• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption and rotational barrier for a single azobenzene molecule on Au(111)surface?

    2021-09-28 02:18:20DongHao郝東XiangqianTang唐向前WenyuWang王文宇YangAn安旸YueyiWang王悅毅XinyanShan單欣巖andXinghuaLu陸興華
    Chinese Physics B 2021年9期
    關(guān)鍵詞:興華

    Dong Hao(郝東),Xiangqian Tang(唐向前),Wenyu Wang(王文宇),Yang An(安旸),Yueyi Wang(王悅毅),Xinyan Shan(單欣巖),and Xinghua Lu(陸興華),3,4,?

    1Beijing National Laboratory for Condensed-Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Songshan Lake Laboratory for Materials Science,Dongguan 523808,China

    4Center for Excellence in Topological Quantum Computation,Beijing 100190,China

    Keywords:Au(111),molecular rotor,azobenzene

    Molecular motors and rotors are potential building blocks for ultimate small mechanical devices in the future.[1–7]Fundamental physical properties of such molecules have been the focus in many studies nowadays.For example,the dynamic behaviors of the molecules were investigated when they were adsorbed onto the surface and visualized by scanning tunneling microscopy(STM).[8–11]Au(111)is a common surface in these studies due to its inertial chemical characteristics and easy sample preparation.One of its unique features is the complex herringbone surface reconstruction.[12–19]The alternative fcc and hcp regions in the herringbone reconstruction create periodic electronic quantum wells on the surface by which the electronic surface state and adsorption potential are modulated.[20]The kink sites of the herringbone reconstruction are attractive points for many molecules,such as benzene,[21]water,[22]carbon monoxide,[23]etc.Besides,they act as perfect anchor points or pivots for the molecular rotors in various control experiments where the rotation of the molecules can be excited by tunneling current,[24]voltage pulse,[8]and/or laser illumination.

    Our recent experiment on dynamic behavior of individual azobenzene molecules on Au(111)surface revealed distinct roles in rotation excitation by tunneling electrons and ultrafast laser pulses.[25]As shown in Fig.1,the azobenzene molecules adsorbed on to the kink sites present two equivalent ground states separated by 60°.Orientation switching between these two states occurs when the molecules are excited by electrons and/or photons.While it has been revealed in the paper that there is an energy barrier between the two orientations,the magnitude of such barrier was not well quantified yet.The detailed adsorption configuration has not been revealed either,due to the lack of atom-resolved topographic images.To make a step forward,here we report the investigation on the adsorption configuration and rotational dynamics for this molecular rotor by first-principles density functional theory(DFT)computation.The anchor site is revealed by comparison among various possible adsorption configurations of a benzene ring on the surface,and the rotational energy barrier is obtained by sweeping the rotational angle of an azobenzene molecule with one of its phenyl rings fixed at the kink site.The validity of the computational results is supported by the comparison with the experimental data.

    The periodic DFT calculations were performed using the pseudopotential method and plane-waves as implemented in the Quantum ESPRESSO code,version 6.4.1.[26]The generalized gradient approximation(GGA),Perdew–Burke–Ernzerhof(PBE)exchange–correlation functional,[27]and projector-augmented wave(PAW)pseudopotentials[28]were employed throughout.Cutoffs for the expansion of the plane waves and charge density were chosen according to the SSSP pseudopotential verification database,[29]i.e.,650 eV and 5000 eV,respectively.Spin polarization was not considered in these adsorption systems.The Brillouin zones were sampled by using the Monkhorst–Pack methodology,[30]withΓ point-centered 3×3×1 grids for relaxations and 5×5×1 grids for the total energy calculations.Partial occupancies of electronic states were set according to the method and system.For relaxations involving fcc gold lattice only,the Methfessel–Paxton method[31]with a smearing width of 0.30 eV was used.A Gaussian smearing with a width of 0.05 eV was adopted throughout the relaxations of all the composed systems.To calculate the total energies,the Gaussian smearing method with the width of an order of magnitude smaller was employed.The self-consistent field(SCF)calculation convergence threshold was set to 7×10?6eV for all calculations.For the geometry optimizations,a 6.5×10?3eV/?A force convergence criterion was applied;during the single point calculations the forces were checked to ensure that the threshold was not exceeded.

