• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermoacoustic assessment of hematocrit changes in human forearms?

    2021-09-28 02:17:58XueWang王雪RuiZhao趙芮YiTongPeng彭亦童ZiHuiChi遲子惠ZhuZheng鄭鑄EnLi李恩LinHuang黃林andHuaBeiJiang蔣華北
    Chinese Physics B 2021年9期
    關(guān)鍵詞:王雪華北

    Xue Wang(王雪),Rui Zhao(趙芮),Yi-Tong Peng(彭亦童),Zi-Hui Chi(遲子惠),Zhu Zheng(鄭鑄),En Li(李恩),Lin Huang(黃林),?,and Hua-Bei Jiang(蔣華北)

    1School of Electronic Science and Engineering(National Exemplary School of Microelectronics),University of Electronic Science and Technology of China,Chengdu 611731,China

    2Center for Information in Medicine,University of Electronic and Technology of China,Chengdu 611731,China

    3Department of Medical Engineering,University of South Florida,Tampa FL33620,USA

    4School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    Keywords:thermoacoustic imaging,hematocrit change,human forearm

    1.Introduction

    Microwave-induced thermoacoustic imaging(TAI)is an emerging noninvasive and nonionizing imaging modality,combining high contrast of microwave imaging and high resolution of ultrasound imaging.[1–7]When tissues are irradiated by microwave pulses,tissues with a higher dielectric loss absorb more energy and thus create stronger thermoacoustic(TA)waves than other tissues;this provides a high microwave contrast,and the TA waves are then ultrasonically detected in high resolution.[8]TAI has been thus far applied for various biomedical applications including detection of breast,[9–11]kidney,[12]prostate[13]cancers,imaging of joint,[3,14]brain[4,15,16],thyroid,[17]blood vessels,[18,19]and functional imaging.[19]

    We have previously shown that blood vessels can be anatomically imaged by TAI.[16]However,the ability of TAI for imaging changes of blood content,like hematocrit(Hct)value,in blood vessels or other soft tissues such as muscle has not been documented,to the best of our knowledge.It is well-known that blood is a suspension composed of blood cells with low conductivity and plasma with high conductivity.[20,21]Hematocrit refers to the proportion of red blood cells(RBCs)in the volume of full blood.An increase in the Hct value is closely related to the reduced venous return,[22]increased blood viscosity,[23]and increased platelet adhesiveness.[24]Related studies have shown that subjects whose Hct value are higher than the normal range of the population,such as patients with primary or secondary polycythemia,are susceptible to arterial cardiovascular disease and venous thromboembolism.[25–29]Hct is also associated with an increased risk of pre-hypertension and all-cause death in the general population.[30,31]Therefore,monitoring the changes in the Hct value of blood can offer early insight into the occurrence of these diseases.

    Manual microhematocrit method based on the visual counting of the blood cells[32]and the method based an automatic hematology analyzer[33]are the current tools used for Hct determination in clinics.While the former is the gold standard,the Hct value determined by this method is often overestimated due to the trap of plasma in erythrocytes.[34]It is time-consuming to remove the trap of plasma.The automatic method is considerably faster to complete the counting of blood cells;however,it cannot accurately detect specimens with distributional or morphological abnormalities.[35]Most importantly,both methods require blood samples taken from subjects for the in vitro measurement,and cannot be used for in vivo determination of changes of Hct values.[36–38]

    Here,in this study,we demonstrate the ability of TAI to monitor changes in Hct both in vitro from the blood samples and in vivo from the blood vessels and muscle tissues in human forearms during vascular occlusion stimulation.

    2.Materials and methods

    2.1.System description

    The TAI system used is schematically shown in Fig.1.A custom-designed 3 GHz magnetron generator(peak power:70 kW,pulse width:750 ns and repetition rate:50 Hz),coupled with a handheld dipole antenna(aperture size:60×60 mm2)[39]via a semi-rigid coaxial cable(1.5-meter-long with 1.2 dB insertion loss),was used as the excitation source.The TA signals were detected by a 128-element linear array transducer(8.5 MHz center frequency,SH7L38,SASET.Inc.,China),and then amplified by a home-made 128-channel amplifier and averaged for 50 times to achieve a good signaland-noise ratio by a 64-channel acquisition system with two 32-channel data acquisition cards(5752B,NI.Inc.,USA),requiring a data acquisition time of~2 s.For the TA image reconstruction,a back-projection algorithm in MATLAB was used.[40]A B-mode ultrasound imaging platform(iNSIGHT-37C,SASET.Inc.,China)was included in this system,which used the same 128-element linear array transducer,allowing the TA and ultrasound(US)images to be co-registered precisely.The purpose of US imaging was to allow the objects of interest(i.e.,the muscle,vein,and artery in the forearm)for TAI to be identified easily.For high-efficiency delivery of both the microwave and US signals,the forearm was completely immersed in mineral oil(Fig.1).According to our previous study,[39]the maximum average microwave power density at the surface of the handheld dipole antenna was 8.6 mW/cm2,when a 10 Hz repetition frequency was used.However,the microwave power density exciting the targets in this study was far below the surface power density as estimated above,and also below the IEEE standard for safety level(20 mW/cm2),[41]because the microwaves would spread out drastically due to diffraction.Specifically,it is known from Ref.[39]that the attenuation factor for the electric field propagation from the handheld dipole antenna was 1/r2.In this study,the distance between the target and the surface of the antenna was about 4 cm,and the coaxial cable had an insertion loss of 1.2 dB.Therefore,the maximum microwave energy density at the target surface was about 2.0 mW/cm2[8.6×10(?0.12)×(1/42)×5=2.0](in the case of 50 Hz repetition rate).

