• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermoacoustic assessment of hematocrit changes in human forearms?

    2021-09-28 02:17:58XueWang王雪RuiZhao趙芮YiTongPeng彭亦童ZiHuiChi遲子惠ZhuZheng鄭鑄EnLi李恩LinHuang黃林andHuaBeiJiang蔣華北
    Chinese Physics B 2021年9期
    關(guān)鍵詞:王雪華北

    Xue Wang(王雪),Rui Zhao(趙芮),Yi-Tong Peng(彭亦童),Zi-Hui Chi(遲子惠),Zhu Zheng(鄭鑄),En Li(李恩),Lin Huang(黃林),?,and Hua-Bei Jiang(蔣華北)

    1School of Electronic Science and Engineering(National Exemplary School of Microelectronics),University of Electronic Science and Technology of China,Chengdu 611731,China

    2Center for Information in Medicine,University of Electronic and Technology of China,Chengdu 611731,China

    3Department of Medical Engineering,University of South Florida,Tampa FL33620,USA

    4School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    Keywords:thermoacoustic imaging,hematocrit change,human forearm

    1.Introduction

    Microwave-induced thermoacoustic imaging(TAI)is an emerging noninvasive and nonionizing imaging modality,combining high contrast of microwave imaging and high resolution of ultrasound imaging.[1–7]When tissues are irradiated by microwave pulses,tissues with a higher dielectric loss absorb more energy and thus create stronger thermoacoustic(TA)waves than other tissues;this provides a high microwave contrast,and the TA waves are then ultrasonically detected in high resolution.[8]TAI has been thus far applied for various biomedical applications including detection of breast,[9–11]kidney,[12]prostate[13]cancers,imaging of joint,[3,14]brain[4,15,16],thyroid,[17]blood vessels,[18,19]and functional imaging.[19]

    We have previously shown that blood vessels can be anatomically imaged by TAI.[16]However,the ability of TAI for imaging changes of blood content,like hematocrit(Hct)value,in blood vessels or other soft tissues such as muscle has not been documented,to the best of our knowledge.It is well-known that blood is a suspension composed of blood cells with low conductivity and plasma with high conductivity.[20,21]Hematocrit refers to the proportion of red blood cells(RBCs)in the volume of full blood.An increase in the Hct value is closely related to the reduced venous return,[22]increased blood viscosity,[23]and increased platelet adhesiveness.[24]Related studies have shown that subjects whose Hct value are higher than the normal range of the population,such as patients with primary or secondary polycythemia,are susceptible to arterial cardiovascular disease and venous thromboembolism.[25–29]Hct is also associated with an increased risk of pre-hypertension and all-cause death in the general population.[30,31]Therefore,monitoring the changes in the Hct value of blood can offer early insight into the occurrence of these diseases.

    Manual microhematocrit method based on the visual counting of the blood cells[32]and the method based an automatic hematology analyzer[33]are the current tools used for Hct determination in clinics.While the former is the gold standard,the Hct value determined by this method is often overestimated due to the trap of plasma in erythrocytes.[34]It is time-consuming to remove the trap of plasma.The automatic method is considerably faster to complete the counting of blood cells;however,it cannot accurately detect specimens with distributional or morphological abnormalities.[35]Most importantly,both methods require blood samples taken from subjects for the in vitro measurement,and cannot be used for in vivo determination of changes of Hct values.[36–38]

    Here,in this study,we demonstrate the ability of TAI to monitor changes in Hct both in vitro from the blood samples and in vivo from the blood vessels and muscle tissues in human forearms during vascular occlusion stimulation.

