• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction

    2022-11-21 09:29:42JianMeiLi李健梅DongHao郝東LiHuanSun孫麗歡XiangQianTang唐向前YangAn安旸XinYanShan單欣巖andXingHuaLu陸興華
    Chinese Physics B 2022年11期
    關(guān)鍵詞:興華

    Jian-Mei Li(李健梅) Dong Hao(郝東) Li-Huan Sun(孫麗歡) Xiang-Qian Tang(唐向前)Yang An(安旸) Xin-Yan Shan(單欣巖) and Xing-Hua Lu(陸興華)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    4Center for Excellence in Topological Quantum Computation,Beijing 100190,China

    5Songshan Lake Laboratory for Materials Laboratory,Dongguan 523808,China

    We investigated the photon emission spectra on Ag(111)surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum. Characteristic plasmon modes were illustrated as a function of the bias voltage. The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current. Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages, as well as at the field emission resonance with bias voltage increased up to 9 V. Presence of a silver (Ag)nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances,which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum. The results are of potential value for applications where ultimate enhancement of photon emission is desired.

    Keywords: scanning tunneling microscopy,luminescence,surface plasmon,field emission resonance

    1. Introduction

    Electro-optical phenomenon on a nano-meter scale is important for designing micro and nano photonic devices,as well as for understanding the basic physical principles in light–matter interactions.[1–3]For example, light emission from atomic chains reveals electronic transitions between the discrete energy levels rooting from quantum confinement.[4–6]As another example, the local photon emission from a single molecule in the tunnel junction is caused by inelastic scattering of the tunneling electrons.[7–9]The photo luminescence can also be observed on semiconductor surfaces due to tipinduced carrier recombination.[10,11]The light intensities in these systems are affected by several factors, including electronic current, sample bias, local environment, and quantum efficiency (QE) of electron–photon conversion. For a typical gap antenna nanostructure,the value of QE is on the order of 10-4,[12–14]but it can be increased to 10-2when high concentration of hot carriers is induced by laser illumination in the tunneling gap.[15,16]The local environment,or even an atomic perturbation, may play an important role in determining the emission spectrum. Examples include a single defect in semiconductor,an extra atom attached to quantum dot,or a chemical group bonded to the functioning molecule. Detailed investigation in these delicate effects is strongly desired in order to fully understand the underlying mechanism and to explore into new applications.

    Scanning tunneling microscope(STM) has been playing a unique role in studying light–matter interactions on a microscopic scale. It provides topographic details with atomic spatial resolution,and it can be employed to create vertical metalinsulator–metal structures (MIMs) as a gap antenna,[17,18]

    where the inelastic tunneling electrons excite localized surface plasmons(LSP).In the STM configuration,the tunneling gap can be adjusted by changing the sample bias voltage, while keeping the tunneling current at a constant level. When the bias voltage is set to be higher than the work function of the metal, the system turns into the field emission regime where the intensity of light emission exhibits oscillation as a function of the bias. The luminescence reaches its local maximum value at some specific bias voltages, which is known as the field emission resonance(FER)associated with the hot electron injection and the inelastic electrons tunneling (IET)through the field emission state.[19,20]While several seminar studies have demonstrated the advantages of the STM-based investigations,the influence of local environment on the electron photo luminescence as well as the coupling to the FER has not been fully explored on a nanometer scale yet.

    Here, we examine the photo luminescence from the tunneling junction with an Ag STM tip on Ag(111)surface. The light emission intensity as a function of the sample bias and the tunneling current is examined. Special attention is paid to a local perturbation with an Ag nanostructure deposited on the surface, where an abnormal enhancement in the emission spectra is observed.The correlation between the luminescence intensity and the field emission resonance is investigated and explained by the plasmon resonance in the nano-cavity and the electronic local density of states.