    Fig.1.Azobenzene molecules on Au(111)surface.The molecules are adsorbed onto the kink site of the herringbone surface reconstructions and present two orientation states,±30° with respect to the line bisect the herringbone reconstruction.The molecules can be excited to toggle between the two orientations,by tunneling electrons and/or ultrafast laser pulses.

    The molecule–surface system is modeled in supercell geometries employing the GGA-PBE-optimized lattice constants.Depending on the registry of the aromatic molecule with the substrate,unit cells with sizes of(4×4×4)and(6×5×4)are established for the adsorption of benzene and azobenzene,respectively.The system is padded by 20?A of vacuum in the z-direction,and a dipole correction is applied to offset the effect of an artificial electric field due to the asymmetric slab structure.The supporting gold substrate is four atomic layers thick with the two bottom layers kept fixed for calculating benzene on the surface.The semi-empirical Grimme-D3 dispersion correction[32]is applied to describe the long-range van der Waals(vdW)interaction in the systems.This version of DFT+D correction scheme was compared with other empirical dispersion corrections by Werner Reckien et al.[33]and with the vdW-DF method by Karen Johnston et al.,[34]which exhibits a good agreement with the experimental data[35]for benzene adsorption on coinage metals.

    We first relax the Au(111)crystal and an isolated benzene molecule separately to obtain the Au lattice constant and atomic structure of the benzene molecule.To determine the optimal structure and calculate the energy of an isolated molecule using periodic DFT,the molecule is placed in a large enough cubic supercell with the side length of 15?A to minimize the influence from its periodic images.To perform the geometric optimization,all internal degrees of freedom like bond lengths and bond angles are taken into considerations with appropriate stopping criteria for the energy and force.We start from various initial structures with all degrees of freedom included to check whether they converge to the same structure to ensure that the optimal structures are obtained.Figure 2 shows the structural and energy convergence of both the Au crystal and the isolated benzene molecule.The Au–Au distance is stabilized to 2.941?A,and the C–C bond length of benzene changes converges to 1.397?A.The calculated final structural parameters are employed in our subsequent calculations.

    Fig.2.QE calculation set up.Both the Au(111)surface and the isolated benzene molecules are relaxed to their ground energy states.A unit cell consisting of 4×4×4 Au atoms is used and the Au–Au distance at equilibrium is 2.941?A.The C–C distance in benzene molecule is calculated to be 1.397?A in its ground state.

    The ground state for a molecule on surface is obtained by comparison among all possible configurations of the adsorption system.The adsorption energy Eadsis defined as

    where Etot,Ebnz,and Esurfare the energies of the whole system,the isolated optimized molecule,and the bare metal surface,respectively.Figures 3(a)and 3(b)show the possible adsorption sites on the close packed Au(111)surface.The top site(T)is above a surface gold atom,the bridge site(B)is midway between adjacent top sites,the fcc and hcp hollow sites(Ha and Hb)are situated in the midpoint of three top sites,as shown in Fig.3(a).Geometry optimizations are carried out on each high-symmetry site to obtain the distance between the center of the benzene molecule and the atom in the top surface layer,as shown in Fig.3(b).As another degree of freedom for the adsorbed molecule,the orientation is defined as the angle between one of the C–H bonds and the crystal a-axis,as shown in Fig.3(a).Considering the six-fold symmetry of the surface,two typical orientations,0°and 30°,are examined in our study.

    Fig.3.(a)The adsorption configuration of the benzene molecule on fully optimized Au(111)surface.The top layer Au atoms are the goldcolored spheres,the second layer is beige,and the third layer is represented by the nut-brown spheres.The vectors a and b in the bottom left are the crystallographic axes.Eight configurations are examined:top site(T),bridge site(B),fcc and hcp hollow sites(Ha and Hb),respectively,with two orientations for each,i.e.,0°and 30°(see the unit cell in the bottom right).(b)Schematic cross-sectional view for a benzene molecule above an fcc hollow site of the Au(111)surface.For all configurations,the molecule–surface distance is calculated from the center of the benzene molecule to the gold atom in the top layer.(c)Calculated adsorption energy as well as height Z for all configurations in this study.The inset shows the most stable adsorption registry on the fcc hollow site.(d)The relative energy variation for orientations near 30° for the registry of a benzene molecule on the fcc hollow site.The minimum at 30° confirms the preferred adsorption configuration.