    2.Materials and methods

    2.1.System description

    The TAI system used is schematically shown in Fig.1.A custom-designed 3 GHz magnetron generator(peak power:70 kW,pulse width:750 ns and repetition rate:50 Hz),coupled with a handheld dipole antenna(aperture size:60×60 mm2)[39]via a semi-rigid coaxial cable(1.5-meter-long with 1.2 dB insertion loss),was used as the excitation source.The TA signals were detected by a 128-element linear array transducer(8.5 MHz center frequency,SH7L38,SASET.Inc.,China),and then amplified by a home-made 128-channel amplifier and averaged for 50 times to achieve a good signaland-noise ratio by a 64-channel acquisition system with two 32-channel data acquisition cards(5752B,NI.Inc.,USA),requiring a data acquisition time of~2 s.For the TA image reconstruction,a back-projection algorithm in MATLAB was used.[40]A B-mode ultrasound imaging platform(iNSIGHT-37C,SASET.Inc.,China)was included in this system,which used the same 128-element linear array transducer,allowing the TA and ultrasound(US)images to be co-registered precisely.The purpose of US imaging was to allow the objects of interest(i.e.,the muscle,vein,and artery in the forearm)for TAI to be identified easily.For high-efficiency delivery of both the microwave and US signals,the forearm was completely immersed in mineral oil(Fig.1).According to our previous study,[39]the maximum average microwave power density at the surface of the handheld dipole antenna was 8.6 mW/cm2,when a 10 Hz repetition frequency was used.However,the microwave power density exciting the targets in this study was far below the surface power density as estimated above,and also below the IEEE standard for safety level(20 mW/cm2),[41]because the microwaves would spread out drastically due to diffraction.Specifically,it is known from Ref.[39]that the attenuation factor for the electric field propagation from the handheld dipole antenna was 1/r2.In this study,the distance between the target and the surface of the antenna was about 4 cm,and the coaxial cable had an insertion loss of 1.2 dB.Therefore,the maximum microwave energy density at the target surface was about 2.0 mW/cm2[8.6×10(?0.12)×(1/42)×5=2.0](in the case of 50 Hz repetition rate).

    Fig.1.Schematic of the TAI and US systems.

    2.2.In vitro blood samples

    The study protocol for human subjects used in this research was approved by the Ethics Committee of the University of Electronic Science and Technology of China.All the subjects were healthy,and such statuses were verified by their medical history and physical examinations.

    The in vitro blood samples of three healthy volunteers(A,B,and C;average age:24)were taken from the antecubital vein in the morning after an overnight fasting period and immediately loaded into vacuum blood collection tubes containing the anticoagulant EDTAK2.After being turned upside down slightly and mixed evenly,the plasma and RBCs were separated immediately by centrifuging for 15 minutes at 3000 rpm.Six blood samples with Hct values of 0%(plasma),20%,40%,60%,80%,and 100% were then configured using sterile pipettes for each subject.The electrical conductivity of the blood samples from the three subjects was measured at 2.4 GHz and room temperature 25°C with an openended coaxial resonant probe based on the method reported previously.[42,43]In addition,these blood samples were loaded into transparent plastic tubes(3 mm in diameter)and were imaged using the TAI system under the same experimental conditions.

    2.3.In vivo vascular occlusion stimulation

    A total of 7 healthy volunteers with an average age of 24 were recruited for the in vivo experiments.The radial artery,cephalic vein,and lateral brachioradialis of the left forearm were selected as the objects of interest and were imaged along the transverse plane with both TAI and US.

    Once the forearm was placed in position,a vascular stimulation was then induced by pressing the upper arm with an air cuff above the elbow,aiming to change the Hct value in the blood vessels and muscle tissues by blocking the venous return/blood flow to varying degrees.[22]The stimulation consisted of five stages,as shown in Fig.2.First,the volunteer was at a resting state,and a baseline measurement was taken for 1 minute.Second,the pressure cuff was inflated to 80–100 mmHg to cause venous occlusion.The pressure was held for 1 minute and then released quickly.In the third stage,the subject rested for 1 minute.In the fourth phase,a 160–180 mmHg was applied to occlude the arm arteries.After 1 minute,the pressure was released.Finally,the subject was back to the resting state and imaged for 1 minute.The five-stage protocol was applied four times to each volunteer to ensure the repeatability of the experiment.In our experiments,the pressure varied according to the systolic blood pressure measured on the arm of each volunteer.During the imaging procedure,the subjects were constantly asked about if there were any unpleasant sensations.No adverse reactions were observed in this study.

    Fig.2.Five-stage stimulation protocol used for in vivo TAI.RS:resting state;VO:venous occlusion;AO:arterial occlusion.

    3.Results

    3.1.Conductivity and TAI for in vitro blood samples

    Figure 3 shows the TA image and electrical conductivity obtained for the in vitro blood samples.In the TA image[Fig.3(a)],the area inside the tube was selected as the TA signal area(red circle),and an adjacent region at the same depth of the tube was selected as the background signal area(green frame).The image contrast was defined as the ratio of the average TA amplitude of the signal area to the average TA amplitude of the background area,and the selection of background region remained unchanged for all the samples.This contrast was used to represent the relative change of the TA signal in different blood samples for a constant background.Figure 3(b)shows the averaged contrast and electrical conductivity of the blood samples for volunteers A,B and C(each blood sample was measured for three times and the results shown were averaged using the three measurements).