    2. Experiment

    The experiment was performed by using a homebuilt STM in ultrahigh vacuum with a base pressure of 1×10-10Torr(1 Torr=1.33322×102Pa). The Ag(111)surface was cleaned by cycles of argon ion sputtering and annealed at 600°C.The Ag tips were prepared by electrochemical etching from 99.99%Ag wires(Nilaco Corporation)with a diameter of 500 μm.The tips were further cleaned by filament heating, ion sputtering, and finally treated by voltage pulses on clean surfaces. Photons emitted from the tunnel junction were collected by two convex lens(f1=50 mm,Φ1=15 mm,f2=15 mm,Φ2=15 mm) and focused into an optical fiber outside the vacuum chamber which guided the light to a spectrometer (Spectra Pro 2300, Princeton Instruments) for analysis as shown in Fig. 1(a). Spectra in a wavelength range from 400 nm to 980 nm were acquired by a liquid-nitrogencooled charge-coupled device(CCD)with an integration time of 60 s. During acquisition,the STM tip was positioned statically above the sample with feedback loop on.

    Fig.1. (a)Schematic diagram of STM-based luminescence experiment. (b)Luminescence spectra on Ag(111)surface with Ag tip under various bias voltages,with the spectra shifted vertically for clarity. (c)Spectrum intensity map corresponding to panel(b),displaying the relationship between the photon energy and sample bias,with dashed line indicating the boundary hν =eV.

    3. Results and discussion

    Figure 1(b) shows the characteristic luminescence spectra acquired on an atomic flat Ag (111) surface, under various bias voltages from 1.5 V to 4 V.For the low bias voltageV=1.5 V, there is only one peak present in the spectrum at the wavelength of 920 nm (hν=1.35 eV). For the high bias voltageV=4.0 V,multiple peaks can be identified in the spectrum. These luminescence peaks originate from the decay of plasmon modes that are excited by the electrons through inelastic tunneling process.[5,17,21]Figure 1(c) shows the spectrum intensity map as a function of photon energy and the bias voltage. The dashed line indicates a boundary where the maximum electron energy equals the photon energy. It is clear that all spectra obey the relationhν <eV,i.e.the photon energy is limited by the bias voltage, illustrating the quantum cutoff in single electron excitation process.[21]It is worth noting that the luminescence peak at 518 nm (photon energy 2.4 eV) is not obvious in the spectrum obtained under the bias voltage of 2.4 V.In addition,the intensities of two high energy peaks(respectively at wavelengths of 575 nm and 518 nm)rise quickly with the bias voltage increasing. The overall features in the spectra map can serve as a fingerprint of the plasmon modes in the nano-resonator constructed by the crystal surface and the specific STM tip apex.[12]

    The intensity of luminescence spectrum depends on the magnitude of the tunneling current. Figure 2(a) shows three spectrum peaks measured as a function of the tunneling current, performed with a different Ag tip. The bias voltage is set to be±4.5 V, and the tunneling current is set to be between 2 nA and 8 nA (negative current corresponds to negative bias voltage). The integration time is 60 s for each spectrum. The energy values of three spectrum peaks are 1.66 eV, 1.80 eV, and 1.94 eV, respectively. There is no obvious change of the peak position or the peak width(FWHM)of each mode,implying that the cavity resonance remains unchanged over the investigated range of current intensities or gap distances,which is in agreement with the results reported previously.[22]The current-dependent luminescence peak intensity(maximum)is further fitted by the power lawIβ. The exponential constant turns out to beβ ≈1.0±0.05 for all three modes,which is in consistence with the single electron excitation process.[21,23]

    Fig.2.(a)Luminescence spectra from Ag tunneling junction acquired under various tip-sample distances. (b) Plots of intensity versus current for three spectrum peaks.

    We then investigate the luminescence spectrum by extending the bias voltage from 3 V to 9 V. The intensities of luminescence peaks on Ag surface reach a maximum value at the bias voltage of about 4.0 V, and decrease as the bias voltage increases further as shown in Fig.3(c). The observation of maximum in luminescence intensity as a function of the bias voltage is consistent with previous results,[20,24–26]and can be explained below. The electronic band structure of Ag (111) has a band edge position about 4 eV above the Fermi level(work function of Ag is about 4.6 eV.[27–29]). As bias voltage increases,the number of decay channels involving the photon emission increases. On the other hand, when the bias voltage increases from the tunneling regime to the field emission regime,the gap distance increases faster and deviates from a logarithmic fashion. The increased gap distance weakens the tip-sample electromagnetic coupling and subsequently quenches the photon emission. Typically, the peak intensity decreases by a factor of ten when the bias voltage increases from 4 V to about 9 V.