    The lowest energy states for each configuration are shown in Fig.3(c).Among all geometries,the values of the adsorption energy and height for the top site are apparently larger than those for the hollow and bridge sites.The maximum energy difference between different sites is about 85 meV.For adsorption on the hollow and bridge sites,the benzene molecule is oriented so that one of the C–H bonds makes an angleα=30°with the a-axis.In contrast,the molecule on the top site prefers an orientation with the angleα=0°;that is,the C–H bond of benzene is parallel to the Au(111)a-or b-axis.The adsorption height is~3.12?A for both the bridge and hollow sites,whereas for the top site it is 0.1?A larger(~3.22?A).The value of 3.12?A is in good agreement with the results of Werner Reckien et al.[33]and Javier Carrasco et al.[36]The preferred adsorption configuration for a benzene molecule is the fcc hollow site with the orientation angle of 30°.

    The nonbonded vdW interaction between the adsorbate and the surface is of crucial importance in such calculations.Without vdW correction,the molecular height Z is 0.3?A higher than that on the fcc hollow site(Ha-30°).It is clear that the interaction between benzene and gold surface can be mostly attributed to the vdW forces.This is not surprising since both the benzene molecule and the gold substrate have relatively high polarizabilities as already known by experiment[21]and theoretical studies.[34]Figure 3(d)shows the variation of adsorption energy under the perturbation of molecular orientation near 30°.The minimum at the angle of 30°confirms that it is the most stable configuration,in which three carbon atoms in the phenyl ring locate nearly on top of gold atoms.

    Next we examine the adsorption behavior of azobenzene molecule on the Au(111)surface.To simulate the anchor on Au(111)surface,we place the azobenzene molecule on the surface with the center of one of the phenyl rings above the fcc hollow site,the stable adsorption site for benzene molecules.The adsorption heights of the molecule at a specific orientation are estimated by calculating the minimum adsorption energy as a function of molecule–substrate distance.The orientational angle is defined by the angle between the line connecting centers of two phenyl rings and the crystallographic a-axis,as shown in the inset of Fig.4.Five orientational angles from 10°to 50°are investigated,and all derive minimum adsorption energy at the adsorption height of 3.25?A,as shown in Fig.4.This value gives a reasonable accuracy as compared with the experimental value of 2.97±0.05?A and the calculated value of 3.5?A using the revPBE-vdW-DF functional.[37]

    Fig.4.The adsorption energy of azobenzene molecule on Au(111)surface as a function of the molecule–surface distance,under various adsorption orientations.Inset:the adsorption configuration of the azobenzene molecule on the fully optimized Au(111)substrate with definition of orientation angleθ.The color code for atoms is the same as used in Fig.3.

    Finally,the rotational barrier of an azobenzene molecule anchored at the kink site is obtained by examining the rotational energy potential as a function of molecular orientation.With the adsorption height fixed at 3.25?A,the rotational energy potential curves are obtained by single-point calculations with the PBE-D3 approach.We stepwise alter the molecular orientationθfrom 0°to 60°,and the obtained energy profiles are shown in Fig.5.The computed adsorption energy is thus about 1.76 eV,and the rotational energy barrier is about 50 meV.The results are on the right order of magnitude with the experimental data(24 meV)[25]and those of azobenzene derivatives(33±3.8 meV).[40]We also tried single-point calculations using the vdW-DF method,the known nonlocal vdW density functional,and acquired similar results.In Fig.5(b),we plot the vdW surface maps of the molecular system at two different orientations.The vdW surface maps are usually set by the electron density of the isosurfaces as of 0.002±δelectrons/Bohr3,whereδis the tolerance.Such isosurfaces enclose approximately 95% of the molecular electron density.We also plotted the isosurfaces with the electron density set as 0.010 electrons/Bohr3.For both orientations,the isosurfaces of carbon atoms in the anchored phenyl ring have remarkable overlap with those of underlying Au atoms.The sliding phenyl ring shows more overlap at orientationθ=0°than forθ=30°,indicating a weaker vdW energy atθ=30°.This is consistent with the rotational energy barrier profile.The isosurface of the nitrogen atoms,on the other hand,shows much less overlap with the substrate,suggesting a much weaker interaction with the substrate.

