• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-induced phase transition of two-dimensional semiconductor GaTe*

    2021-01-21 02:13:26XiaoyuWang王嘯宇XueWang王雪HongshuaiZou鄒洪帥YuhaoFu付鈺豪XinHe賀欣andLijunZhang張立軍
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王雪

    Xiaoyu Wang(王嘯宇), Xue Wang(王雪), Hongshuai Zou(鄒洪帥),Yuhao Fu(付鈺豪), Xin He(賀欣),?, and Lijun Zhang(張立軍),§

    1State Key Laboratory of Integrated Optoelectronics,Key Laboratory of Automobile Materials of MOE,College of Materials Science and Engineering,Jilin University,Changchun 130012,China

    2State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    Keywords: two-dimensional semiconductor GaTe, temperature-induced phase transition, first-principles calculation,quasi-harmonic approximation

    1. Introduction

    In recent years, two-dimensional (2D) semiconductors,bonded through van der Waals forces, have attracted extensive research interests due to their extraordinary properties and potential applications in electronic and optoelectronic devices.[1–5]They have unique layer-dependent electronic properties. III–VIA compound gallium telluride(GaTe)is a 2D layered semiconductor with a moderate direct bandgap of ~1.65 eV[6–8]and a high photoresponsivity for few-layer sheets (104A/W),[9]which render it great potential applications in the field of optoelectronic devices.[10–12]However,current studies on 2D GaTe have obvious limitations. There are two phases of GaTe reported, the monoclinic phase (m-GaTe, space group C2/m) and the hexagonal phase (h-GaTe,space group P63/mmc),[13–16]but current studies are still exclusively restricted to the m-GaTe owing to the difficulty in the fabrication of 2D h-GaTe. Unlike the situation in other III–VIA 2D semiconductor materials,such as GaS,GaSe,and InSe,[17–19]the most stable phase of GaTe under room temperature is the low symmetry monoclinic phase, rather than the high symmetry hexagonal phase.[20]

    The phase transition between the monoclinic and hexagonal phases of GaTe was reported experimentally. Gillan et al.fabricated h-GaTe using the metal-organic chemical vapor deposition technique. They found that h-GaTe gradually transformed into m-GaTe upon annealing at 500?C.[15]Yu et al.succeeded in driving the GaTe phase transition from h-GaTe to m-GaTe using laser irradiation.[20]Zhao et al. obtained h-GaTe by stripping several layers of m-GaTe. They proposed a two-stage transformation mechanism. Firstly, m-GaTe transformed into a tetragonal phase (t-GaTe), then t-GaTe transformed into h-GaTe spontaneously.[21]Both annealing and laser irradiation were accompanied by temperature changes.Gillan et al. mentioned that controlling the synthesis temperature affects the lattice structure of the product.Therefore,temperature variation should be the most important factor,which influences the phase transition process of GaTe.

    In this paper,we investigated the phase transition of GaTe by using quasi-harmonic approximation(QHA)to estimate the Gibbs free energy.[22]We predicted a phase transition from h-GaTe to m-GaTe when the temperature is lowered to 261 K within the QHA method. The calculated results are consistent with the phase transition process from h-GaTe to m-GaTe with the cooling annealing and laser cooling irradiation treatment in the experiments.[15,20]We also used the nudged elastic band(NEB) method[23,24]to estimate the barriers and transition state structures of the phase transition from m-GaTe to t-GaTe and from t-GaTe to h-GaTe. We obtained that the m-GaTe to t-GaTe transition process has a barrier of 199 meV/formula and the t-GaTe to h-GaTe phase transition has a barrier of 288 meV/formula. The relatively high energy barriers demonstrate the irreversible nature of the phase transition, which is consistent with the experimentally observed results. In addition, we further investigated the thermodynamic stable, electronic,and phonon properties of m-GaTe to t-GaTe phases. It was found that the calculated bandgap values and the Raman spectra are in satisfactory agreement with the experimental results,indicating the reliability of our results.