    The profile of the luminescence is strongly dependent on the tip shape. We intentionally modify the tip by applying a voltage pulse to the sample as shown in Fig. 3(a). The topograph of the surface after the tip modification is shown in Fig. 3(b), where an Ag nanoparticle about 10 nm in size is deposited near the edge of a flat terrace. The luminescence spectrum is measured again by using the new tip(named tip 2)on the flat region of the surface(as marked in Fig.3(b)). The spectra, as shown in Fig. 3(c), display a two-peak feature as compared with the three-peak feature in the spectra acquired by the original tip(tip 1). The luminescence peaks as acquired by tip 2 are located at slightly lower energy, which indicates the presence of a sharper STM tip.[12]The peak intensity decreases significantly as the bias voltage increases up to 9 V,the trend of which is consistent with that of the results obtained by tip 1. Figure 3(d)shows the bias voltage-dependent luminescence spectra taken on the Ag nanoparticle created by tip modification.The tunneling current is kept at 2 nA.The profile of the spectra is very similar to that taken on the terrace,with two peaks at the same photon energy values of 1.63 eV and 1.82 eV. The intensities of both peaks, however, show strong variations as the bias voltage increases to the field emission regime as indicated in Fig. 3(e). The intensities of the two peaks have a few local maximum values with respect to the bias voltage. The first maximum value is seen at the bias voltage of 4.5 V,and the other three maximum values occur at the bias voltages of 6.2 V,7.5 V,and 8.5 V,respectively.As is well known,those maximum values at the bias voltages more than 5 V are related to the field emission resonance. The photon energy under such a resonance condition is determined by the relationshiphν=eVbias-En, (n=1, 2 ,3, ....), whereEnis the energy of the field emission resonance state in the system.The average of two emission modes is used in above relationship analysis andEnis determined to be 4.5 eV, 5.8 eV, and 6.8 eV,forn=1,2,3,respectively,marked by blue rectangles in Fig.3(f).

    Fig. 3. (a)–(b) STM images of clean Ag (111) surface and Ag nanoparticle deposited on the surface, with image size being 180 nm×180 nm, and imaging condition V =3 V and I =0.3 nA. Luminescence spectra are obtained at different locations on the surface as marked by the arrows, with a constant tunneling current of 2 nA.The inset shows the line profile of Ag nanoparticle. (c)Luminescence spectra obtained with two different Ag tips on the flat region of Ag(111)surface under various bias voltages. The spectra are shifted vertically for clarity. (d)Luminescence spectra measured with Ag tip 2 above the Ag nanoparticle as shown in panel(b). The bias voltage is set to range from 3.5 V to 9 V,and the constant tunneling current is set to 2 nA,with NP denoting nanoparticle. (e)Luminescence peak intensity as a function of the bias voltage,with photon energy values of the two modes being 1.63 eV(red)and 1.82 eV(black). (f)The experimental differential conductance measured at constant current(2 nA)with tip 1 on Ag(111),with blue rectangles marking energy values of the first three FERs.

    It is interesting to note that the peak intensities at different levels of the field emission resonances do not change monotonically. Instead, significant increase in peak intensity is observed at the resonance leveln=3, which is very different from the normal situation where the peak intensity decreases monotonically for higher level of the field emission resonance.[20]This enhancement at higher field emission resonance can be seen obviously due to the presence of the Ag nanoparticle. The schematic diagram for this enhancement mechanism is shown in Fig. 4. We calculate the electronic enhancement by the finite element analysis method. The incident laser illuminates the tunneling gap at an angle of 45°.The photons originate from the radiation attenuation of the local surface plasmons between tip and sample,and are assisted by the inelastic tunneling electrons from the Fermi level of the tip into the field emission resonance states. The energy values of the emitted photon are the same for the tip parked over the plat terrace and above the nanoparticle.This is reasonable since the energy of the plasmon mode is mainly determined by the radius of the curvature of the tip and the tip-sample distance. On the plat terrace,the efficiency of the photon emission is mainly determined by the tip profile where the contribution from the surface is much weaker due to the mismatch in their wave vectors between the propagating surface plasmon mode and the free photon in vacuum. As shown in Fig. 4(b), the presence of nanoparticle results in significant increase in electric field emission. The increased emission is due to the breaking of the translational symmetry of the plan surface,which permits surface plasmon along the sample-vacuum interface to decay radiatively.[30]In other words,the interaction between the localized surface plasmon of the nanoparticle on the surface and the emitted photon results in an extra enhancement effect.[31]