    Fig.1.Schematic of the TAI and US systems.

    2.2.In vitro blood samples

    The study protocol for human subjects used in this research was approved by the Ethics Committee of the University of Electronic Science and Technology of China.All the subjects were healthy,and such statuses were verified by their medical history and physical examinations.

    The in vitro blood samples of three healthy volunteers(A,B,and C;average age:24)were taken from the antecubital vein in the morning after an overnight fasting period and immediately loaded into vacuum blood collection tubes containing the anticoagulant EDTAK2.After being turned upside down slightly and mixed evenly,the plasma and RBCs were separated immediately by centrifuging for 15 minutes at 3000 rpm.Six blood samples with Hct values of 0%(plasma),20%,40%,60%,80%,and 100% were then configured using sterile pipettes for each subject.The electrical conductivity of the blood samples from the three subjects was measured at 2.4 GHz and room temperature 25°C with an openended coaxial resonant probe based on the method reported previously.[42,43]In addition,these blood samples were loaded into transparent plastic tubes(3 mm in diameter)and were imaged using the TAI system under the same experimental conditions.

    2.3.In vivo vascular occlusion stimulation

    A total of 7 healthy volunteers with an average age of 24 were recruited for the in vivo experiments.The radial artery,cephalic vein,and lateral brachioradialis of the left forearm were selected as the objects of interest and were imaged along the transverse plane with both TAI and US.

    Once the forearm was placed in position,a vascular stimulation was then induced by pressing the upper arm with an air cuff above the elbow,aiming to change the Hct value in the blood vessels and muscle tissues by blocking the venous return/blood flow to varying degrees.[22]The stimulation consisted of five stages,as shown in Fig.2.First,the volunteer was at a resting state,and a baseline measurement was taken for 1 minute.Second,the pressure cuff was inflated to 80–100 mmHg to cause venous occlusion.The pressure was held for 1 minute and then released quickly.In the third stage,the subject rested for 1 minute.In the fourth phase,a 160–180 mmHg was applied to occlude the arm arteries.After 1 minute,the pressure was released.Finally,the subject was back to the resting state and imaged for 1 minute.The five-stage protocol was applied four times to each volunteer to ensure the repeatability of the experiment.In our experiments,the pressure varied according to the systolic blood pressure measured on the arm of each volunteer.During the imaging procedure,the subjects were constantly asked about if there were any unpleasant sensations.No adverse reactions were observed in this study.

    Fig.2.Five-stage stimulation protocol used for in vivo TAI.RS:resting state;VO:venous occlusion;AO:arterial occlusion.

    3.Results

    3.1.Conductivity and TAI for in vitro blood samples

    Figure 3 shows the TA image and electrical conductivity obtained for the in vitro blood samples.In the TA image[Fig.3(a)],the area inside the tube was selected as the TA signal area(red circle),and an adjacent region at the same depth of the tube was selected as the background signal area(green frame).The image contrast was defined as the ratio of the average TA amplitude of the signal area to the average TA amplitude of the background area,and the selection of background region remained unchanged for all the samples.This contrast was used to represent the relative change of the TA signal in different blood samples for a constant background.Figure 3(b)shows the averaged contrast and electrical conductivity of the blood samples for volunteers A,B and C(each blood sample was measured for three times and the results shown were averaged using the three measurements).

    From Fig.3(b),we can immediately see that the conductivity of the blood sample almost linearly decreases as the Hct value increases,which is consistent with the findings reported in the literatures.[20,21,44]The decreased electrical conductivity of blood sample results in a corresponding decrease in microwave absorption characteristics,and thus decreased contrast,i.e.,the contrast also linearly decreases with the increase of Hct value[Fig.3(b)].These results show that microwave absorption characteristics in the blood is different if the Hct value in the blood is different,enabling us to monitor the changes of Hct values in the blood using TAI.