    2. Method

    We performed first-principles calculations based on density functional theory,as implemented in the Vienna ab initio simulation package.[25–27]The electron–core interaction was described by using the projected augmented wave pseudopotentials. The 4s24p1(Ga) and 5s25p4(Te) were treated explicitly as valence electrons. We used the generalized gradient approximation in the Perdew–Burke–Ernzerhof[28]form as the exchange-correlation functional. Structure optimization(including lattice parameters and internal atomic positions)was performed using the conjugate gradient technique[29]until the energy converged to 10-6eV and the force converged to 0.005 eV/?A.A kinetic energy cutoff of 230 eV was used for the wave-function expansion and a grid spacing of 2π×0.03 ?A-1was used for electronic Brillouin zone integration.To properly take into account the long-range van der Waal(vdW)interactions, after a serious of tests to vdW-optB86b, vdW-optB88,vdW-optPBE, and vdW-DF2 functional, the vdW-optB86b functional was adopted.[30]Since the standard density functional tends to underestimate the band gap of semiconductors, the higher-level hybrid density functional HSE06[31]was used to calculate the electronic structures.[32,33]Spinorbit coupling was taken into consideration since it is potentially important for electronic structures of heavy p-electron systems. The phase transition barriers were calculated using the NEB method in conjunction with the climbing image method.[23,24,34]Harmonic phonons properties were calculated using the real-space supercell approach as implemented in the PHONOPY code.[35,36]We obtained the temperature dependence of the Gibbs free energy for m-GaTe and h-GaTe by using the QHA theory,[37]which has been successfully used in describing temperature-induced phase transition processes.[22,38–40]

    3. Results and discussion

    Figures 1(a) and 1(b) show the crystal structures of m-GaTe and h-GaTe, respectively. Both phases have layered structures, with two Ga atoms sandwiched between two Te atoms in each layer. But it is clear that the two structures are quite different in the atom arrangements. In h-GaTe phase,each Ga atom is bonded to one Ga atom and three Te atoms,and the two sublayers present an AA stacking along the perpendicular direction to form bulk,with the weak van der Waals interaction between layers. In contrast,the crystal of m-GaTe demonstrates a distorted layer-structure in which one-third of the Ga–Ga bonds turn from vertical to horizontal towards to the layer plane. The optimized lattice parameters are shown in Table 1, and the corresponding experimental data are also list for reference.[16,41,42]The monoclinic phase m-GaTe with space group C2/m has the lattice parameters of a=17.440 ?A,b=4.129 ?A, c=10.511 ?A, α =γ =90?, and β =103.8?.The hexagonal phase h-GaTe with space group P63/mmc has the lattice parameters of a = b = 4.106 ?A, c = 16.918 ?A,α =β =90?, and γ =120?. Our structural optimization results well agree with the reported experimental values,with an error less than 1%.

    Fig.1. The side and top views of crystal structures of m-GaTe(a)and h-GaTe(b). The elements of Ga and Te are in blue and brown,respectively.

    Table 1. Experimental(Exp.) and calculated(Cal.) lattice parameters(in ?A)of m-GaTe and h-GaTe.

    Now, we turn to the phase transition temperature of GaTe. We determined the temperature of phase transition by comparing the Gibbs free energy as a function of temperature at constant pressure. The quasi-harmonic approximation is a phonon-based model of solid-state physics used to describe volume-dependent thermal effects. Within the QHA method,[37]the Helmholtz free energy at temperature T and equilibrium lattice volume V is defined as

    where q is all wave vectors and λ is all three phonon branches in the first Brillouin zone. kBis the Boltzmann constant, ? is the reduced Planck constant, and ωqλ(V)is the frequency of the phonon. Then the Gibbs free energy is obtained by minimizing the free energy,

    where minV[function of V]means to find the unique minimum value in the brackets by changing the volume. Figure 2(a)shows the curves of the Gibbs free energy with respect to temperature of m-GaTe and h-GaTe. The curve intersects at 261 K.Therefore,we proved the possibility of a temperatureinduced phase transition between the two phases and predicted the theoretical phase transition temperature of 261 K.

    We further obtained the trend of volume change with temperature, as shown in Fig. 2(b). The volume of m-GaTe is smaller than that of h-GaTe over the studied temperature range. Meanwhile, the thermal expansion coefficient of m-GaTe is higher.Therefore,in the phase transition process from m-GaTe to h-GaTe,the crystal lattice of h-GaTe suffers growing compressive stress during the nucleation and growth process.As a result,the phase transition requires a greater driving force,and the actual phase transition temperature of the heating process might be higher than the theoretical phase transition temperature. The current analysis also provides a new perspective for understanding the spontaneous phase transition from m-GaTe to h-GaTe caused by the exfoliating process:when the bulk GaTe is exfoliated into layered GaTe,the stress is released. According to the relationship of Gibbs free energy described above, there will be a spontaneous phase transition from m-GaTe to h-GaTe under room temperature.