    We estimate the quantum efficiency of the photon emission excited by the tunneling electron in such a nano-resonator,which can be expressed as

    Fig.4. (a)Schematic representation of surface plasmons and electron luminescence in STM tunneling junction, with ω representing the frequency of plasmon mode within the tip-surface resonant cavity,excited by the inelastic scattering of tunneling electrons or field emission electrons. (b)Gap modes of the coupled systems with a stronger field enhancement than the plasmon modes of tip and substrate.(c)Nanostructure of tip and Ag substrate(diameter 40 nm,gap 1 nm)with a maximum enhancement factor of 432 at 1.90 eV.(d)Nanostructure of tip and Ag nanoparticle(diameter 10 nm,height 4 nm)on substrate with a maximum enhancement factor of 885 at 1.90 eV.

    4. Conclusions

    In this work, we investigated the electron luminescence spectra in the tunneling junction of an ultrahigh vacuum lowtemperature STM. The well-defined luminescence peaks are observed to be related to the plasmon modes of the tip-surface cavity. The light intensity is linear with respect to the tunneling current, indicating an electron excitation process. Enhanced luminescence enhancement is observed by the field emission resonance for high bias voltages in the tunneling regime. Abnormal enhancement in photon emission for the higher level of field emission resonance reveals the distinct role of the Ag nanoparticles on surface.The research results in this case provide a detailed understanding of light–plasmon interaction that are essential for many applications such as light harvesting and nano-antenna.Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 21961142021, 11774395, and 11727902),the Strategic Priority Research Program(B)of the Chinese Academy of Sciences (Grant No. XDB30201000),and the Beijing Natural Science Foundation, China (Grant No.4181003).