    Fig.3.In vitro experiment using human venous blood with different hematocrit(Hct)values.(a)A representative TA image of blood-containing tube with 20%Hct.(b)Quantitative plots of in the blood contrast and conductivity vs.hematocrit value for the three volunteers(A,B,and C).The red circle and dashed green square in(a),respectively,represent the target and background regions that the TA signals were sampled area.

    3.2.TAI monitor during in vivo vascular occlusion stimulation

    Figure 4 shows the cross-sectional color Doppler US[Fig.4(a)]and TA[Fig.4(b)]images,and the overlaid TA/US image[Fig.4(c)]of the forearm for a representative volunteer at the resting state.By examining the overlaid TA/US image[Fig.4(c)],the objects of interest are clearly detected,i.e.,the positions of the radial artery and the cephalic vein(red and green circles,respectively),and the brachioradialis muscle(orange rectangle).In the TA image[Fig.4(b)],the full width at half maximum(FWHM)of TA signal along the red dotted line crossing the vein was estimated to be 4.1 mm as shown in Fig.4(d),which matches well with as a value of 4.0 mm measured by color Doppler US image for the diameter of the vein[white dotted line crossing the vein in Fig.4(a)].

    Figure 5 shows the averaged TA signals(relative to a baseline measurement before the stimulation)over time in the radial artery,cephalic vein,and brachioradialis for all the seven volunteers during the five-stage stimulation,where the gray lines represent the TA signals for each volunteer,while the red,green and orange lines are the TA signals averaged over all seven volunteers with standard deviation(indicated with blue dotted lines)in the artery[Fig.5(a)],vein[Fig.5(b)]and muscle[Fig.5(c)],respectively.

    Fig.4.In vivo cross-sectional TA and US images of the left forearm for one of the seven volunteers.(a)the color Doppler US image;(b)the TA image;(c)the overlaid TA/US image.The green and red circles and the orange rectangle,respectively,indicate the positions of the cephalic vein,radial artery,and brachioradialis muscle;(d)the normalized TA profile along a red dashed cut line through the center of cephalic vein in(b).

    From Fig.5,we see that the responses of the blood vessels/muscle tissues to venous and arterial occlusion are consistent for all the volunteers.During the VO or AO stage,the radial artery at the distal heart of the forearm was in an ischemic condition because of its restricted blood flow.As a result,its Hct value decreased and the corresponding electrical conductivity increased,[22]leading to an increase in the amplitude of TA signal in the artery.We note that this increase in the TA signal was larger during the AO stage with increased occlusion pressure.After the pressure was released,the TA signal returned to the baseline level.During the VO or AO stage,the cephalic vein at the distal heart of the forearm was in a congestion state because of its retarded backflow.As a result,the Hct value increased and the corresponding electrical conductivity decreased,leading to a decrease in the amplitude of TA signal in the vein.Similar to the artery,this decrease was larger during the AO stage because of the higher occlusion pressure applied.After the pressure was released,the TA signal returned to the baseline level.During the VO or AO stage,muscle tissue was in ischemia,and thus the Hct changes vs.TA signal variation were similar to that in the artery.

    4.Discussion

    Since the goal of this study was to demonstrate the possibility of thermoacoustic assessment of Hct changes,we did not attempt to conduct an in-depth study to quantify parameters such as the minimal Hct change that TA can distinguish.However,the TAI results of in vitro venous blood(Fig.3)showed that TA can distinguish at least 20% of Hct change.Moreover,in the TAI results of in vivo occlusion stimulation(Fig.5),the TA signal change of the vein relative to the resting state was at least~15%.According to Refs.[21,38],the Hct of healthy human whole blood is about 40%,and so the Hct value of venous blood in resting stage[Fig.5(b)]could be estimated as about 40%.For in vitro venous blood TAI experiments(Fig.3),when Hct was 40%,the contrast was 12.8.The contrast value was 10.88 after a 15% reduction[12.8×(1?0.15)=10.88].In Fig.3(b),Hct value was about 80% given this contrast value of 10.88.Hence,we can conclude that the Hct change of the vein in the occlusion stimulation measured by TAI was at least greater than 20%(80%–40%>20%).

    Fig.5.Averaged relative TA signals from(a)the artery,(b)the vein and(c)the muscle for the seven human subjects during the left forearm occlusion.Gray lines:TA signals for each individual subject;red,green or orange line:averaged TA signals over seven subjects;blue dotted lines:the standard deviation for the averaged TA signals over seven subjects.