    From Fig.3(b),we can immediately see that the conductivity of the blood sample almost linearly decreases as the Hct value increases,which is consistent with the findings reported in the literatures.[20,21,44]The decreased electrical conductivity of blood sample results in a corresponding decrease in microwave absorption characteristics,and thus decreased contrast,i.e.,the contrast also linearly decreases with the increase of Hct value[Fig.3(b)].These results show that microwave absorption characteristics in the blood is different if the Hct value in the blood is different,enabling us to monitor the changes of Hct values in the blood using TAI.

    Fig.3.In vitro experiment using human venous blood with different hematocrit(Hct)values.(a)A representative TA image of blood-containing tube with 20%Hct.(b)Quantitative plots of in the blood contrast and conductivity vs.hematocrit value for the three volunteers(A,B,and C).The red circle and dashed green square in(a),respectively,represent the target and background regions that the TA signals were sampled area.

    3.2.TAI monitor during in vivo vascular occlusion stimulation

    Figure 4 shows the cross-sectional color Doppler US[Fig.4(a)]and TA[Fig.4(b)]images,and the overlaid TA/US image[Fig.4(c)]of the forearm for a representative volunteer at the resting state.By examining the overlaid TA/US image[Fig.4(c)],the objects of interest are clearly detected,i.e.,the positions of the radial artery and the cephalic vein(red and green circles,respectively),and the brachioradialis muscle(orange rectangle).In the TA image[Fig.4(b)],the full width at half maximum(FWHM)of TA signal along the red dotted line crossing the vein was estimated to be 4.1 mm as shown in Fig.4(d),which matches well with as a value of 4.0 mm measured by color Doppler US image for the diameter of the vein[white dotted line crossing the vein in Fig.4(a)].

    Figure 5 shows the averaged TA signals(relative to a baseline measurement before the stimulation)over time in the radial artery,cephalic vein,and brachioradialis for all the seven volunteers during the five-stage stimulation,where the gray lines represent the TA signals for each volunteer,while the red,green and orange lines are the TA signals averaged over all seven volunteers with standard deviation(indicated with blue dotted lines)in the artery[Fig.5(a)],vein[Fig.5(b)]and muscle[Fig.5(c)],respectively.

    Fig.4.In vivo cross-sectional TA and US images of the left forearm for one of the seven volunteers.(a)the color Doppler US image;(b)the TA image;(c)the overlaid TA/US image.The green and red circles and the orange rectangle,respectively,indicate the positions of the cephalic vein,radial artery,and brachioradialis muscle;(d)the normalized TA profile along a red dashed cut line through the center of cephalic vein in(b).

    From Fig.5,we see that the responses of the blood vessels/muscle tissues to venous and arterial occlusion are consistent for all the volunteers.During the VO or AO stage,the radial artery at the distal heart of the forearm was in an ischemic condition because of its restricted blood flow.As a result,its Hct value decreased and the corresponding electrical conductivity increased,[22]leading to an increase in the amplitude of TA signal in the artery.We note that this increase in the TA signal was larger during the AO stage with increased occlusion pressure.After the pressure was released,the TA signal returned to the baseline level.During the VO or AO stage,the cephalic vein at the distal heart of the forearm was in a congestion state because of its retarded backflow.As a result,the Hct value increased and the corresponding electrical conductivity decreased,leading to a decrease in the amplitude of TA signal in the vein.Similar to the artery,this decrease was larger during the AO stage because of the higher occlusion pressure applied.After the pressure was released,the TA signal returned to the baseline level.During the VO or AO stage,muscle tissue was in ischemia,and thus the Hct changes vs.TA signal variation were similar to that in the artery.

    4.Discussion

    Since the goal of this study was to demonstrate the possibility of thermoacoustic assessment of Hct changes,we did not attempt to conduct an in-depth study to quantify parameters such as the minimal Hct change that TA can distinguish.However,the TAI results of in vitro venous blood(Fig.3)showed that TA can distinguish at least 20% of Hct change.Moreover,in the TAI results of in vivo occlusion stimulation(Fig.5),the TA signal change of the vein relative to the resting state was at least~15%.According to Refs.[21,38],the Hct of healthy human whole blood is about 40%,and so the Hct value of venous blood in resting stage[Fig.5(b)]could be estimated as about 40%.For in vitro venous blood TAI experiments(Fig.3),when Hct was 40%,the contrast was 12.8.The contrast value was 10.88 after a 15% reduction[12.8×(1?0.15)=10.88].In Fig.3(b),Hct value was about 80% given this contrast value of 10.88.Hence,we can conclude that the Hct change of the vein in the occlusion stimulation measured by TAI was at least greater than 20%(80%–40%>20%).