    Fig. 2. (a) Gibbs free energy versus temperature of h-GaTe (red line)and m-GaTe (black line) curve. (b) Volume versus temperature of h-GaTe(red line)and m-GaTe(black line).

    In order to have an in-depth understanding of the phase transition of GaTe, we further calculated the energy barrier to obtain the energy required to accomplish the phase transition. We adopted a two-step phase transition process mechanism,which has been reported by Zhao et al.[21]The structure evolution and energy barriers have been identified by using NEB method with five and eight images as intermediate states for the phase transition process from m-GaTe to t-GaTe and from t-GaTe to h-GaTe, respectively. The results are shown in Fig.3. Both m-GaTe and h-GaTe have a layered structure,which means that the phase transformation occurs within the layers. The first step is the phase transition from m-GaTe to t-GaTe. In this process,the Ga–Ga bonds parallel to the layers are reversed and transformed into positions perpendicular to the layers. The process is accompanied by the breakage of the original Ga–Te bonds and the generation of new Ga–Te bonds.The transition state structure of the first step corresponds to the structure whose Ga–Te bonds are between the bond breaking and bond formation processes. The second step is the movement of the entire layer of Te atoms, resulting in the phase transition from t-GaTe to h-GaTe. The transition state structure of the second step corresponds to the structure whose Te atoms move to the intermediate critical positions between the Ga atoms. The barrier of the first process is 199 meV/formula and that of the second process is 288 meV/formula. Previous studies have shown that the phase transition barrier of~300 meV/formula is sufficiently large to demonstrate the stability of the phase transition product of indium selenide and tungsten ditelluride.[43,44]Therefore, the relatively high energy barriers ensure that the phase transition of GaTe is irreversible. We note that the phase transition from m-GaTe to t-GaTe is accompanied by bond formation and bond breaking,but the barrier is lower than that of the phase transition from t-GaTe to h-GaTe. This is due to the considerable atom movement in the t-GaTe to h-GaTe transition process, even half of the Te atoms are involved in the movement.

    Fig.3. Phase transition barriers from m-GaTe to h-GaTe and schematic representation of the bond and atom rearrangement in the phase transition process.

    Fig.4. (a),(b)Calculated orbital projected electronic band structures for m-GaTe(a)and h-GaTe(b). Red and blue colors represent projections onto constituting orbital species Te p and Ga p. (c) Calculated bandgap results by using HSE06 + SOC functional. (d) Calculated effective masses of electron(m*e)and hole(m*h).

    Figures 5(a) and 5(b) show the calculated phonon dispersion curves of m-GaTe and h-GaTe, which exhibit no imaginary modes in the whole Brillouin region, thus indicating that the two phases are kinetically stable. Figures 5(c) and 5(d) show our calculated Raman spectra, and the corresponding experimental data from previous works. The most active two peaks are 109.04 cm-1and 114.85 cm-1for m-GaTe in our calculation. They are in good agreement with the experimental measurements of 109 cm-1and 115 cm-1for freshly cleaved GaTe(Exp.1).[48]Due to oxidization,the m-GaTe Raman peaks decrease whereas the new peaks at wavenumbers 123 cm-1and 140 cm-1become prominent over time under ambient condition (Exp. 2).[49]However, previous works insisted on the two peaks belonging to intrinsic Raman peaks of h-GaTe.[20,49,50]In our calculated results for h-GaTe,the most active peak is 96.75 cm-1. The Raman spectra need more experimental and theoretical approaches for further clarification.

    Fig. 5. Calculated phonon dispersion and Raman spectra of (a), (c) m-GaTe and (b), (d) h-GaTe. Here theory is our result, compared with experiment results from previous reports(Exp.1,[48] Exp.2,[49] Exp.[20]).