    According to Ref.[19],plasma mainly contains eight kinds of polar molecules including Alb,Glo,Nacl,Fib,Glu,Gly,Lys and Arg,and the sum of Alb,Glo,Nacl and Fib accounted for 99.68%of all the polar molecules.It is also indicated that the higher the concentration of polar molecules in blood,the stronger the TA signal intensity.Hct value refers to the proportion of plasma and red blood cells(RBCs)relative to whole blood,i.e.,Hct=0% means that the blood sample is just plasma,while Hct=100% means that the sample has pure RBCs.In our study,when we changed the proportion of plasma in blood,we automatically changed the proportion of polar molecules in blood proportionally.From the in vitro and in vivo TA experiments,we have observed that the Hct value decreased since both the proportions of plasma and polar molecules increased,and that the intensity of TA signals increased.Thus,this finding is complementary to the conclusion reported in the above mentioned reference,and confirmed each other.The conclusion is that the polar molecules in blood do not affect the reliability of the TA experiments in this study.

    However,the current study has some limitations.The conductivity in vitro blood samples was measured at 2.4 GHz,which was slightly different from the frequency used for TAI.However,according to a previous study by Wolf et al.and an open data site“Calculation of the Dielectric Properties of Body Tissues in the frequency range 10 Hz–100 GHz”,[21,45]the dielectric properties of blood at 2.4 GHz(σ=2.50 S/m,εr=58.35)and 3.0 GHz(σ=3.05 S/m,εr=57.35)are very close.In addition,Wolf et al.showed that from 10 kHz to 10 GHz,as the Hct value increased,the conductivity showed a decreasing trend,which was consistent with the conductivity results from our in vitro blood experiment.So the conductivity results measured at 2.4 GHz holds a significant reference value and should not affect our observation on the change of Hct value.In addition,the temporal resolution of the system was limited,which can be improved using a microwave source with a higher repetition rate.The ultrasonic linear array with a center frequency of 8.5 MHz was selected to receive both ultrasonic and TA signals,which was not optimal for TAI performance because most of the TA signals were below 8.5 MHz,as shown in Fig.6.It is worth noting that an x-shaped artifact in the TA image shown in Fig.3(a)is seen,which was caused by the use of a linear array for receiving TA signals and the use of a traditional back-projection algorithm for image reconstruction.However,the impact of this effect can be minimized using a circular array or an improved image reconstruction algorithm.In the future research,we will focus on improving temporal resolution and designing a better system to balance the difference between the ultrasonic and TA signal frequencies.

    Fig.6.The frequency spectrum of TA signals given in Fig.4(b).

    5.Conclusion

    In summary,we have presented evidence that TAI can be used to in vivo image the Hct changes in blood vessels and muscles in the forearm during a vascular occlusion simulation.The results obtained have shown a strong correlation between the changes in TA signal/conductivity and hematocrit/blood flow,suggesting the potential of TAI as a new tool for functionally visualizing human blood.