    Fig.5.Averaged relative TA signals from(a)the artery,(b)the vein and(c)the muscle for the seven human subjects during the left forearm occlusion.Gray lines:TA signals for each individual subject;red,green or orange line:averaged TA signals over seven subjects;blue dotted lines:the standard deviation for the averaged TA signals over seven subjects.

    According to Ref.[19],plasma mainly contains eight kinds of polar molecules including Alb,Glo,Nacl,Fib,Glu,Gly,Lys and Arg,and the sum of Alb,Glo,Nacl and Fib accounted for 99.68%of all the polar molecules.It is also indicated that the higher the concentration of polar molecules in blood,the stronger the TA signal intensity.Hct value refers to the proportion of plasma and red blood cells(RBCs)relative to whole blood,i.e.,Hct=0% means that the blood sample is just plasma,while Hct=100% means that the sample has pure RBCs.In our study,when we changed the proportion of plasma in blood,we automatically changed the proportion of polar molecules in blood proportionally.From the in vitro and in vivo TA experiments,we have observed that the Hct value decreased since both the proportions of plasma and polar molecules increased,and that the intensity of TA signals increased.Thus,this finding is complementary to the conclusion reported in the above mentioned reference,and confirmed each other.The conclusion is that the polar molecules in blood do not affect the reliability of the TA experiments in this study.

    However,the current study has some limitations.The conductivity in vitro blood samples was measured at 2.4 GHz,which was slightly different from the frequency used for TAI.However,according to a previous study by Wolf et al.and an open data site“Calculation of the Dielectric Properties of Body Tissues in the frequency range 10 Hz–100 GHz”,[21,45]the dielectric properties of blood at 2.4 GHz(σ=2.50 S/m,εr=58.35)and 3.0 GHz(σ=3.05 S/m,εr=57.35)are very close.In addition,Wolf et al.showed that from 10 kHz to 10 GHz,as the Hct value increased,the conductivity showed a decreasing trend,which was consistent with the conductivity results from our in vitro blood experiment.So the conductivity results measured at 2.4 GHz holds a significant reference value and should not affect our observation on the change of Hct value.In addition,the temporal resolution of the system was limited,which can be improved using a microwave source with a higher repetition rate.The ultrasonic linear array with a center frequency of 8.5 MHz was selected to receive both ultrasonic and TA signals,which was not optimal for TAI performance because most of the TA signals were below 8.5 MHz,as shown in Fig.6.It is worth noting that an x-shaped artifact in the TA image shown in Fig.3(a)is seen,which was caused by the use of a linear array for receiving TA signals and the use of a traditional back-projection algorithm for image reconstruction.However,the impact of this effect can be minimized using a circular array or an improved image reconstruction algorithm.In the future research,we will focus on improving temporal resolution and designing a better system to balance the difference between the ultrasonic and TA signal frequencies.

    Fig.6.The frequency spectrum of TA signals given in Fig.4(b).

    5.Conclusion

    In summary,we have presented evidence that TAI can be used to in vivo image the Hct changes in blood vessels and muscles in the forearm during a vascular occlusion simulation.The results obtained have shown a strong correlation between the changes in TA signal/conductivity and hematocrit/blood flow,suggesting the potential of TAI as a new tool for functionally visualizing human blood.