    Fig.5.(a)The adsorption energy as a function of orientation for an azobenzene molecule with one of its phenyl rings pivots around the fcc hollow site.(b)van der Waals surface map of the molecular system with the electron density of the isosurface being 0.002 electrons/Bohr3(left column)and 0.01 electrons/Bohr3(middle and right columns).

    We note that the computational results are not in perfect match with the experimental results.The computed adsorption energy of 1.76 eV is about 20%lower than the estimated value from experiment(~2.1 eV).The difference arises from the inadequate model for the kink site of herringbone reconstruction.Calculation on the herringbone surface reconstruction including the kink site,unfortunately,is extremely difficult since the whole herringbone pattern consists of more than 1000 atoms in a single layer.In addition,employing pairwise dispersion-correction scheme,such as the PBE-D3 scheme,usually leads to a certain degree of overestimation in interaction energies for molecules on surfaces.[38]The overbinding is sizeable even with effectively included substrate screening via vdWsurf(PBE+vdWsurf).[39]The sources of error are not only the intrinsic limitation of the Grimme dispersion correction—insufficient response to the local chemical environment and collective response effects along with the absence of higher-order dispersion terms,but also the entangled finitetemperature effects due to the pronounced element of flexibility,disorder,and structural anharmonicity in the targeted molecules.Nevertheless,the adsorption energy profile for the rotation of azobenzene on the Au(111)surface has depicted the shapes of the potential well in general,and the computed energy barrier of 50 meV is on the same order as that estimated from experimental data.Further improvement is possible with advanced computation facility as well as new development in theoretical methods.

    In summary,we investigated the adsorption configurations and rotational behavior for single azobenzene molecules on Au(111)surface.The adsorption configuration for a benzene molecule on the surface was calculated to illustrate the anchoring effect on the kink site of herringbone surface reconstructions.The potential energy profile has been calculated to reveal the rotation barrier for the molecule that is in agreement with the experimental data.The approach as demonstrated in this study is applicable to a broad spectrum of molecular systems.