    4. Conclusion and perspectives

    By using first-principles energetic and phonon calculations within the quasi-harmonic approximation framework,we investigated the temperature-induced phase transition process in two-dimensional semiconductor GaTe. We predicted that the phase transition from h-GaTe to m-GaTe will occur at the temperature decreasing to 216 K. Our results are consistent with the phase transition condition from h-GaTe to m-GaTe observed in the experiments, such as the cooling process during annealing and laser irradiation. Based on the previously reported two-step phase transition process, we used the nudged elastic band method to calculate the phase transition barriers and investigate the corresponding transition state structures. The m-GaTe to t-GaTe phase transition barrier is 199 meV/formula and the t-GaTe to h-GaTe phase transition barrier is 288 meV/formula. The large phase transition barriers demonstrate the irreversible nature of the phase transition. The structure evolution in the phase transition process indicated that the bond broken is responsible for the high energy barriers. The electronic and phonon properties of the two phases were further investigated by comparison with available experimental and theoretical results. The m-GaTe is a direct bandgap semiconductor with a gap of 1.449 eV, which is close to the experimental value. The h-GaTe is an indirect bandgap semiconductor whose fundamental energy bandgap is 0.608 eV (0.48 eV lower than the direct bandgap). Our calculated Raman spectra are in general agreement with the experimentally measured data. This work provides insightful understanding on the process of temperature-induced phase transition of GaTe.

    Acknowledgments

    We acknowledge stimulating discussions with Prof. Xuetao Gan (Northwestern Polytechnical University). Calculations were performed in part at the high-performance computing center of Jilin University.