    猜你喜歡
    王雪華北
    走一步,再走一步
    王雪、郁子琦、陳天琪、馬銘哲作品
    Temperature-induced phase transition of two-dimensional semiconductor GaTe*
    華北玉米市場(chǎng)將進(jìn)入筑底期
    例談數(shù)形結(jié)合法的廣泛應(yīng)用
    祖國(guó)(2018年3期)2018-03-26 07:40:36
    吃貨的愛情
    女士(2017年8期)2017-08-08 18:44:31
    Literature Review on Context Translation Mode
    Review on Register Theory and Its Application in Translation
    Analysis of Characters Shaping in Ring Lardner’s Haircut
    華北明珠
    天堂8中文在线网| 日韩免费高清中文字幕av| 一级毛片我不卡| 久久精品国产综合久久久| 亚洲五月色婷婷综合| 亚洲美女搞黄在线观看| 亚洲中文av在线| 国产黄频视频在线观看| 一级毛片电影观看| 国产黄色视频一区二区在线观看| 青春草视频在线免费观看| 免费高清在线观看日韩| 亚洲美女视频黄频| 精品少妇内射三级| 老司机靠b影院| 午夜福利,免费看| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 国产免费一区二区三区四区乱码| 涩涩av久久男人的天堂| 波野结衣二区三区在线| 一本—道久久a久久精品蜜桃钙片| 91精品伊人久久大香线蕉| 在线免费观看不下载黄p国产| 日韩视频在线欧美| 51午夜福利影视在线观看| 99久久精品国产亚洲精品| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 叶爱在线成人免费视频播放| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 日本91视频免费播放| 午夜福利在线免费观看网站| 少妇人妻久久综合中文| 亚洲国产最新在线播放| 高清在线视频一区二区三区| 香蕉丝袜av| 99热网站在线观看| 老司机亚洲免费影院| 一个人免费看片子| 久久久久久久久久久久大奶| 熟女少妇亚洲综合色aaa.| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 性高湖久久久久久久久免费观看| 99久久精品国产亚洲精品| 9191精品国产免费久久| 一级爰片在线观看| 国产精品久久久久久人妻精品电影 | 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| 2021少妇久久久久久久久久久| 一级爰片在线观看| 亚洲精品视频女| 丰满乱子伦码专区| 久久人人爽人人片av| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 丰满乱子伦码专区| 悠悠久久av| 欧美激情 高清一区二区三区| 色精品久久人妻99蜜桃| 丰满乱子伦码专区| 丰满饥渴人妻一区二区三| 尾随美女入室| 两性夫妻黄色片| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩一区二区三区精品不卡| 飞空精品影院首页| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx| 欧美人与性动交α欧美软件| 美女脱内裤让男人舔精品视频| 亚洲欧洲国产日韩| 又黄又粗又硬又大视频| 亚洲第一av免费看| 人成视频在线观看免费观看| 久久久久精品国产欧美久久久 | 国产麻豆69| 亚洲国产欧美网| av在线app专区| 看十八女毛片水多多多| 亚洲一级一片aⅴ在线观看| 欧美日韩国产mv在线观看视频| 黄色 视频免费看| 欧美黑人欧美精品刺激| 久久久精品国产亚洲av高清涩受| 亚洲精品国产av成人精品| 精品亚洲乱码少妇综合久久| 色网站视频免费| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| www.自偷自拍.com| 国产精品 欧美亚洲| 中文字幕高清在线视频| 欧美精品高潮呻吟av久久| 狠狠婷婷综合久久久久久88av| 十分钟在线观看高清视频www| 婷婷色综合www| 欧美av亚洲av综合av国产av | 亚洲欧美激情在线| 欧美日本中文国产一区发布| 亚洲美女视频黄频| 精品久久久精品久久久| av在线老鸭窝| 满18在线观看网站| 国产成人啪精品午夜网站| 国产黄色视频一区二区在线观看| 欧美日本中文国产一区发布| 色婷婷av一区二区三区视频| 中文字幕精品免费在线观看视频| 国产精品久久久人人做人人爽| 这个男人来自地球电影免费观看 | 天天添夜夜摸| 国产成人啪精品午夜网站| 亚洲欧美激情在线| 亚洲成人av在线免费| e午夜精品久久久久久久| 国产在视频线精品| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| www.