    猜你喜歡
    興華
    Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
    毛焰藝術(shù)風(fēng)格中的自我表達(dá)
    快樂在哪里
    你是最棒的小樹苗
    興華市林湖鄉(xiāng):村企聯(lián)建共走振興路
    村長外號(hào)叫“老邪”
    攝影作品欣賞
    金沙江文藝(2019年7期)2019-07-29 01:57:06
    書法,何者為要——從沃興華的創(chuàng)作瓶頸談起
    藝術(shù)品(2018年5期)2018-06-29 02:14:58
    馬興華攝影作品欣賞
    金沙江文藝(2017年4期)2017-03-31 07:35:16
    亚洲欧美日韩卡通动漫| 亚洲av日韩在线播放| 青春草国产在线视频| 韩国av在线不卡| 卡戴珊不雅视频在线播放| 久久青草综合色| 最黄视频免费看| 亚洲精品aⅴ在线观看| 久久久久久久久久久久大奶| 在线观看一区二区三区激情| 建设人人有责人人尽责人人享有的| 国产老妇伦熟女老妇高清| 久久99热6这里只有精品| av在线播放精品| 性色avwww在线观看| 国产欧美另类精品又又久久亚洲欧美| 丰满乱子伦码专区| 精品一区二区免费观看| 色婷婷av一区二区三区视频| 777米奇影视久久| 狂野欧美激情性xxxx在线观看| 一级毛片 在线播放| 国产成人精品无人区| 在线观看免费日韩欧美大片 | 亚洲欧洲日产国产| 欧美性感艳星| 久久久精品94久久精品| 看非洲黑人一级黄片| 亚洲av成人精品一二三区| 91久久精品电影网| 亚洲精品,欧美精品| 精品一品国产午夜福利视频| 欧美激情 高清一区二区三区| 亚洲第一av免费看| 国产成人一区二区在线| 国产精品99久久久久久久久| 人妻一区二区av| 一级黄片播放器| 亚洲国产精品成人久久小说| 国产高清有码在线观看视频| 一本久久精品| 久久人人爽av亚洲精品天堂| 一二三四中文在线观看免费高清| 亚洲美女视频黄频| av免费在线看不卡| 日韩人妻高清精品专区| 黄片无遮挡物在线观看| 91精品一卡2卡3卡4卡| 熟女av电影| 免费看不卡的av| 欧美日本中文国产一区发布| 永久网站在线| 九九在线视频观看精品| 高清黄色对白视频在线免费看| 亚洲欧美精品自产自拍| 母亲3免费完整高清在线观看 | 欧美日韩国产mv在线观看视频| 亚洲精品第二区| 免费黄频网站在线观看国产| 18禁观看日本| 久久精品国产鲁丝片午夜精品| 一区二区三区乱码不卡18| 2021少妇久久久久久久久久久| 中文乱码字字幕精品一区二区三区| 国精品久久久久久国模美| 国产精品一区www在线观看| 狂野欧美白嫩少妇大欣赏| 高清毛片免费看| 少妇的逼水好多| 国产又色又爽无遮挡免| 成年人免费黄色播放视频| 人妻夜夜爽99麻豆av| 九九在线视频观看精品| 国产有黄有色有爽视频| 中文欧美无线码| 日日撸夜夜添| 少妇丰满av| 亚洲欧洲日产国产| 精品久久国产蜜桃| 中文字幕av电影在线播放| 免费日韩欧美在线观看| 黑人欧美特级aaaaaa片| 精品久久蜜臀av无| 国产av国产精品国产| 2021少妇久久久久久久久久久| 中文字幕精品免费在线观看视频 | 韩国高清视频一区二区三区| 国产精品久久久久久久久免| 国产淫语在线视频| a级片在线免费高清观看视频| 精品亚洲乱码少妇综合久久| 亚洲欧美成人精品一区二区| 国产成人精品福利久久| 久久久久久伊人网av| 91国产中文字幕| 日韩人妻高清精品专区| 国产成人91sexporn| 观看美女的网站| 美女xxoo啪啪120秒动态图| 制服人妻中文乱码| 99久久精品国产国产毛片| 欧美日韩亚洲高清精品| 精品久久久噜噜| 大香蕉久久网| 亚洲精品乱码久久久久久按摩| 一本—道久久a久久精品蜜桃钙片| 黄片播放在线免费| 久久久久久久精品精品| av天堂久久9| 国产精品嫩草影院av在线观看| a级毛片黄视频| a级毛片黄视频| 中文字幕免费在线视频6| 国产精品国产三级国产专区5o| 亚洲丝袜综合中文字幕| 精品亚洲成国产av| 成年女人在线观看亚洲视频| 另类亚洲欧美激情| 成人免费观看视频高清| 免费看不卡的av| 日本-黄色视频高清免费观看| 黑丝袜美女国产一区| 另类亚洲欧美激情| 少妇的逼水好多| 肉色欧美久久久久久久蜜桃| 女人久久www免费人成看片| av免费观看日本| 国产精品偷伦视频观看了| 成人国产av品久久久| 一级片'在线观看视频| 国产亚洲欧美精品永久| 精品少妇内射三级| 国产免费一区二区三区四区乱码| 丰满饥渴人妻一区二区三| 久热这里只有精品99| 久久婷婷青草| 色网站视频免费| 26uuu在线亚洲综合色| 啦啦啦在线观看免费高清www| 久久ye,这里只有精品| 插阴视频在线观看视频| 在线 av 中文字幕| 天堂俺去俺来也www色官网| 