    猜你喜歡
    王雪
    5200張照片的治愈之旅:抑郁母子逆風(fēng)自救
    終有歲月可回首
    幸福(2023年5期)2023-07-06 05:43:18
    終有歲月可回首
    伴侶(2022年6期)2022-07-14 09:49:19
    安徽省重要農(nóng)業(yè)文化遺產(chǎn)保護(hù)與傳承探究
    走一步,再走一步
    王雪、郁子琦、陳天琪、馬銘哲作品
    例談數(shù)形結(jié)合法的廣泛應(yīng)用
    祖國(guó)(2018年3期)2018-03-26 07:40:36
    吃貨的愛情
    女士(2017年8期)2017-08-08 18:44:31
    Analysis of Characters Shaping in Ring Lardner’s Haircut
    獄中“女兒”叫一聲媽媽淚花流
    女士(2015年6期)2015-05-30 10:48:04
    少妇人妻精品综合一区二区| 成年女人毛片免费观看观看9 | 亚洲在久久综合| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡| 欧美xxⅹ黑人| 一级毛片电影观看| 天天躁日日躁夜夜躁夜夜| 久久久精品免费免费高清| 国产在线视频一区二区| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 日韩人妻精品一区2区三区| 男女下面插进去视频免费观看| 国产成人精品福利久久| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| freevideosex欧美| 亚洲精品成人av观看孕妇| 超色免费av| 国产精品一二三区在线看| 高清在线视频一区二区三区| 你懂的网址亚洲精品在线观看| 精品第一国产精品| 亚洲精品一二三| 在线观看美女被高潮喷水网站| 亚洲图色成人| 亚洲伊人久久精品综合| 一本大道久久a久久精品| 你懂的网址亚洲精品在线观看| 国产一区二区三区av在线| 日日爽夜夜爽网站| 日韩一区二区视频免费看| 国产激情久久老熟女| 亚洲av在线观看美女高潮| 亚洲av日韩在线播放| av卡一久久| 精品亚洲成国产av| 久久久亚洲精品成人影院| 国产成人aa在线观看| 永久免费av网站大全| 国产一区二区 视频在线| 少妇的逼水好多| 美女主播在线视频| 五月开心婷婷网| 天堂中文最新版在线下载| 日韩电影二区| 视频在线观看一区二区三区| 国产成人aa在线观看| 一边亲一边摸免费视频| 一级片免费观看大全| 看免费av毛片| 国产精品国产av在线观看| 嫩草影院入口| 美女高潮到喷水免费观看| 丝瓜视频免费看黄片| 在线亚洲精品国产二区图片欧美| 在线免费观看不下载黄p国产| 麻豆乱淫一区二区| 日韩制服丝袜自拍偷拍| 999久久久国产精品视频| 久久国产精品男人的天堂亚洲| 亚洲国产最新在线播放| 激情视频va一区二区三区| 日韩一区二区三区影片| 日本色播在线视频| 国产精品一二三区在线看| tube8黄色片| 精品亚洲成a人片在线观看| 国产精品久久久av美女十八| 一级毛片电影观看| 大片免费播放器 马上看| 欧美精品国产亚洲| av在线观看视频网站免费| 1024香蕉在线观看| 国产精品香港三级国产av潘金莲 | 亚洲第一青青草原| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影小说| 久久人妻熟女aⅴ| 性色av一级| 一区二区av电影网| 天天躁夜夜躁狠狠久久av| 91精品国产国语对白视频| 久久99精品国语久久久| 亚洲人成网站在线观看播放| 成人二区视频| 欧美少妇被猛烈插入视频| 如日韩欧美国产精品一区二区三区| 三级国产精品片| 亚洲av电影在线进入| 亚洲av日韩在线播放| 高清欧美精品videossex| 一级毛片 在线播放| 国产极品天堂在线| 蜜桃国产av成人99| 999久久久国产精品视频| 777久久人妻少妇嫩草av网站| 又黄又粗又硬又大视频| 少妇精品久久久久久久| 日韩伦理黄色片| 欧美日韩av久久| av免费观看日本| 成年女人在线观看亚洲视频| 校园人妻丝袜中文字幕| 黄色毛片三级朝国网站| 久热久热在线精品观看| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区国产| 性高湖久久久久久久久免费观看| 一二三四在线观看免费中文在| 国产国语露脸激情在线看| 妹子高潮喷水视频| 亚洲欧洲国产日韩| 欧美精品av麻豆av| 女人久久www免费人成看片| 女人精品久久久久毛片| 天天影视国产精品| 看非洲黑人一级黄片| 人妻系列 视频| 亚洲国产精品一区二区三区在线| 黄色毛片三级朝国网站| 国产亚洲欧美精品永久| 18在线观看网站| 