熟女人妻精品国产| 蜜桃国产av成人99| 女人久久www免费人成看片| 少妇人妻 视频| 99久久99久久久精品蜜桃| 日日啪夜夜爽| 美女大奶头黄色视频| 成人影院久久| 久久久久久久大尺度免费视频| 亚洲国产日韩一区二区| 久久久久国产一级毛片高清牌| a级毛片黄视频| 久久久欧美国产精品| 大香蕉久久成人网| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 国产一卡二卡三卡精品 | 最近2019中文字幕mv第一页| 国产在线免费精品| 亚洲av男天堂| 一边摸一边做爽爽视频免费| 成人免费观看视频高清| 亚洲av福利一区| 狂野欧美激情性bbbbbb| 国产一区二区激情短视频 | 操出白浆在线播放| 久久精品亚洲熟妇少妇任你| 国产一卡二卡三卡精品 | 在线观看www视频免费| 女性生殖器流出的白浆| 欧美国产精品一级二级三级| 男人舔女人的私密视频| av网站免费在线观看视频| 久久久久久久久免费视频了| 精品亚洲成a人片在线观看| 男女免费视频国产| 日韩成人av中文字幕在线观看| 国产爽快片一区二区三区| 99国产综合亚洲精品| 国产男人的电影天堂91| 性色av一级| 性高湖久久久久久久久免费观看| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 90打野战视频偷拍视频| 国产视频首页在线观看| 伊人久久国产一区二区| 欧美在线一区亚洲| 在线观看免费高清a一片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品自拍成人| 国精品久久久久久国模美| 国产野战对白在线观看| 免费观看a级毛片全部| 亚洲国产最新在线播放| 午夜福利一区二区在线看| 香蕉国产在线看| 天天躁日日躁夜夜躁夜夜| 亚洲国产看品久久| 中文欧美无线码| 中文字幕高清在线视频| 亚洲精品一二三| 一区二区av电影网| 亚洲三区欧美一区| 欧美日韩综合久久久久久| 午夜久久久在线观看| 黄色 视频免费看| 免费观看av网站的网址| 亚洲精品av麻豆狂野| 国产精品久久久av美女十八| 最黄视频免费看| 热99国产精品久久久久久7| 国产毛片在线视频| 国产一区二区三区av在线| 国产亚洲午夜精品一区二区久久| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 91国产中文字幕| 最近手机中文字幕大全| 看免费成人av毛片| 国产男人的电影天堂91| 人人妻,人人澡人人爽秒播 | 亚洲av男天堂| 欧美亚洲日本最大视频资源| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 国产亚洲精品第一综合不卡| 亚洲色图 男人天堂 中文字幕| 好男人视频免费观看在线| 80岁老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| 精品卡一卡二卡四卡免费| 成人午夜精彩视频在线观看| 国产国语露脸激情在线看| a 毛片基地| 欧美激情极品国产一区二区三区| 国产视频首页在线观看| 无遮挡黄片免费观看| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频| 91精品三级在线观看| 色综合欧美亚洲国产小说| 国产精品久久久久久精品古装| 精品国产露脸久久av麻豆| 制服人妻中文乱码| 男人添女人高潮全过程视频| 少妇人妻久久综合中文| 中文字幕制服av| 中文天堂在线官网| av不卡在线播放| 精品少妇黑人巨大在线播放| 在线观看三级黄色| 国产深夜福利视频在线观看| 国产一区二区三区av在线| 免费日韩欧美在线观看| 叶爱在线成人免费视频播放| 91精品伊人久久大香线蕉| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| tube8黄色片| 一区在线观看完整版| av女优亚洲男人天堂| 国产精品.久久久| 国产亚洲午夜精品一区二区久久| 国产日韩欧美在线精品| 日日撸夜夜添| 久久人人97超碰香蕉20202| 最新的欧美精品一区二区| 亚洲国产欧美网| h视频一区二区三区| 麻豆av在线久日| 嫩草影院入口| 国产不卡av网站在线观看| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美| 伊人亚洲综合成人网| 日韩欧美精品免费久久| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看av| 亚洲av综合色区一区| 国产成人精品无人区| 中文字幕高清在线视频| 亚洲在久久综合| 亚洲国产中文字幕在线视频| 精品一区二区三卡| 中国三级夫妇交换| 韩国精品一区二区三区| 日本一区二区免费在线视频| 亚洲av综合色区一区| 在线天堂最新版资源| 成人三级做爰电影| 久久久精品区二区三区| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 日韩中文字幕欧美一区二区 | 美女扒开内裤让男人捅视频| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 