    猜你喜歡
    興華
    毛焰藝術(shù)風(fēng)格中的自我表達(dá)
    快樂在哪里
    你是最棒的小樹苗
    興華市林湖鄉(xiāng):村企聯(lián)建共走振興路
    Adsorption and rotational barrier for a single azobenzene molecule on Au(111)surface?
    村長外號(hào)叫“老邪”
    攝影作品欣賞
    金沙江文藝(2019年7期)2019-07-29 01:57:06
    書法,何者為要——從沃興華的創(chuàng)作瓶頸談起
    藝術(shù)品(2018年5期)2018-06-29 02:14:58
    馬興華攝影作品欣賞
    金沙江文藝(2017年4期)2017-03-31 07:35:16
    亚洲自拍偷在线| 极品教师在线视频| 少妇熟女欧美另类| 别揉我奶头 嗯啊视频| 干丝袜人妻中文字幕| 亚洲精品中文字幕在线视频 | 又爽又黄无遮挡网站| 在线免费观看不下载黄p国产| 嫩草影院入口| 毛片一级片免费看久久久久| av国产精品久久久久影院| 国产综合精华液| 少妇被粗大猛烈的视频| 成人毛片a级毛片在线播放| 亚洲无线观看免费| 在线看a的网站| 国产 一区精品| 午夜亚洲福利在线播放| 美女国产视频在线观看| 亚洲av国产av综合av卡| 免费观看av网站的网址| 久久久久久久久久久免费av| 国产精品人妻久久久久久| 久久久久久久久久久丰满| 国产淫片久久久久久久久| 水蜜桃什么品种好| 男插女下体视频免费在线播放| 男男h啪啪无遮挡| 深爱激情五月婷婷| 搡老乐熟女国产| 亚洲成人精品中文字幕电影| 黄色配什么色好看| 黄色视频在线播放观看不卡| 在线观看免费高清a一片| 九色成人免费人妻av| 亚洲精品乱码久久久久久按摩| 联通29元200g的流量卡| 精品久久久精品久久久| 国产精品一及| 国产精品国产三级专区第一集| 网址你懂的国产日韩在线| 成人午夜精彩视频在线观看| 在线亚洲精品国产二区图片欧美 | 久久影院123| 亚洲精品影视一区二区三区av| 简卡轻食公司| 熟妇人妻不卡中文字幕| 欧美潮喷喷水| 夫妻性生交免费视频一级片| 亚洲激情五月婷婷啪啪| 一级毛片电影观看| 久久精品久久久久久久性| 欧美高清成人免费视频www| 天天躁夜夜躁狠狠久久av| 亚洲欧洲日产国产| 国产精品伦人一区二区| 白带黄色成豆腐渣| 色吧在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲图色成人| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 久久久久九九精品影院| 精品视频人人做人人爽| 成人毛片60女人毛片免费| 91aial.com中文字幕在线观看| 伊人久久国产一区二区| 在线观看美女被高潮喷水网站| 国产成人免费无遮挡视频| 99久久精品国产国产毛片| 久久6这里有精品| 亚洲高清免费不卡视频| 国产 精品1| 真实男女啪啪啪动态图| 人妻 亚洲 视频| 特级一级黄色大片| 欧美精品人与动牲交sv欧美| 97人妻精品一区二区三区麻豆| 夫妻午夜视频| 国产免费一区二区三区四区乱码| 国产人妻一区二区三区在| 99热6这里只有精品| 国产乱人偷精品视频| 免费看不卡的av| 你懂的网址亚洲精品在线观看| 亚洲自拍偷在线| 精品久久久久久久久av| 亚洲高清免费不卡视频| 少妇熟女欧美另类| 国产色爽女视频免费观看| 色5月婷婷丁香| 亚洲欧美一区二区三区黑人 | 99久久精品国产国产毛片| 婷婷色av中文字幕| 高清欧美精品videossex| 寂寞人妻少妇视频99o| 两个人的视频大全免费| 男的添女的下面高潮视频| 欧美日韩视频精品一区| 国产一区亚洲一区在线观看| 久久99热这里只频精品6学生| 国产片特级美女逼逼视频| 亚洲av不卡在线观看| 国产伦精品一区二区三区四那| 九草在线视频观看| 在线观看av片永久免费下载| 搡女人真爽免费视频火全软件| 网址你懂的国产日韩在线| 午夜福利高清视频| 亚洲av电影在线观看一区二区三区 | 日本av手机在线免费观看| 久热久热在线精品观看| 成人亚洲欧美一区二区av| 久久久久久伊人网av| 久久久色成人| 伦精品一区二区三区| 男女下面进入的视频免费午夜| 六月丁香七月| 欧美一级a爱片免费观看看| 久久精品人妻少妇| 男男h啪啪无遮挡| 丝袜喷水一区| 国产爱豆传媒在线观看| 亚洲精品久久午夜乱码| 欧美成人午夜免费资源| 中文字幕av成人在线电影| 偷拍熟女少妇极品色| 国产精品蜜桃在线观看| av.