久久精品人人爽人人爽视色| 久久婷婷青草| 黑人猛操日本美女一级片| 看非洲黑人一级黄片| 黄色配什么色好看| 18禁动态无遮挡网站| 久久影院123| 国产av精品麻豆| 国产人伦9x9x在线观看 | 亚洲精品自拍成人| 岛国毛片在线播放| 91精品三级在线观看| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 国产色婷婷99| 在线观看一区二区三区激情| 久久国产精品男人的天堂亚洲| 人妻系列 视频| 人妻少妇偷人精品九色| 国产精品欧美亚洲77777| 中文字幕亚洲精品专区| 亚洲成人手机| 精品国产一区二区久久| 一区二区三区激情视频| 亚洲美女视频黄频| 色婷婷久久久亚洲欧美| 色网站视频免费| www.熟女人妻精品国产| 免费人妻精品一区二区三区视频| 91精品三级在线观看| av在线老鸭窝| 亚洲av中文av极速乱| 精品少妇一区二区三区视频日本电影 | 成年动漫av网址| 国产片内射在线| 成人亚洲欧美一区二区av| 中文乱码字字幕精品一区二区三区| av在线播放精品| av网站在线播放免费| 欧美亚洲日本最大视频资源| 亚洲三区欧美一区| 国产1区2区3区精品| 啦啦啦在线观看免费高清www| 久久久久精品久久久久真实原创| 女性生殖器流出的白浆| 国产在线一区二区三区精| 日韩欧美精品免费久久| 午夜av观看不卡| 亚洲婷婷狠狠爱综合网| 日本-黄色视频高清免费观看| 亚洲经典国产精华液单| 久久久久久久国产电影| 日韩三级伦理在线观看| 亚洲图色成人| 99热全是精品| 日韩三级伦理在线观看| 人妻 亚洲 视频| 9191精品国产免费久久| 母亲3免费完整高清在线观看 | 国产精品熟女久久久久浪| 久久99一区二区三区| 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜制服| 99re6热这里在线精品视频| 麻豆乱淫一区二区| 免费观看a级毛片全部| 免费黄频网站在线观看国产| 久久久久久免费高清国产稀缺| av国产久精品久网站免费入址| 国产成人精品在线电影| 啦啦啦在线免费观看视频4| 男女无遮挡免费网站观看| 亚洲内射少妇av| 免费观看在线日韩| 欧美日韩综合久久久久久| 久久精品国产a三级三级三级| 日韩不卡一区二区三区视频在线| 大陆偷拍与自拍| 涩涩av久久男人的天堂| 丝袜在线中文字幕| 亚洲精品在线美女| 在线观看www视频免费| 亚洲精品在线美女| 一边摸一边做爽爽视频免费| 久久久久视频综合| 亚洲国产日韩一区二区| 久久精品国产亚洲av天美| 黄网站色视频无遮挡免费观看| 久久 成人 亚洲| 久久久久视频综合| 久久久久久伊人网av| 中文字幕色久视频| 久久99热这里只频精品6学生| 黄色怎么调成土黄色| 国产成人91sexporn| 一区二区三区精品91| 香蕉国产在线看| 亚洲在久久综合| 欧美黄色片欧美黄色片| 午夜福利乱码中文字幕| 老女人水多毛片| 天天躁夜夜躁狠狠躁躁| 精品少妇一区二区三区视频日本电影 | 日韩视频在线欧美| 亚洲四区av| 日韩一卡2卡3卡4卡2021年| 日韩一本色道免费dvd| 熟女电影av网| 日韩av不卡免费在线播放| 青草久久国产| 香蕉丝袜av| 侵犯人妻中文字幕一二三四区| 午夜日韩欧美国产| 午夜福利网站1000一区二区三区| 女人久久www免费人成看片| 十八禁高潮呻吟视频| 久久青草综合色| 欧美日韩精品成人综合77777| 日本av免费视频播放| 国产精品国产三级专区第一集| 久久久久久久久久久免费av| 久久久a久久爽久久v久久| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 在线观看人妻少妇| 黄色毛片三级朝国网站| 两性夫妻黄色片| 日本黄色日本黄色录像| 免费少妇av软件| 久久精品熟女亚洲av麻豆精品| 免费少妇av软件| 成年av动漫网址| 久久午夜综合久久蜜桃| 大香蕉久久成人网| 99久国产av精品国产电影| 免费黄色在线免费观看| 中国国产av一级| 国产综合精华液| 免费av中文字幕在线| 国产男女内射视频| 国产成人精品婷婷| 综合色丁香网| 亚洲欧美中文字幕日韩二区| 男人爽女人下面视频在线观看| 成年动漫av网址| 日本欧美国产在线视频| 日本wwww免费看| 精品国产一区二区三区四区第35| 一区二区三区激情视频| 在线 av 中文字幕| 精品少妇一区二区三区视频日本电影 | 天堂8中文在线网| 国产综合精华液| 亚洲一级一片aⅴ在线观看| 国产一区二区三区综合在线观看| 一级a爱视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 丝袜喷水一区| 夫妻午夜视频| 丝袜人妻中文字幕| 久久精品夜色国产| 一级黄片播放器| 色视频在线一区二区三区| 国产精品av久久久久免费| 