99热全是精品| 亚洲精品aⅴ在线观看| av国产久精品久网站免费入址| 99re6热这里在线精品视频| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 国产国语露脸激情在线看| 妹子高潮喷水视频| 超色免费av| 午夜激情av网站| 久久人妻熟女aⅴ| 午夜日韩欧美国产| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 欧美黑人欧美精品刺激| 黄片播放在线免费| 久久久欧美国产精品| 高清av免费在线| 国产亚洲av片在线观看秒播厂| 99香蕉大伊视频| 亚洲熟女毛片儿| 电影成人av| 一区二区三区乱码不卡18| 国产一区二区激情短视频 | 男女国产视频网站| 国产精品国产av在线观看| 国产精品人妻久久久影院| 日日啪夜夜爽| 桃花免费在线播放| videos熟女内射| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 波多野结衣一区麻豆| 建设人人有责人人尽责人人享有的| 人成视频在线观看免费观看| 亚洲欧美中文字幕日韩二区| 欧美在线一区亚洲| 国产片特级美女逼逼视频| 中文字幕人妻丝袜制服| 又黄又粗又硬又大视频| 成年美女黄网站色视频大全免费| 日韩免费高清中文字幕av| 国产精品一区二区在线观看99| 天美传媒精品一区二区| 亚洲精品美女久久久久99蜜臀 | 美女视频免费永久观看网站| 久久精品亚洲av国产电影网| 久久精品久久久久久久性| 1024视频免费在线观看| 99热全是精品| 91国产中文字幕| 国产乱来视频区| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯 | 青春草视频在线免费观看| 久久久久视频综合| 国产一区有黄有色的免费视频| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 一级毛片 在线播放| 亚洲少妇的诱惑av| 亚洲免费av在线视频| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 亚洲成人一二三区av| 超色免费av| 日韩一区二区三区影片| 欧美亚洲 丝袜 人妻 在线| 一边摸一边抽搐一进一出视频| 免费女性裸体啪啪无遮挡网站| 欧美乱码精品一区二区三区| 香蕉丝袜av| 亚洲综合精品二区| 你懂的网址亚洲精品在线观看| 一级毛片我不卡| 国产av一区二区精品久久| 少妇人妻 视频| 国产爽快片一区二区三区| 久久精品久久久久久噜噜老黄| 婷婷成人精品国产| 观看av在线不卡| 建设人人有责人人尽责人人享有的| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 亚洲第一青青草原| 两个人看的免费小视频| 在线精品无人区一区二区三| 国产av国产精品国产| 国产一区二区三区综合在线观看| 日本爱情动作片www.在线观看| 国产精品二区激情视频| 一区二区三区四区激情视频| 捣出白浆h1v1| 毛片一级片免费看久久久久| 国产有黄有色有爽视频| 99久国产av精品国产电影| 波野结衣二区三区在线| 我要看黄色一级片免费的| 亚洲第一区二区三区不卡| 超碰成人久久| 天天躁夜夜躁狠狠久久av| 黄色视频在线播放观看不卡| 美女大奶头黄色视频| 亚洲欧美一区二区三区国产| 丝袜人妻中文字幕| 国产无遮挡羞羞视频在线观看| 男人操女人黄网站| 999久久久国产精品视频| 视频区图区小说| 99久久人妻综合| 精品一区二区免费观看| 久久国产精品男人的天堂亚洲| 又粗又硬又长又爽又黄的视频| avwww免费| 男女高潮啪啪啪动态图| 午夜福利,免费看| 亚洲精品久久午夜乱码| 欧美最新免费一区二区三区| 日本欧美国产在线视频| 日韩av在线免费看完整版不卡| 韩国av在线不卡| 成人手机av| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 悠悠久久av| 午夜老司机福利片| 国产一区有黄有色的免费视频| 午夜激情久久久久久久| 国产又色又爽无遮挡免| 人人妻人人添人人爽欧美一区卜| 亚洲成色77777| av国产久精品久网站免费入址| 肉色欧美久久久久久久蜜桃| a 毛片基地| 日韩大码丰满熟妇| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 成年动漫av网址| 久久久久人妻精品一区果冻| 国产在线免费精品| 亚洲自偷自拍图片 自拍| 成人毛片60女人毛片免费| 九色亚洲精品在线播放| 成人黄色视频免费在线看| 18禁动态无遮挡网站| 极品人妻少妇av视频| 亚洲欧美色中文字幕在线| 国产亚洲午夜精品一区二区久久| 一本一本久久a久久精品综合妖精| 日韩成人av中文字幕在线观看| 性高湖久久久久久久久免费观看| 欧美 亚洲 国产 日韩一| 母亲3免费完整高清在线观看| 国产精品 国内视频| 99九九在线精品视频| 亚洲欧美精品自产自拍| 亚洲欧美精品综合一区二区三区| 男人操女人黄网站| 国产亚洲精品第一综合不卡| 国产精品欧美亚洲77777| 