    猜你喜歡
    王雪華北
    走一步,再走一步
    王雪、郁子琦、陳天琪、馬銘哲作品
    Temperature-induced phase transition of two-dimensional semiconductor GaTe*
    華北玉米市場(chǎng)將進(jìn)入筑底期
    例談數(shù)形結(jié)合法的廣泛應(yīng)用
    祖國(guó)(2018年3期)2018-03-26 07:40:36
    吃貨的愛情
    女士(2017年8期)2017-08-08 18:44:31
    Literature Review on Context Translation Mode
    Review on Register Theory and Its Application in Translation
    Analysis of Characters Shaping in Ring Lardner’s Haircut
    華北明珠
    99国产精品一区二区蜜桃av| 日日干狠狠操夜夜爽| 精品人妻偷拍中文字幕| 欧美成人午夜免费资源| 成人性生交大片免费视频hd| 国产精品一及| 国产亚洲5aaaaa淫片| 有码 亚洲区| 亚洲av日韩在线播放| 欧美+日韩+精品| 免费观看精品视频网站| 国产精品久久电影中文字幕| 日本免费a在线| 成年女人永久免费观看视频| 久久99蜜桃精品久久| 又粗又爽又猛毛片免费看| 日韩亚洲欧美综合| 搡老妇女老女人老熟妇| 看非洲黑人一级黄片| 日本免费一区二区三区高清不卡| 国产精品一区二区性色av| 中国美白少妇内射xxxbb| 日韩欧美在线乱码| 天堂av国产一区二区熟女人妻| 久热久热在线精品观看| 晚上一个人看的免费电影| 成人性生交大片免费视频hd| a级毛色黄片| 免费看av在线观看网站| 超碰97精品在线观看| 日韩一区二区三区影片| 久久精品夜色国产| 1024手机看黄色片| 国产精品嫩草影院av在线观看| 久久久色成人| 欧美成人a在线观看| 免费看美女性在线毛片视频| 免费观看性生交大片5| 一级毛片电影观看 | 菩萨蛮人人尽说江南好唐韦庄 | 我要看日韩黄色一级片| 久久人人爽人人爽人人片va| 亚洲自偷自拍三级| 国产精品一及| 国产高清视频在线观看网站| 一级毛片电影观看 | 久久精品国产亚洲av天美| 蜜桃久久精品国产亚洲av| 国产精品久久久久久久久免| 免费在线观看成人毛片| 欧美3d第一页| 亚洲国产成人一精品久久久| 少妇熟女欧美另类| 亚洲人与动物交配视频| 亚洲人与动物交配视频| 亚洲人成网站在线播| 一区二区三区乱码不卡18| 一级二级三级毛片免费看| 狠狠狠狠99中文字幕| 美女xxoo啪啪120秒动态图| 观看美女的网站| 丰满人妻一区二区三区视频av| 亚洲av福利一区| 乱人视频在线观看| 一边亲一边摸免费视频| 亚洲精品国产成人久久av| 国产国拍精品亚洲av在线观看| 国产黄a三级三级三级人| 亚洲成人中文字幕在线播放| 少妇丰满av| 中文精品一卡2卡3卡4更新| 亚洲熟妇中文字幕五十中出| 亚洲熟妇中文字幕五十中出| 久久久久久大精品| 岛国在线免费视频观看| 久久精品久久精品一区二区三区| 激情 狠狠 欧美| 噜噜噜噜噜久久久久久91| 久久精品久久精品一区二区三区| 亚洲最大成人手机在线| 亚洲国产最新在线播放| 一边摸一边抽搐一进一小说| 中文乱码字字幕精品一区二区三区 | 亚洲国产日韩欧美精品在线观看| 99热这里只有是精品50| 亚洲av中文字字幕乱码综合| 国产精品乱码一区二三区的特点| 国产伦在线观看视频一区| 亚洲色图av天堂| 亚洲经典国产精华液单| 日本黄大片高清| 尾随美女入室| 欧美一级a爱片免费观看看| 免费黄色在线免费观看| 亚洲人成网站在线播| 久久久欧美国产精品| 波多野结衣巨乳人妻| 久久久欧美国产精品| 中国美白少妇内射xxxbb| .国产精品久久| 真实男女啪啪啪动态图| 亚洲欧美精品综合久久99| 色视频www国产| 99久久人妻综合| 99热这里只有是精品50| 国产精品电影一区二区三区| 国产成人a区在线观看| 国产一区有黄有色的免费视频 | 久久久久九九精品影院| 国产淫片久久久久久久久| 午夜免费激情av| 人妻系列 视频| 国产单亲对白刺激| 国产91av在线免费观看| 成人一区二区视频在线观看| 久久久国产成人免费| 国产一区二区在线av高清观看| 欧美性感艳星| 大香蕉97超碰在线| 一个人免费在线观看电影| 两个人视频免费观看高清| 51国产日韩欧美| 天堂网av新在线| www.av在线官网国产| 三级经典国产精品| 小说图片视频综合网站| 2022亚洲国产成人精品| 久久99精品国语久久久| 日本色播在线视频| 国产精品一及| 天堂√8在线中文| 国产av不卡久久| 