码 亚洲区| 亚洲最大成人中文| 亚洲最大成人手机在线| freevideosex欧美| 久久久久久久久久久丰满| 少妇的逼好多水| 国产探花极品一区二区| 精品久久久精品久久久| 亚洲一区二区三区欧美精品 | 99热网站在线观看| 国产又色又爽无遮挡免| 91精品伊人久久大香线蕉| 成人毛片60女人毛片免费| 亚洲成人一二三区av| 一级毛片 在线播放| 国产精品国产av在线观看| 午夜免费鲁丝| 国产午夜福利久久久久久| 麻豆精品久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| 久久精品熟女亚洲av麻豆精品| 日本av手机在线免费观看| 精品国产露脸久久av麻豆| 99热6这里只有精品| 亚洲欧洲国产日韩| 日韩一区二区视频免费看| 欧美激情在线99| 边亲边吃奶的免费视频| 蜜桃亚洲精品一区二区三区| 亚洲国产欧美在线一区| 国产成人freesex在线| 国内精品宾馆在线| 黄片无遮挡物在线观看| 男女那种视频在线观看| 国产精品女同一区二区软件| 夜夜看夜夜爽夜夜摸| 建设人人有责人人尽责人人享有的 | 中文字幕av成人在线电影| 成年av动漫网址| 精品久久国产蜜桃| 人人妻人人澡人人爽人人夜夜| 国产成人aa在线观看| 精品国产三级普通话版| 夜夜爽夜夜爽视频| 国产av国产精品国产| 永久免费av网站大全| 美女视频免费永久观看网站| 在线观看三级黄色| 国产一区二区三区综合在线观看 | 国产色婷婷99| 国产高清有码在线观看视频| 国内精品美女久久久久久| 最近2019中文字幕mv第一页| freevideosex欧美| 99热这里只有是精品在线观看| 亚洲av中文av极速乱| 日韩 亚洲 欧美在线| 国产乱人视频| 国产亚洲一区二区精品| 精品人妻视频免费看| 欧美日韩亚洲高清精品| 少妇丰满av| 成人亚洲精品av一区二区| 在线观看一区二区三区| 婷婷色av中文字幕| 国产精品无大码| 女的被弄到高潮叫床怎么办| 视频区图区小说| 久久久a久久爽久久v久久| 亚洲av福利一区| 日韩欧美一区视频在线观看 | 大香蕉久久网| av卡一久久| 欧美三级亚洲精品| 亚洲av免费高清在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲av嫩草精品影院| 永久免费av网站大全| 午夜激情福利司机影院| 欧美日韩在线观看h| 亚洲人成网站在线播| 日韩大片免费观看网站| 男女无遮挡免费网站观看| 在线观看国产h片| 亚洲在久久综合| 王馨瑶露胸无遮挡在线观看| 国产免费福利视频在线观看| 亚洲国产精品成人久久小说| 亚洲精品久久久久久婷婷小说| av在线老鸭窝| 国产高清有码在线观看视频| 日韩av不卡免费在线播放| 97在线人人人人妻| 精品人妻偷拍中文字幕| 亚洲av在线观看美女高潮| 美女xxoo啪啪120秒动态图| 三级国产精品欧美在线观看| 欧美高清性xxxxhd video| 激情五月婷婷亚洲| 夜夜看夜夜爽夜夜摸| 18禁动态无遮挡网站| 大片电影免费在线观看免费| 亚洲经典国产精华液单| 成年免费大片在线观看| 啦啦啦在线观看免费高清www| 国产精品一区二区三区四区免费观看| 最近的中文字幕免费完整| 国产精品国产三级国产av玫瑰| 伦精品一区二区三区| 午夜爱爱视频在线播放| 国产成人91sexporn| 亚洲,欧美,日韩| 国产 精品1| 中国三级夫妇交换| 日韩国内少妇激情av| 最近2019中文字幕mv第一页| 18禁裸乳无遮挡动漫免费视频 | 高清欧美精品videossex| 黄片wwwwww| 欧美日本视频| 热99国产精品久久久久久7| 少妇丰满av| 熟女av电影| 简卡轻食公司|