久久毛片免费看一区二区三区| 人人澡人人妻人| 日韩熟女老妇一区二区性免费视频| 美国免费a级毛片| 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| 亚洲天堂av无毛| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看 | 新久久久久国产一级毛片| 亚洲综合色网址| 亚洲精华国产精华液的使用体验| 国精品久久久久久国模美| 99国产综合亚洲精品| www日本在线高清视频| 母亲3免费完整高清在线观看| 啦啦啦啦在线视频资源| 国产精品秋霞免费鲁丝片| 日本91视频免费播放| 国产精品 欧美亚洲| 国产探花极品一区二区| 婷婷色综合www| 日韩av在线免费看完整版不卡| 黄色 视频免费看| 亚洲av男天堂| 国产精品国产av在线观看| xxxhd国产人妻xxx| 国产精品av久久久久免费| 777久久人妻少妇嫩草av网站| av在线观看视频网站免费| 在线亚洲精品国产二区图片欧美| 大码成人一级视频| 黄片小视频在线播放| 毛片一级片免费看久久久久| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区| 日本vs欧美在线观看视频| 亚洲精品久久成人aⅴ小说| 久久久久久久久免费视频了| 美女脱内裤让男人舔精品视频| 777久久人妻少妇嫩草av网站| 一区在线观看完整版| 国产野战对白在线观看| av天堂久久9| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 免费人妻精品一区二区三区视频| 伊人久久大香线蕉亚洲五| 国产男人的电影天堂91| 亚洲在久久综合| 亚洲综合精品二区| av在线观看视频网站免费| 亚洲图色成人| 国产精品人妻久久久影院| 亚洲国产精品999| 中文字幕高清在线视频| 天天躁夜夜躁狠狠久久av| 亚洲国产成人一精品久久久| 一级片'在线观看视频| 久久av网站| 日日爽夜夜爽网站| 国产精品一区二区在线观看99| 在线 av 中文字幕| 如日韩欧美国产精品一区二区三区| videos熟女内射| 激情五月婷婷亚洲| 黄色视频不卡| 女性被躁到高潮视频| 国产 一区精品| 亚洲av在线观看美女高潮| 国产精品欧美亚洲77777| 日本黄色日本黄色录像| 久久久久网色| 成人黄色视频免费在线看| 国产成人系列免费观看| 亚洲av电影在线观看一区二区三区| 午夜福利在线免费观看网站| 国产老妇伦熟女老妇高清| 欧美亚洲 丝袜 人妻 在线| 亚洲少妇的诱惑av| 亚洲国产精品一区三区| 国产精品av久久久久免费| 久久久久网色| 操出白浆在线播放| 久热这里只有精品99| 两个人看的免费小视频| 美女脱内裤让男人舔精品视频| 日韩 亚洲 欧美在线| 午夜老司机福利片| 精品人妻在线不人妻| 高清不卡的av网站| 大话2 男鬼变身卡| 亚洲成人一二三区av| 精品久久蜜臀av无| 十八禁网站网址无遮挡| 成年人午夜在线观看视频| 观看av在线不卡| 日韩精品免费视频一区二区三区| 免费观看性生交大片5| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| 久久久国产一区二区| 精品酒店卫生间| 欧美日韩精品网址| 日韩不卡一区二区三区视频在线| 两个人免费观看高清视频| 色播在线永久视频| 亚洲七黄色美女视频| 婷婷成人精品国产| 欧美日韩亚洲国产一区二区在线观看 | 考比视频在线观看| 亚洲国产欧美网| 日韩大码丰满熟妇| 国产精品麻豆人妻色哟哟久久| 久久久久久久精品精品| 制服丝袜香蕉在线| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲国产一区二区在线观看 | 国产精品国产av在线观看| av国产久精品久网站免费入址| 欧美亚洲 丝袜 人妻 在线| 亚洲国产毛片av蜜桃av| 国精品久久久久久国模美| 天天躁夜夜躁狠狠久久av| 伊人久久国产一区二区| 天堂8中文在线网| 午夜福利网站1000一区二区三区| 999久久久国产精品视频| av一本久久久久| 国产有黄有色有爽视频| 飞空精品影院首页| 欧美另类一区| 欧美激情高清一区二区三区 | 中文字幕av电影在线播放| 中文天堂在线官网| 国产乱人偷精品视频| 亚洲av电影在线观看一区二区三区| 亚洲第一区二区三区不卡| 国产一级毛片在线| 欧美国产精品一级二级三级| 美女脱内裤让男人舔精品视频| 老汉色∧v一级毛片| 国产精品三级大全| 欧美最新免费一区二区三区| 性色av一级| 国产男女内射视频| 最近中文字幕2019免费版| 另类精品久久| 午夜久久久在线观看| 99精国产麻豆久久婷婷| 丝袜在线中文字幕| 男女国产视频网站| 免费观看av网站的网址| 狠狠精品人妻久久久久久综合| 欧美另类一区| 狠狠婷婷综合久久久久久88av| 三上悠亚av全集在线观看| 激情五月婷婷亚洲| 久久人妻熟女aⅴ| 九九爱精品视频在线观看| 9色porny在线观看| 美女大奶头黄色视频| 精品亚洲成国产av| 看免费av毛片| 天天躁夜夜躁狠狠久久av| 丝袜喷水一区| 在线观看免费高清a一片| 久久性视频一级片| 日韩精品免费视频一区二区三区| 咕卡用的链子|