我要搜黄色片| 日韩 亚洲 欧美在线| 国产乱人偷精品视频| 日本欧美国产在线视频| 国产精品一区www在线观看| 国产中年淑女户外野战色| 国产精品久久久久久久久免| 欧美极品一区二区三区四区| 中文在线观看免费www的网站| 免费人成在线观看视频色| a级一级毛片免费在线观看| 伦精品一区二区三区| 国产一级毛片七仙女欲春2| 人人妻人人澡欧美一区二区| 国产精品福利在线免费观看| 亚洲av男天堂| 18禁在线播放成人免费| 国产亚洲最大av| 综合色丁香网| 欧美色视频一区免费| 国产又黄又爽又无遮挡在线| 欧美激情国产日韩精品一区| 黄色日韩在线| 亚洲欧美日韩无卡精品| 我的女老师完整版在线观看| 久久久久久国产a免费观看| 六月丁香七月| 欧美色视频一区免费| 国产在线一区二区三区精 | 熟妇人妻久久中文字幕3abv| 在线观看66精品国产| 成人毛片a级毛片在线播放| 我的老师免费观看完整版| 国产精品国产三级专区第一集| www.色视频.com| 视频中文字幕在线观看| 成人午夜高清在线视频| 国产亚洲精品久久久com| 男人狂女人下面高潮的视频| 亚洲欧美精品综合久久99| 啦啦啦观看免费观看视频高清| 亚洲在久久综合| 大话2 男鬼变身卡| 搡女人真爽免费视频火全软件| 中文字幕熟女人妻在线| 亚洲最大成人手机在线| 老师上课跳d突然被开到最大视频| 国产在线男女| 免费av不卡在线播放| 国产三级在线视频| 淫秽高清视频在线观看| 亚洲最大成人手机在线| 亚洲美女搞黄在线观看| 人妻制服诱惑在线中文字幕| 2022亚洲国产成人精品| 国产亚洲最大av| 午夜老司机福利剧场| 国产91av在线免费观看| 久久亚洲国产成人精品v| 欧美区成人在线视频| 久久久成人免费电影| 亚洲av成人av| 日本午夜av视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 又粗又硬又长又爽又黄的视频| 少妇裸体淫交视频免费看高清| 亚洲欧美一区二区三区国产| 又黄又爽又刺激的免费视频.| www.av在线官网国产| 一级毛片我不卡| 国产片特级美女逼逼视频| av黄色大香蕉| 亚洲经典国产精华液单| 只有这里有精品99| 婷婷六月久久综合丁香| 免费看美女性在线毛片视频| 中文字幕精品亚洲无线码一区| 国产av一区在线观看免费| 国产成人freesex在线| 天天躁夜夜躁狠狠久久av| 菩萨蛮人人尽说江南好唐韦庄 | 久久久色成人| 一卡2卡三卡四卡精品乱码亚洲| 免费观看精品视频网站| 三级经典国产精品| 深夜a级毛片| 激情 狠狠 欧美| 欧美xxxx性猛交bbbb| 日本一本二区三区精品| 九草在线视频观看| 人人妻人人澡欧美一区二区| 美女xxoo啪啪120秒动态图| 亚洲四区av| 欧美极品一区二区三区四区| 一个人看视频在线观看www免费| 成人毛片60女人毛片免费| 国产国拍精品亚洲av在线观看| 国产淫片久久久久久久久| 最近最新中文字幕大全电影3| 一个人看视频在线观看www免费| 男女啪啪激烈高潮av片| 变态另类丝袜制服| 99久国产av精品国产电影| 又爽又黄a免费视频| 国语自产精品视频在线第100页| 国内少妇人妻偷人精品xxx网站| 久久精品国产自在天天线| 嫩草影院入口| 久久人妻av系列| 人妻制服诱惑在线中文字幕| 国产三级在线视频| 99在线人妻在线中文字幕| 能在线免费观看的黄片| 国产探花在线观看一区二区| 国产av码专区亚洲av| 日本与韩国留学比较| 国产高清国产精品国产三级 | 免费观看的影片在线观看| 国产单亲对白刺激| 人人妻人人看人人澡| 天堂中文最新版在线下载 | 男人的好看免费观看在线视频| 男女那种视频在线观看| 国产精品电影一区二区三区| 天堂中文最新版在线下载 | av在线亚洲专区| 国内揄拍国产精品人妻在线| 亚洲国产欧美人成| 亚洲国产精品sss在线观看| 精品人妻偷拍中文字幕| 国产精品综合久久久久久久免费| 白带黄色成豆腐渣| www.av在线官网国产| 少妇熟女aⅴ在线视频| 在线天堂最新版资源| 亚洲精品乱码久久久久久按摩| 日韩欧美精品v在线| 老师上课跳d突然被开到最大视频| 国产精品.