涩涩av久久男人的天堂| 热99久久久久精品小说推荐| 亚洲av二区三区四区| 国产白丝娇喘喷水9色精品| 亚洲精品久久久久久婷婷小说| 777米奇影视久久| 伦理电影免费视频| 精品卡一卡二卡四卡免费| 亚洲av综合色区一区| 国产不卡av网站在线观看| 人成视频在线观看免费观看| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 999精品在线视频| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久人人人人人人| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| 日本爱情动作片www.在线观看| 精品久久久精品久久久| 一本一本综合久久| 老女人水多毛片| 国产男女超爽视频在线观看| av福利片在线| 久久午夜综合久久蜜桃| 精品少妇内射三级| 少妇人妻精品综合一区二区| 国产爽快片一区二区三区| 日本黄色日本黄色录像| 亚洲第一区二区三区不卡| 哪个播放器可以免费观看大片| 爱豆传媒免费全集在线观看| 毛片一级片免费看久久久久| 久久精品久久精品一区二区三区| 日本黄色片子视频| 午夜影院在线不卡| 永久网站在线| 日日撸夜夜添| 亚洲婷婷狠狠爱综合网| 美女视频免费永久观看网站| 亚洲性久久影院| 男女免费视频国产| 18禁裸乳无遮挡动漫免费视频| 9色porny在线观看| 三级国产精品片| 久久久久久人妻| 亚洲av二区三区四区| 最近中文字幕2019免费版| 国产一区二区在线观看av| 国产黄片视频在线免费观看| 久久精品国产亚洲网站| 99久久精品一区二区三区| 久久久精品免费免费高清| 91午夜精品亚洲一区二区三区| 色吧在线观看| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡 | 亚洲国产av新网站| 色婷婷av一区二区三区视频| 好男人视频免费观看在线| 午夜福利影视在线免费观看| av在线app专区| 欧美三级亚洲精品| 少妇丰满av| 国产精品女同一区二区软件| 蜜桃国产av成人99| 亚洲av成人精品一区久久| 欧美97在线视频| 女性生殖器流出的白浆| 永久免费av网站大全| 午夜激情久久久久久久| 国产亚洲精品久久久com| 中文字幕制服av| 欧美激情国产日韩精品一区| 99视频精品全部免费 在线| 亚洲精品乱久久久久久| 亚洲欧美日韩卡通动漫| 18禁观看日本| 久久精品人人爽人人爽视色| 一级,二级,三级黄色视频| 中国国产av一级| 国产精品久久久久久精品古装| 伊人久久国产一区二区| 久久国产精品大桥未久av| 亚洲综合色惰| 黑人高潮一二区| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 在现免费观看毛片| 日韩一区二区视频免费看| 日本黄大片高清| 国产精品欧美亚洲77777| 中文字幕av电影在线播放| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 另类亚洲欧美激情| 欧美日韩在线观看h| 国产成人av激情在线播放 | 天天影视国产精品| 美女中出高潮动态图| 亚洲精品自拍成人| 草草在线视频免费看| 最后的刺客免费高清国语| 少妇精品久久久久久久| 免费高清在线观看日韩| 国产 一区精品| 中文字幕av电影在线播放| 国产在线一区二区三区精| 国产毛片在线视频| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 免费看av在线观看网站| 久久这里有精品视频免费| 日本黄大片高清| 男女高潮啪啪啪动态图| 黄片播放在线免费| 亚洲人成网站在线播| 免费大片黄手机在线观看| 两个人的视频大全免费| 欧美精品人与动牲交sv欧美| 免费大片18禁| 亚洲欧美日韩另类电影网站| 欧美成人午夜免费资源| 精品熟女少妇av免费看| 女人精品久久久久毛片| 国产 精品1| 赤兔流量卡办理| 只有这里有精品99| 国产亚洲午夜精品一区二区久久| 国产亚洲一区二区精品| 国产精品国产三级国产专区5o| 岛国毛片在线播放| 国产精品国产三级国产av玫瑰| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 伦理电影大哥的女人| 亚洲国产精品专区欧美| 欧美另类一区| 久热久热在线精品观看| tube8黄色片| 亚洲一区二区三区欧美精品| 亚洲精品久久午夜乱码| 欧美精品亚洲一区二区| 在线精品无人区一区二区三| 欧美激情极品国产一区二区三区 | 国产国拍精品亚洲av在线观看| 韩国高清视频一区二区三区| 五月开心婷婷网| 美女主播在线视频| 爱豆传媒免费全集在线观看| 99久国产av精品国产电影| 欧美日韩亚洲高清精品| 欧美日韩一区二区视频在线观看视频在线| 国产精品无大码| 