国产精品国产三级国产专区5o| 亚洲av男天堂| 国产成人精品久久久久久| 97在线人人人人妻| 在线观看免费视频网站a站| 18禁动态无遮挡网站| 亚洲色图综合在线观看| 国产精品嫩草影院av在线观看| 久久精品国产自在天天线| 免费看不卡的av| 热99久久久久精品小说推荐| 如日韩欧美国产精品一区二区三区| 久久精品aⅴ一区二区三区四区 | 亚洲精品第二区| 亚洲欧美一区二区三区国产| 黄网站色视频无遮挡免费观看| 男女国产视频网站| 在线看a的网站| 国产又爽黄色视频| 午夜91福利影院| 色婷婷av一区二区三区视频| 人妻 亚洲 视频| 王馨瑶露胸无遮挡在线观看| av电影中文网址| 99久久综合免费| 精品国产乱码久久久久久男人| 精品少妇内射三级| 精品一区二区免费观看| 国产97色在线日韩免费| 亚洲美女视频黄频| 亚洲精品久久久久久婷婷小说| 欧美激情极品国产一区二区三区| tube8黄色片| 在线天堂中文资源库| 中文字幕制服av| 国产日韩一区二区三区精品不卡| 在线天堂中文资源库| 亚洲精品成人av观看孕妇| 亚洲av电影在线观看一区二区三区| 久久久国产一区二区| 日本免费在线观看一区| 尾随美女入室| 青春草视频在线免费观看| av线在线观看网站| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 国产精品二区激情视频| 日本欧美视频一区| 国产日韩欧美在线精品| 一边摸一边做爽爽视频免费| 国产免费一区二区三区四区乱码| 啦啦啦视频在线资源免费观看| 日韩免费高清中文字幕av| 国产亚洲欧美精品永久| 亚洲综合色网址| 久久久久精品久久久久真实原创| 桃花免费在线播放| 久久久久久伊人网av| 国产成人一区二区在线| 五月天丁香电影| 国产一级毛片在线| 亚洲av综合色区一区| 久久精品久久精品一区二区三区| 啦啦啦在线观看免费高清www| 黄片播放在线免费| 青春草视频在线免费观看| 亚洲av免费高清在线观看| 国产av精品麻豆| 欧美精品人与动牲交sv欧美| 国产精品香港三级国产av潘金莲 | 久久久久久久久久久免费av| 日本av手机在线免费观看| 欧美在线黄色| 亚洲国产精品一区三区| 日本av手机在线免费观看| 午夜久久久在线观看| 午夜老司机福利剧场| 久久午夜福利片| 国产精品嫩草影院av在线观看| 亚洲精品一区蜜桃| a级片在线免费高清观看视频| www.av在线官网国产| 欧美精品一区二区大全| 日本午夜av视频| 这个男人来自地球电影免费观看 | 欧美 日韩 精品 国产| 黄色毛片三级朝国网站| 午夜免费男女啪啪视频观看| 欧美另类一区| 久久狼人影院| 欧美成人午夜免费资源| 9热在线视频观看99| 亚洲av电影在线观看一区二区三区| 久久影院123| 丝袜人妻中文字幕| 18+在线观看网站| 男女无遮挡免费网站观看| 伦精品一区二区三区| 国产片内射在线| 欧美精品人与动牲交sv欧美| 国产成人精品久久二区二区91 | 午夜福利,免费看| 国产精品一国产av| 色吧在线观看| 国产成人91sexporn| 国产亚洲最大av| 男女午夜视频在线观看| 丝袜脚勾引网站| 美女xxoo啪啪120秒动态图| 视频在线观看一区二区三区| 两个人免费观看高清视频| 激情五月婷婷亚洲| 久热这里只有精品99| 久久这里只有精品19| 18+在线观看网站| 久久精品熟女亚洲av麻豆精品| 这个男人来自地球电影免费观看 | 国产成人一区二区在线| 国产精品偷伦视频观看了| av有码第一页| 国产精品.久久久| 90打野战视频偷拍视频| 男女下面插进去视频免费观看| 国产国语露脸激情在线看| 国产视频首页在线观看| 亚洲精品国产av成人精品| 久热久热在线精品观看| 亚洲精品第二区| 久久久久久久亚洲中文字幕| 赤兔流量卡办理| 久久久久网色| 人人妻人人添人人爽欧美一区卜| 天美传媒精品一区二区| 国产精品免费视频内射| 国产亚洲一区二区精品| 一级爰片在线观看| 国产一区二区三区综合在线观看| 交换朋友夫妻互换小说| 女人久久www免费人成看片| 中文字幕精品免费在线观看视频| 超碰97精品在线观看| 免费看不卡的av| 日韩熟女老妇一区二区性免费视频| 成人毛片60女人毛片免费| 日韩大片免费观看网站| 欧美精品一区二区免费开放| 国产 一区精品| 日韩人妻精品一区2区三区| 黄色一级大片看看| 麻豆av在线久日| 国产精品国产三级专区第一集| 成人影院久久| 王馨瑶露胸无遮挡在线观看| 免费看av在线观看网站| 亚洲欧美精品综合一区二区三区 | 纯流量卡能插随身wifi吗| 在线亚洲精品国产二区图片欧美| av女优亚洲男人天堂| 一个人免费看片子| 国产免费又黄又爽又色| 最近最新中文字幕免费大全7| 亚洲 欧美一区二区三区| 免费久久久久久久精品成人欧美视频| 人人澡人人妻人| 十分钟在线观看高清视频www| 亚洲精品久久午夜乱码| 韩国高清视频一区二区三区| 亚洲精品久久成人aⅴ小说| 人人妻人人爽人人添夜夜欢视频| 人妻一区二区av| 亚洲精品视频女| 熟女少妇亚洲综合色aaa.