久久久| 日韩成人伦理影院| 人人妻人人澡人人爽人人夜夜 | 亚洲aⅴ乱码一区二区在线播放| 男人的好看免费观看在线视频| 精品人妻熟女av久视频| 一级av片app| 精品久久久噜噜| 中国美白少妇内射xxxbb| 黄色日韩在线| 汤姆久久久久久久影院中文字幕 | 国产激情偷乱视频一区二区| 尾随美女入室| 精品少妇黑人巨大在线播放 | 国产高清国产精品国产三级 | 久久久久久久午夜电影| 青青草视频在线视频观看| 亚洲最大成人手机在线| 狂野欧美白嫩少妇大欣赏| 亚洲一区高清亚洲精品| 亚洲久久久久久中文字幕| 免费一级毛片在线播放高清视频| 看十八女毛片水多多多| 永久网站在线| 亚洲自拍偷在线| 搡女人真爽免费视频火全软件| 国产一区二区亚洲精品在线观看| 日本免费a在线| 美女cb高潮喷水在线观看| 国产乱来视频区| 观看免费一级毛片| 看十八女毛片水多多多| 国产精品综合久久久久久久免费| 成人国产麻豆网| 欧美一区二区国产精品久久精品| 一区二区三区免费毛片| 亚洲国产精品成人久久小说| 韩国高清视频一区二区三区| 午夜久久久久精精品| 熟妇人妻久久中文字幕3abv| 日本黄大片高清| 哪个播放器可以免费观看大片| 亚洲国产精品专区欧美| 麻豆国产97在线/欧美| 一本一本综合久久| 九九爱精品视频在线观看| 国产欧美日韩精品一区二区| 九草在线视频观看| 国产av在哪里看| 长腿黑丝高跟| 国语对白做爰xxxⅹ性视频网站| 精品99又大又爽又粗少妇毛片| 中文资源天堂在线| 精品人妻偷拍中文字幕| 天堂√8在线中文| 在线免费观看不下载黄p国产| 秋霞伦理黄片| 久久精品人妻少妇| 久久久成人免费电影| 日韩精品有码人妻一区| 色综合站精品国产| 秋霞在线观看毛片| 亚洲在久久综合| 色噜噜av男人的天堂激情| 欧美zozozo另类| 51国产日韩欧美| 国产精品电影一区二区三区| 国产成人精品久久久久久| 国产一区二区在线观看日韩| 免费看美女性在线毛片视频| 国产单亲对白刺激| av在线亚洲专区| 三级国产精品欧美在线观看| 亚洲真实伦在线观看| 国内揄拍国产精品人妻在线| 少妇的逼好多水| 国产精华一区二区三区| 国产v大片淫在线免费观看| 国产在线男女| 婷婷色综合大香蕉| av国产久精品久网站免费入址| 成人二区视频| 成人亚洲欧美一区二区av| 久久精品久久久久久噜噜老黄 | 别揉我奶头 嗯啊视频| 国产精品.久久久| 男人舔女人下体高潮全视频| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 日本一本二区三区精品| 亚洲成色77777| 看非洲黑人一级黄片| 99国产精品一区二区蜜桃av| 女的被弄到高潮叫床怎么办| 天天一区二区日本电影三级| 久久这里只有精品中国| 国产精品久久久久久av不卡| 老司机福利观看| 久久久久免费精品人妻一区二区| 亚洲乱码一区二区免费版| 乱人视频在线观看| 亚洲人与动物交配视频| 夜夜爽夜夜爽视频| 欧美三级亚洲精品| 久久久久久久久大av| 丝袜美腿在线中文| 干丝袜人妻中文字幕| 国产精品99久久久久久久久| 亚洲av中文av极速乱| 七月丁香在线播放| 禁无遮挡网站| 成人欧美大片| 边亲边吃奶的免费视频| 国产av不卡久久| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 人体艺术视频欧美日本| 久久久久久伊人网av| 两个人视频免费观看高清| 啦啦啦啦在线视频资源| 内射极品少妇av片p| 久久久久精品久久久久真实原创| 天天躁日日操中文字幕| 欧美另类亚洲清纯唯美| 国产成人一区二区在线| 日本午夜av视频| 超碰av人人做人人爽久久| 午夜激情欧美在线| 欧美日本视频| 日日啪夜夜撸| 亚洲最大成人av| 建设人人有责人人尽责人人享有的 | 亚洲欧美清纯卡通| 国产高清三级在线| 精品熟女少妇av免费看| 久久婷婷人人爽人人干人人爱| 色播亚洲综合网| 黄色欧美视频在线观看| 国产午夜福利久久久久久| 亚洲综合色惰| 简卡轻食公司| 少妇熟女aⅴ在线视频| 99久久精品热视频| 99久久无色码亚洲精品果冻| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 亚洲av电影在线观看一区二区三区 | 国产人妻一区二区三区在| 成人午夜精彩视频在线观看| 美女国产视频在线观看| 成人二区视频| 在线观看av片永久免费下载| 亚洲五月天丁香| 99热这里只有是精品在线观看| 国产精品精品国产色婷婷| av黄色大香蕉| 中文天堂在线官网| 午夜福利在线观看吧| 欧美高清成人免费视频www| 最近最新中文字幕免费大全7| 三级国产精品片| 夫妻性生交免费视频一级片| 久久综合国产亚洲精品| 欧美97在线视频| 久久精品国产亚洲av涩爱| 亚洲精品乱码久久久v下载方式| 国产人妻一区二区三区在| av国产久精品久网站免费入址| 欧美性猛交╳xxx乱大交人| 久久久久久国产a免费观看| 爱豆传媒免费全集在线观看| 欧美日韩精品成人综合77777| 国产黄a三级三级三级人| 午夜激情福利司机影院| 国产黄片美女视频| 国产精品日韩av在线免费观看| 蜜桃亚洲精品一区二区三区| 老司机影院毛片| 99九九线精品视频在线观看视频| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线 | 久久精品91蜜桃| 亚洲精品亚洲一区二区| 午夜老司机福利剧场| 国产午夜精品论理片| 国产亚洲午夜精品一区二区久久 | 国产视频首页在线观看| 久久久a久久爽久久v久久| 男女下面进入的视频免费午夜| 三级国产精品片| 精品一区二区三区人妻视频| 免费搜索国产男女视频| 高清视频免费观看一区二区 | av在线天堂中文字幕| 成人综合一区亚洲| 婷婷六月久久综合丁香| 女人被狂操c到高潮| 男人舔奶头视频| 水蜜桃什么品种好| 欧美三级亚洲精品| 一边摸一边抽搐一进一小说| 九草在线视频观看| 综合色丁香网| 欧美高清成人免费视频www| 少妇的逼好多水| 亚洲人成网站高清观看| 国产成人91sexporn| 亚洲国产成人一精品久久久| 2022亚洲国产成人精品| 精品一区二区三区视频在线| 插逼视频在线观看| 岛国在线免费视频观看| 高清视频免费观看一区二区 | 亚洲国产精品成人综合色| 久久亚洲国产成人精品v| 亚洲国产欧美人成| 精品久久久噜噜| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 男人舔奶头视频| 亚洲成人久久爱视频| 国产免费福利视频在线观看| 大香蕉97超碰在线| 美女脱内裤让男人舔精品视频| 久久午夜福利片| 精品酒店卫生间| 亚洲av熟女| 欧美不卡视频在线免费观看| 免费观看人在逋| 中国美白少妇内射xxxbb| 国产成人福利小说| 久久久精品大字幕| 日韩,欧美,国产一区二区三区 | 久久久精品大字幕| 亚洲精品乱久久久久久| 国产在线一区二区三区精 | 美女内射精品一级片tv| 久久久久久久久久久免费av| 我要搜黄色片| 久久久久免费精品人妻一区二区| 淫秽高清视频在线观看| 青春草视频在线免费观看| 亚洲自偷自拍三级| 久久久精品大字幕| 亚洲18禁久久av| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 国产乱人偷精品视频| 久久这里只有精品中国| 国产久久久一区二区三区| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| av免费观看日本| 成人二区视频| 蜜臀久久99精品久久宅男| 三级毛片av免费| 久久久亚洲精品成人影院| 51国产日韩欧美| 男的添女的下面高潮视频| 在线免费十八禁| 亚洲一区高清亚洲精品| 少妇人妻一区二区三区视频| 中文欧美无线码| 国产亚洲一区二区精品| 人人妻人人澡欧美一区二区| 少妇人妻精品综合一区二区| 亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 久久久午夜欧美精品| 日韩一区二区三区影片| 久久欧美精品欧美久久欧美| 熟女人妻精品中文字幕| 午夜福利高清视频| 精品一区二区三区视频在线| 国产高潮美女av| 日韩高清综合在线| 欧美日韩一区二区视频在线观看视频在线 | 禁无遮挡网站| 免费观看在线日韩| 国产片特级美女逼逼视频| 一区二区三区高清视频在线| 国产淫片久久久久久久久| 日本黄大片高清| 成人性生交大片免费视频hd| 国产女主播在线喷水免费视频网站 | 国产亚洲午夜精品一区二区久久 | 国产成人a∨麻豆精品| 国产白丝娇喘喷水9色精品| 美女内射精品一级片tv| 色网站视频免费| 男插女下体视频免费在线播放| 成年女人看的毛片在线观看| 久久久国产成人免费| 高清午夜精品一区二区三区| 久久久久九九精品影院| 国产精品一区二区性色av| 国产片特级美女逼逼视频| 国产乱人视频| 三级国产精品片| 欧美日韩在线观看h| 男人狂女人下面高潮的视频| 色噜噜av男人的天堂激情| 又爽又黄a免费视频| АⅤ资源中文在线天堂| 日韩一区二区视频免费看| 国产视频首页在线观看| 日日摸夜夜添夜夜添av毛片| 18禁在线播放成人免费| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av涩爱| 91精品伊人久久大香线蕉| 在线a可以看的网站| 2021少妇久久久久久久久久久| 两个人的视频大全免费| 青春草国产在线视频| 3wmmmm亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 久久久久久久久久黄片| 亚洲在线观看片| 嫩草影院精品99| 久久鲁丝午夜福利片| 欧美成人一区二区免费高清观看| 亚洲国产高清在线一区二区三| 久久久久网色| 国产三级中文精品| 特大巨黑吊av在线直播| 亚洲精品日韩av片在线观看| 99热6这里只有精品| 边亲边吃奶的免费视频| 午夜激情欧美在线| 久久99蜜桃精品久久| 精品一区二区三区视频在线| 日本黄色视频三级网站网址| 成人性生交大片免费视频hd| 免费看a级黄色片| 99久国产av精品| 日本wwww免费看| 大又大粗又爽又黄少妇毛片口| 国产亚洲最大av| 国产成人freesex在线| videossex国产| 亚洲精品aⅴ在线观看|