丰满少妇做爰视频| 天天影视国产精品| 欧美日韩成人在线一区二区| 一本色道久久久久久精品综合| 少妇熟女欧美另类| 成人综合一区亚洲| 街头女战士在线观看网站| 成人影院久久| 中文字幕制服av| 夜夜看夜夜爽夜夜摸| 制服丝袜香蕉在线| 天美传媒精品一区二区| 国产精品蜜桃在线观看| 夜夜看夜夜爽夜夜摸| 亚州av有码| 欧美xxxx性猛交bbbb| 热99久久久久精品小说推荐| 日韩精品有码人妻一区| 国国产精品蜜臀av免费| 亚洲国产成人一精品久久久| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 久久久精品区二区三区| 少妇被粗大的猛进出69影院 | 黄色配什么色好看| 一本—道久久a久久精品蜜桃钙片| 高清不卡的av网站| 国产色婷婷99| 一级毛片我不卡| 国产一级毛片在线| 国产av精品麻豆| 免费人妻精品一区二区三区视频| 午夜老司机福利剧场| 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 国产男女内射视频| 久久精品国产亚洲网站| 亚洲精华国产精华液的使用体验| 国产国语露脸激情在线看| 黑人猛操日本美女一级片| 老熟女久久久| 91久久精品电影网| 国产成人免费无遮挡视频| 丝瓜视频免费看黄片| 两个人的视频大全免费| 亚洲,一卡二卡三卡| 中文字幕免费在线视频6| 狠狠婷婷综合久久久久久88av| 免费久久久久久久精品成人欧美视频 | 亚洲av不卡在线观看| 伊人久久精品亚洲午夜| 2018国产大陆天天弄谢| 水蜜桃什么品种好| 黄色配什么色好看| 黑人高潮一二区| 亚洲国产成人一精品久久久| 伦精品一区二区三区| 亚洲av国产av综合av卡| 午夜老司机福利剧场| 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 熟女人妻精品中文字幕| 国产在线视频一区二区| 午夜激情久久久久久久| 2021少妇久久久久久久久久久| 一个人看视频在线观看www免费| 大码成人一级视频| av国产久精品久网站免费入址| 新久久久久国产一级毛片| 欧美精品人与动牲交sv欧美| 99九九线精品视频在线观看视频| 高清毛片免费看| 一级毛片黄色毛片免费观看视频| 日韩av免费高清视频| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 又粗又硬又长又爽又黄的视频| 欧美成人精品欧美一级黄| 亚洲成色77777| 成人国产麻豆网| 国产视频内射| 一个人看视频在线观看www免费| 亚洲一级一片aⅴ在线观看| av不卡在线播放| 国产欧美亚洲国产| 精品久久久久久电影网| 成年人午夜在线观看视频| 久热这里只有精品99| 精品久久久久久电影网| 蜜桃国产av成人99| 欧美97在线视频| 久久久久久久久大av| 日日爽夜夜爽网站| 在线播放无遮挡| 免费久久久久久久精品成人欧美视频 | 少妇人妻久久综合中文| 欧美3d第一页| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| av在线老鸭窝| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 人妻系列 视频| 午夜福利网站1000一区二区三区| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 午夜福利视频精品| 亚洲少妇的诱惑av| 18在线观看网站| a级毛片黄视频| 国产高清不卡午夜福利| 伦理电影免费视频| 乱人伦中国视频| 国产精品一国产av| 大码成人一级视频| 亚洲国产精品国产精品| 国产黄频视频在线观看| 一区二区三区免费毛片| 免费看光身美女| 日韩中文字幕视频在线看片| 啦啦啦啦在线视频资源| 亚洲av欧美aⅴ国产| 国模一区二区三区四区视频| 97在线人人人人妻| 亚洲欧美精品自产自拍| 欧美日韩国产mv在线观看视频| 99国产精品免费福利视频| 久久久久精品久久久久真实原创| 久久99热6这里只有精品| 人妻制服诱惑在线中文字幕| 日韩强制内射视频| 久久精品国产a三级三级三级| 五月伊人婷婷丁香| 天堂俺去俺来也www色官网| 欧美激情极品国产一区二区三区 | 高清不卡的av网站| 国产精品麻豆人妻色哟哟久久| 亚洲美女视频黄频| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕| 日本与韩国留学比较| 水蜜桃什么品种好| 满18在线观看网站| 男女国产视频网站| 男人添女人高潮全过程视频| 成人毛片60女人毛片免费| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| av国产精品久久久久影院| a级片在线免费高清观看视频| 国产精品三级大全| 免费人成在线观看视频色| 亚洲av.av天堂| 久久99热6这里只有精品| 久久久久久久久久人人人人人人| 黄色怎么调成土黄色| 在线观看www视频免费| 国产精品国产三级专区第一集| 亚洲欧美一区二区三区国产| 蜜桃在线观看..