| 熟妇人妻不卡中文字幕| 国产男女内射视频| 老司机亚洲免费影院| 国产精品蜜桃在线观看| 国产毛片在线视频| 亚洲熟女精品中文字幕| 色吧在线观看| 中国国产av一级| 18禁观看日本| 欧美最新免费一区二区三区| 亚洲av欧美aⅴ国产| 国产一区二区在线观看av| 91精品伊人久久大香线蕉| 天天躁夜夜躁狠狠躁躁| 国产熟女欧美一区二区| 亚洲精品一二三| 亚洲图色成人| 国产精品久久久av美女十八| 午夜福利一区二区在线看| 久久鲁丝午夜福利片| 少妇精品久久久久久久| 久热这里只有精品99| www.av在线官网国产| 久久久久国产网址| 叶爱在线成人免费视频播放| 最近最新中文字幕大全免费视频 | 欧美日韩综合久久久久久| 午夜福利在线免费观看网站| 国产白丝娇喘喷水9色精品| 熟女电影av网| 久久99一区二区三区| 熟女电影av网| 欧美日韩成人在线一区二区| 国产成人91sexporn| www.熟女人妻精品国产| 2021少妇久久久久久久久久久| 一级a爱视频在线免费观看| 久久这里有精品视频免费| 国产成人精品福利久久| 亚洲激情五月婷婷啪啪| 国产在线免费精品| 成年人免费黄色播放视频| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载| 日韩大片免费观看网站| 久久毛片免费看一区二区三区| 亚洲熟女精品中文字幕| 丝袜人妻中文字幕| 美女xxoo啪啪120秒动态图| 成人二区视频| 伊人久久国产一区二区| 国产在线免费精品| 一区二区av电影网| 在线 av 中文字幕| 18+在线观看网站| 波多野结衣一区麻豆| 看免费av毛片| 涩涩av久久男人的天堂| 男女免费视频国产| 国产精品女同一区二区软件| 成年av动漫网址| 欧美xxⅹ黑人| 伦理电影免费视频| 欧美成人午夜免费资源| 成年美女黄网站色视频大全免费| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 日韩熟女老妇一区二区性免费视频| 爱豆传媒免费全集在线观看| 曰老女人黄片| 伦精品一区二区三区| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 久久人妻熟女aⅴ| 欧美少妇被猛烈插入视频| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 免费久久久久久久精品成人欧美视频| 丰满饥渴人妻一区二区三| 亚洲精品自拍成人| 亚洲欧美精品综合一区二区三区 | 精品少妇一区二区三区视频日本电影 | 中文字幕制服av| 天天操日日干夜夜撸| 国产av国产精品国产| 久久久久精品人妻al黑| 丰满乱子伦码专区| 极品少妇高潮喷水抽搐| 2022亚洲国产成人精品| 亚洲国产欧美网| 久久久欧美国产精品| 最新中文字幕久久久久| 在现免费观看毛片| 国产日韩欧美在线精品| 亚洲成国产人片在线观看| av不卡在线播放| 欧美+日韩+精品| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 成年人免费黄色播放视频| 日韩大片免费观看网站| 欧美日韩av久久| 亚洲av电影在线进入| 日本色播在线视频| 色婷婷久久久亚洲欧美| 国产精品二区激情视频| 国产精品人妻久久久影院| 婷婷色av中文字幕| 日本免费在线观看一区| 国产视频首页在线观看| 国产xxxxx性猛交| 亚洲精品日韩在线中文字幕| 亚洲内射少妇av| 国产成人欧美| 伊人亚洲综合成人网| 精品久久久精品久久久| a级片在线免费高清观看视频| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 叶爱在线成人免费视频播放| 国产精品 欧美亚洲| 亚洲国产精品国产精品| 日本色播在线视频| 18禁观看日本| 色吧在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 中国国产av一级| 国产精品不卡视频一区二区| 多毛熟女@视频| 国产爽快片一区二区三区| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 王馨瑶露胸无遮挡在线观看| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 久久久久久久亚洲中文字幕| 中文字幕人妻熟女乱码| a 毛片基地| 亚洲一区二区三区欧美精品| av电影中文网址| 久久久久精品人妻al黑| 亚洲精品av麻豆狂野| 亚洲人成网站在线观看播放| 亚洲国产av新网站| 亚洲少妇的诱惑av| 少妇被粗大猛烈的视频| 一本久久精品| 亚洲,欧美精品.| 国产成人精品婷婷| 男女午夜视频在线观看|