在线天堂| 国产av不卡久久| 人妻系列 视频| 97超碰精品成人国产| eeuss影院久久| 欧美xxxx黑人xx丫x性爽| 免费黄频网站在线观看国产| 亚洲成人精品中文字幕电影| 国产免费一区二区三区四区乱码| 免费av观看视频| 日韩欧美精品v在线| 亚洲精品影视一区二区三区av| 国产成人a区在线观看| 午夜日本视频在线| 少妇猛男粗大的猛烈进出视频 | 亚洲最大成人av| 亚洲精品中文字幕在线视频 | 国产综合懂色| 亚洲精品久久久久久婷婷小说| 国产av国产精品国产| 国产大屁股一区二区在线视频| 亚洲av日韩在线播放| 欧美精品国产亚洲| 一级黄片播放器| 国产精品一区二区三区四区免费观看| 亚洲av福利一区| 欧美xxxx性猛交bbbb| 麻豆成人av视频| 国内揄拍国产精品人妻在线| 精品人妻熟女av久视频| 大香蕉久久网| 国产av不卡久久| 干丝袜人妻中文字幕| 大陆偷拍与自拍| 大片电影免费在线观看免费| 免费看日本二区| 成人亚洲欧美一区二区av| 大码成人一级视频| 亚洲国产最新在线播放| 热99国产精品久久久久久7| 美女主播在线视频| 国产真实伦视频高清在线观看| 国产国拍精品亚洲av在线观看| 丝袜美腿在线中文| 青春草国产在线视频| 精品久久久噜噜| 内射极品少妇av片p| 在线看a的网站| a级毛片免费高清观看在线播放| 久久精品久久久久久久性| 国产午夜精品一二区理论片| 两个人的视频大全免费| 亚洲国产欧美在线一区| 一级毛片我不卡| 亚洲av不卡在线观看| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 麻豆国产97在线/欧美| 亚洲国产色片| 国产成人a区在线观看| 国产午夜福利久久久久久| 精品一区二区免费观看| 天美传媒精品一区二区| 成年免费大片在线观看| 熟女av电影| 国产精品久久久久久久电影| 偷拍熟女少妇极品色| 国产综合懂色| 日韩伦理黄色片| 亚洲国产色片| 精品国产露脸久久av麻豆| 亚洲最大成人av| 又爽又黄a免费视频| 久久精品人妻少妇| 大香蕉97超碰在线| 99久久九九国产精品国产免费| 亚洲国产欧美在线一区| av线在线观看网站| 黄片无遮挡物在线观看| av女优亚洲男人天堂| 成人美女网站在线观看视频| 少妇的逼水好多| 久久久色成人| 免费黄网站久久成人精品| 日韩电影二区| 欧美三级亚洲精品| 丰满人妻一区二区三区视频av| 日韩欧美精品免费久久| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久人人人人人人| 少妇人妻 视频| 91精品伊人久久大香线蕉| 国产91av在线免费观看| 国产黄片美女视频| www.色视频.com| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 欧美国产精品一级二级三级 | 99九九线精品视频在线观看视频| 国产探花在线观看一区二区| 七月丁香在线播放| 国产乱来视频区| 欧美区成人在线视频| 欧美性感艳星| 看黄色毛片网站| 精品一区二区免费观看| 国产欧美日韩一区二区三区在线 | 99热这里只有精品一区| 亚洲真实伦在线观看| 丰满少妇做爰视频| 亚洲国产欧美人成| 亚洲av在线观看美女高潮| 亚洲av国产av综合av卡| 午夜爱爱视频在线播放| 国产有黄有色有爽视频| 丝袜美腿在线中文| 免费看光身美女| 高清av免费在线| 国产爽快片一区二区三区| 国产乱人视频| 男人爽女人下面视频在线观看| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 99久久中文字幕三级久久日本| 免费看日本二区| 国产乱人视频| 丝袜脚勾引网站| 成人免费观看视频高清| 亚洲色图综合在线观看| 99re6热这里在线精品视频| 国产成人精品婷婷| 国产成人a区在线观看| 视频区图区小说| 亚洲精品第二区| 精品国产露脸久久av麻豆| 久久99热这里只频精品6学生| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 高清毛片免费看| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 精品国产一区二区三区久久久樱花 | 日韩制服骚丝袜av| 成年免费大片在线观看| 神马国产精品三级电影在线观看| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 亚洲精品久久午夜乱码| 国产精品99久久久久久久久| 综合色av麻豆| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 好男人视频免费观看在线| 免费黄频网站在线观看国产| av播播在线观看一区| 丝袜脚勾引网站| av福利片在线观看| 校园人妻丝袜中文字幕| 可以在线观看毛片的网站| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 久久精品熟女亚洲av麻豆精品| 在线观看av片永久免费下载| 国产在视频线精品| 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 日韩一区二区视频免费看| 久久久成人免费电影| 国产精品久久久久久精品古装| 午夜福利高清视频| 熟女人妻精品中文字幕| 