| 日韩强制内射视频| 日韩视频在线欧美| 国产成人精品婷婷| 免费少妇av软件| 久久久久视频综合| xxxhd国产人妻xxx| 国产探花极品一区二区| 久久99热这里只频精品6学生| 一边摸一边做爽爽视频免费| 中国国产av一级| 久久综合国产亚洲精品| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| 国产日韩欧美在线精品| 交换朋友夫妻互换小说| av不卡在线播放| 狠狠婷婷综合久久久久久88av| 好男人视频免费观看在线| 国产在线视频一区二区| 黑人猛操日本美女一级片| 久久这里有精品视频免费| 一级a做视频免费观看| 高清毛片免费看| 少妇人妻 视频| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| 久久人人爽人人片av| 精品酒店卫生间| av在线播放精品| 尾随美女入室| 少妇丰满av| 毛片一级片免费看久久久久| www.av在线官网国产| 久久97久久精品| 久久久久久久久久久免费av| 精品一区在线观看国产| 中文字幕免费在线视频6| 视频区图区小说| 国产深夜福利视频在线观看| 日韩制服骚丝袜av| av女优亚洲男人天堂| 午夜福利网站1000一区二区三区| 精品一区二区免费观看| 精品人妻一区二区三区麻豆| 一区二区av电影网| 亚洲四区av| 日本黄大片高清| 久久97久久精品| 伦理电影大哥的女人| 亚洲精品,欧美精品| 韩国av在线不卡| 免费高清在线观看视频在线观看| 在线 av 中文字幕| .国产精品久久| 一区二区三区乱码不卡18| 高清午夜精品一区二区三区| 亚洲欧洲国产日韩| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕 | 男女国产视频网站| 欧美老熟妇乱子伦牲交| 色视频在线一区二区三区| 精品亚洲成国产av| 久久久久视频综合| 日韩视频在线欧美| 午夜久久久在线观看| 天堂俺去俺来也www色官网| 男女啪啪激烈高潮av片| 国产精品国产三级国产专区5o| 久久久久久久久久人人人人人人| 91精品伊人久久大香线蕉| 人人妻人人爽人人添夜夜欢视频| 黄片播放在线免费| 国产免费又黄又爽又色| 国产欧美日韩综合在线一区二区| 亚洲av在线观看美女高潮| 五月伊人婷婷丁香| 亚洲av在线观看美女高潮| 哪个播放器可以免费观看大片| 在线 av 中文字幕| 亚洲一区二区三区欧美精品| av电影中文网址| 人人妻人人澡人人爽人人夜夜| 国产综合精华液| 亚洲精品美女久久av网站| 亚洲国产最新在线播放| 黄色一级大片看看| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 日韩亚洲欧美综合| 久久这里有精品视频免费| 高清av免费在线| 国产精品国产av在线观看| 视频中文字幕在线观看| 天天影视国产精品| av一本久久久久| 免费少妇av软件| a级毛片免费高清观看在线播放| 久久精品国产a三级三级三级| 爱豆传媒免费全集在线观看| 日本欧美视频一区| 国产视频首页在线观看| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| 久久这里有精品视频免费| 欧美少妇被猛烈插入视频| 久久久a久久爽久久v久久| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 久久久精品94久久精品| 尾随美女入室| 卡戴珊不雅视频在线播放| 青春草视频在线免费观看| 国产高清国产精品国产三级| 久久鲁丝午夜福利片| 一级二级三级毛片免费看| 成人午夜精彩视频在线观看| 国产成人av激情在线播放 | 18在线观看网站| 在线免费观看不下载黄p国产| 日本午夜av视频| av在线老鸭窝| 成人影院久久| 国产欧美亚洲国产| 久久久久久久久大av| 成年女人在线观看亚洲视频| 国产综合精华液| 久久国产精品大桥未久av| 日日爽夜夜爽网站| 制服丝袜香蕉在线| 国产亚洲一区二区精品| 中文欧美无线码| 人人妻人人添人人爽欧美一区卜| 国产毛片在线视频| 欧美日韩国产mv在线观看视频| 国产成人精品无人区| 久久久精品区二区三区| 国产国语露脸激情在线看| 老女人水多毛片| 欧美少妇被猛烈插入视频| 精品酒店卫生间| 亚洲国产色片| 欧美日韩在线观看h| 乱人伦中国视频| 欧美少妇被猛烈插入视频| 黄色配什么色好看| 在线 av 中文字幕| 日本av免费视频播放| 久久 成人 亚洲| 国产免费一级a男人的天堂| 国产精品一二三区在线看| 日本午夜av视频| 久久国产精品男人的天堂亚洲 | 亚洲国产精品专区欧美|