永久免费av网站大全| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| 久久6这里有精品| 人人妻人人爽人人添夜夜欢视频 | 国产极品天堂在线| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 欧美+日韩+精品| 国产精品久久久久久久久免| 亚洲精品一二三| 国产精品偷伦视频观看了| 国产综合精华液| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 欧美激情在线99| 在线观看一区二区三区激情| 亚洲精品,欧美精品| 亚洲高清免费不卡视频| 国产欧美日韩精品一区二区| 街头女战士在线观看网站| 亚洲国产最新在线播放| 国产精品国产av在线观看| 亚洲成人精品中文字幕电影| 日韩欧美精品免费久久| 国产精品国产av在线观看| 亚洲欧洲国产日韩| 亚洲精品日本国产第一区| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 亚洲精品日本国产第一区| 最近中文字幕2019免费版| 日日摸夜夜添夜夜爱| 天天一区二区日本电影三级| 女人十人毛片免费观看3o分钟| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 搞女人的毛片| 日本av手机在线免费观看| 91狼人影院| 一级二级三级毛片免费看| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 国产一区有黄有色的免费视频| 精品一区二区免费观看| 观看免费一级毛片| 国产男人的电影天堂91| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 精品人妻一区二区三区麻豆| 亚州av有码| 老师上课跳d突然被开到最大视频| 少妇人妻久久综合中文| 涩涩av久久男人的天堂| 色吧在线观看| 又黄又爽又刺激的免费视频.| 最近最新中文字幕免费大全7| 亚洲天堂国产精品一区在线| 国产精品国产三级国产av玫瑰| 国产精品一二三区在线看| 亚洲性久久影院| 成人二区视频| 色5月婷婷丁香| 亚洲精品成人久久久久久| 国产成人aa在线观看| 精品人妻偷拍中文字幕| 99热6这里只有精品| 日日啪夜夜撸| 久久99热6这里只有精品| 一区二区三区精品91| 99热全是精品| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 精品久久久久久电影网| 国产综合懂色| 国产一区亚洲一区在线观看| 成人一区二区视频在线观看| 日韩强制内射视频| 免费看不卡的av| 久久影院123| 人人妻人人爽人人添夜夜欢视频 | 大话2 男鬼变身卡| 国产精品久久久久久精品电影小说 | 中文字幕av成人在线电影| 亚洲欧美一区二区三区国产| 亚洲一区二区三区欧美精品 | 免费播放大片免费观看视频在线观看| 亚洲精品一区蜜桃| 国产欧美另类精品又又久久亚洲欧美| av专区在线播放| 成人特级av手机在线观看| 欧美高清成人免费视频www| 欧美性猛交╳xxx乱大交人| 亚洲,欧美,日韩| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 久久精品久久精品一区二区三区| 波野结衣二区三区在线| 日本一二三区视频观看| 在线观看av片永久免费下载| 美女高潮的动态| 亚洲av在线观看美女高潮| 久久国产乱子免费精品| 免费黄网站久久成人精品| 精品久久久久久电影网| 欧美一级a爱片免费观看看| 国产男女内射视频| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| 在线精品无人区一区二区三 | 丝瓜视频免费看黄片| 99热网站在线观看| 联通29元200g的流量卡| 听说在线观看完整版免费高清| 99re6热这里在线精品视频| 女人十人毛片免费观看3o分钟| 亚洲成色77777| 男插女下体视频免费在线播放| 三级国产精品欧美在线观看| 狂野欧美白嫩少妇大欣赏| 免费看a级黄色片| 国产v大片淫在线免费观看| 日韩不卡一区二区三区视频在线| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| 国产精品人妻久久久久久| 少妇裸体淫交视频免费看高清| 大香蕉久久网| 国产免费视频播放在线视频| 欧美区成人在线视频| 国产精品嫩草影院av在线观看| 日韩欧美 国产精品| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| 真实男女啪啪啪动态图| 中文精品一卡2卡3卡4更新| 少妇的逼水好多| 黄色怎么调成土黄色| 人人妻人人澡人人爽人人夜夜| 99久久精品国产国产毛片| av网站免费在线观看视频| 国产视频内射| 国产伦精品一区二区三区视频9| 中文字幕人妻熟人妻熟丝袜美| 久久人人爽人人爽人人片va| 人妻一区二区av| 国产av国产精品国产| 99视频精品全部免费 在线| 日本欧美国产在线视频| 免费看a级黄色片| 狠狠精品人妻久久久久久综合| 精品久久久久久电影网| av专区在线播放| 久久人人爽av亚洲精品天堂 | 亚洲精品乱码久久久久久按摩| 欧美性猛交╳xxx乱大交人| 80岁老熟妇乱子伦牲交| 久久97久久精品| 久久久久久久久久久免费av| 久久久久网色| 亚洲欧美日韩无卡精品| 老师上课跳d突然被开到最大视频| 精品久久久久久久久av| 天天一区二区日本电影三级| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 嫩草影院精品99| 综合色av麻豆| 国产日韩欧美亚洲二区| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 欧美xxⅹ黑人| 男插女下体视频免费在线播放| 国产黄片美女视频| 亚洲,一卡二卡三卡| 免费av毛片视频| 日韩一区二区三区影片| 男人舔奶头视频| 下体分泌物呈黄色| 午夜福利网站1000一区二区三区| 国内精品宾馆在线| 成年女人看的毛片在线观看| 午夜福利视频1000在线观看| 国产熟女欧美一区二区| 18禁裸乳无遮挡免费网站照片| 99精国产麻豆久久婷婷| 欧美成人a在线观看| 国产探花极品一区二区| 午夜福利视频精品| 22中文网久久字幕| 国产精品蜜桃在线观看| 中文精品一卡2卡3卡4更新| 伦精品一区二区三区| 一级毛片我不卡| 国产黄色免费在线视频| 伊人久久国产一区二区| 狂野欧美激情性xxxx在线观看| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线| 五月伊人婷婷丁香| 国产探花在线观看一区二区| 69人妻影院| 国产免费福利视频在线观看| 一级av片app| 免费电影在线观看免费观看| 国产精品人妻久久久久久| 亚洲精品影视一区二区三区av| 国内少妇人妻偷人精品xxx网站| 亚洲国产成人一精品久久久| 亚洲av福利一区| 国产探花极品一区二区| 色婷婷久久久亚洲欧美| 婷婷色综合大香蕉| av在线老鸭窝| 18禁在线播放成人免费| 肉色欧美久久久久久久蜜桃 | 国内少妇人妻偷人精品xxx网站| 久久久久久久大尺度免费视频| 97超视频在线观看视频| 欧美人与善性xxx| 禁无遮挡网站| 欧美日韩视频精品一区| 成人综合一区亚洲| 亚洲欧美日韩卡通动漫| 永久免费av网站大全| 中文字幕亚洲精品专区| 大片电影免费在线观看免费| 小蜜桃在线观看免费完整版高清| 美女xxoo啪啪120秒动态图| 日本熟妇午夜| 黄片无遮挡物在线观看| 丝袜美腿在线中文| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 99久久九九国产精品国产免费| av卡一久久| 免费av不卡在线播放| 禁无遮挡网站| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 少妇人妻一区二区三区视频| 狠狠精品人妻久久久久久综合| 久久99热这里只有精品18| av在线老鸭窝| 色哟哟·www| 国产午夜精品一二区理论片| 一级毛片久久久久久久久女| 精品少妇黑人巨大在线播放| 在线观看免费高清a一片| 国产av码专区亚洲av| 毛片女人毛片| 亚洲精品亚洲一区二区| 色视频www国产| 久久精品国产自在天天线| 极品少妇高潮喷水抽搐| av又黄又爽大尺度在线免费看| 久久这里有精品视频免费| 欧美性猛交╳xxx乱大交人| 免费大片黄手机在线观看| 欧美成人一区二区免费高清观看| 国产成人精品久久久久久| 最近的中文字幕免费完整| 欧美日韩在线观看h| 亚洲不卡免费看| 一区二区av电影网| 国产一区有黄有色的免费视频| 69人妻影院| 精品人妻偷拍中文字幕| 日日啪夜夜爽| 欧美性感艳星| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看| 青春草亚洲视频在线观看| 插逼视频在线观看| 最近2019中文字幕mv第一页| 我的女老师完整版在线观看| 中国美白少妇内射xxxbb| 色婷婷久久久亚洲欧美| 一区二区av电影网| 人妻一区二区av| 精品一区二区三区视频在线| 亚洲国产av新网站| 日韩成人伦理影院| 大香蕉97超碰在线| 成人国产麻豆网| 日韩成人伦理影院| 最近最新中文字幕大全电影3| 日本爱情动作片www.在线观看| 22中文网久久字幕| 老师上课跳d突然被开到最大视频| 久久久久久久精品精品| 日韩一本色道免费dvd| 久久久a久久爽久久v久久| 国精品久久久久久国模美| 国产乱人视频| 真实男女啪啪啪动态图| 国产免费视频播放在线视频| 久久99精品国语久久久| 日韩电影二区| 午夜老司机福利剧场| 日韩欧美精品v在线| 99久久精品一区二区三区| 男插女下体视频免费在线播放| 26uuu在线亚洲综合色| 国产精品国产av在线观看| 热99国产精品久久久久久7| 亚洲av成人精品一二三区| 尾随美女入室|