• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays?

    2021-09-28 02:17:36NingLi李寧HaiyiSun孫海義XinJing靖新andZhongtangChen陳仲堂
    Chinese Physics B 2021年9期
    關(guān)鍵詞:李寧

    Ning Li(李寧),Haiyi Sun(孫海義),Xin Jing(靖新),and Zhongtang Chen(陳仲堂)

    1College of Sciences,Northeastern University,Shenyang,China

    2College of Science,Shenyang JianZhu University,Shenyang,China

    Keywords:complex transportation networks,adaptive finite-time synchronization,multiple delays and multiweighted,aperiodically intermittent control

    1.Introduction

    Cyber physical systems(CPS),as the unity of computing process and physical process,are the next generation of intelligent system integrating computing,communication and control.CPS realizes the interaction with the physical process through the man–machine interaction interface,and uses the networked space to manipulate a physical entity in a remote,reliable,real-time,safe and cooperative way.[1]Compared with the Internet of things,CPS puts more emphasis on control.CPS has been concerned by many research institutions and scholars since it was first proposed in 2005.[2]In recent years,CPS has become a hot research direction and a lot of achievements have been made in priority industrial field for enterprises.[3]CPS has been widely used in intelligent transportation,aerospace,smart power grid,disaster early warning,military exercise,logistics and supply chain optimization and so on.The research and application of CPS are of great strategic significance for accelerating the integration of industrialization and informatization.[4–6]

    Complex dynamical network is an important method to describe and study the complex systems.According to different research aspects,many complex systems can be abstracted into a complex network of interacting individuals from the practical background.Over the past 20 years,the complex dynamical networks have been the focus of attention,and have gained more and more attention in various fields.Many scientific and technical systems can be modeled as the complex dynamical networks.[7–10]

    The emergence of CPS brings about new opportunities for the researchers in the field of network,which gives rise to cooperative control of multiple robots,attitude control of multiple satellites,formation control of unmanned aerial vehicle,smart grid control,intelligent transportation system,and so on.[11,12]The outstanding characteristic of CPS is an intelligent network composed of many devices with communication,computing and decision control functions.It can make the whole system in the best state through interaction.The operation of CPS is actually a collection of information transmission,synchronization,optimization,control and other dynamic processes in the complex dynamic networks.[13]

    There are rich dynamic behaviors in the analysis of complex network.Synchronization is one of the most important dynamic behaviors of the complex network.[14]Common phenomena in life,such as the resonance phenomenon,the cricket chorus,the flock of birds,and the rhythmic applause broke forth the audience in the theatre are widely known as synchronous phenomenon.Many practical problems are closely related to synchronization,such as the synchronous phenomena on the communications networks,the transportation networks,the human connection networks and WWW.[15–19]The synchronous study of complex networks is around the relationship and the network structure among the network behaviors.The research on synchronization control of complex networks is helpful to understand the influence of network structure on synchronization of complex systems,which can supplement the synchronization analysis of complex networks.[20–22]In the study of synchronous control of complex networks,many control methods have been introduced,such as adaptive control,[22,23]pinning control,[24,25]intermittent control,[26,27]finite-time control,[27–31]and sampled-data control.[32]

    The collaborative scheduling control of the transportation network can be taken as an example of the CPS system.[11,33]In the control of multiple means of transportation,different means of transportation are required to arrive at the same place at the same time as possible.In the complex transportation networks,when the air transportation,rail transportation,road transportation and water transportation are synchronized over a period of time,the time of goods staying in the logistics center can be reduced,the empty load rate of the transportation tools can be reduced,the average time of inventory can be shortened,and sometimes even the time of inventory in the logistics warehouse center can be eliminated.Therefore,it is necessary to conduct in-depth research on the synchronization of complex transportation networks,which will provide important theoretical support for the construction planning of macro-regional logistics and the auxiliary decision-making of transport line distribution and dispatch in the future.

    On the other hand,in the complex transportation networks,delay is inevitable due to the limited speed of transmission and traffic congestion.After considerable development,many complex network models that can reflect the actual characteristics have been established.In actual transportation network,sometimes the physical distance among nodes is far.The speed of vehicles,carrying capacity of transportation routes,transit and storage effect of logistics are limited.References[34,35]introduce the idea of network splitting,and establish a multi-delay complex network model.This network can be well applied to complex transportation networks with multiple delays.However,the weights of different nodes in each subnetwork are not reflected.Wang et al.[36]have made some attempts at splitting the weights.Wang put forward a complex network model based on weight by using the idea of network splitting and introducing the concept of weight.The model is analyzed synchronously and the pinning controller is designed.But the delays of different nodes in each subnetwork are not considered.In Ref.[37],the model of complex networks with multi-delay and multi-weight is preliminarily established.A simple linear feedback controller is designed using the technique of linear matrix inequalities.There is some conservatism in the controller design.Therefore,how to build a complex network model that can comprehensively reflect the delay and weight should be further studied.

    The occurrence of delay often affects the performance of the system,resulting in the vibration and even instability of the complex transportation network.There have been many research results on synchronization in delays complex networks.[38,39]Especially,how to solve the finite-time synchronization problem of the complex transportation networks with multiple delays and multi-weighted is still challenging.

    Based on the results of the above discussion and the idea of CPS,we proposed the model of multi-weighted complex transportation networks with multiple delays.On the basis of the theory of Lyapunov stability,the technique of adaptive control,aperiodically intermittent strategy and finite-time control,the adaptive aperiodically intermittent finite-time synchronization controllers have been designed.The external coupled configuration matrices do not require to be irreducibility and symmetry.Finally,the correctness and effectiveness of the proposed controllers are verified by the numerical simulations.

    The remainder of this paper is organized as follows.In Section 2,based on the ideas of CPS and network splitting,the multi-weighted complex transportation network model with multiple coupling delays is established,and some necessary assumptions and lemmas are given.In Section 3,the adaptive aperiodically intermittent finite-time synchronization of the multi-weighted complex transportation networks with multiple delays is researched via the theory of Lyapunov stability,the technique of adaptive control and finite-time.The adaptive aperiodically intermittent finite-time synchronization controllers are designed.The numerical simulation results are given to illustrate the theorems in Section 4.Finally,the conclusion is drawn in Section 5.

    2.Model description and preliminaries

    Transportation systems can be well described by complex network models.Each region involved in transport can be used as a node in the complex transport network system.And each mode of transportation(such as air,rail,road,water,and pipeline)connecting any two regions can be abstracted to represent each side of a complex network.[37]In order to make the model better reflect the structural properties of the actual system,it is considered that the same network can be split many times,that is,the subnetwork obtained by the first split is regarded as a complete network,and then the subnetwork is split to a more detailed split result.We fully consider delay and weight in modeling and further improve the model in this paper.First of all,different types of transportation models have different transport velocity.As the transportation velocity of the highway network,railway network,navigation network and aviation network are different,under the premise of simultaneous departure,the velocity of aviation network is the fastest,and the railway network,highway network and navigation network have a time lag of arrival time for the aviation network,respectively.Therefore,the idea of network splitting can describe the multi-delay complex transportation network system.Second,for the same traffic mode,each subnetwork is divided again according to the weight attribute of the path and station in the road network.And the weight division is to divide nodes and edges according to their weights in the network.The practical significance of its division is to divide the stations and lines in the traffic network according to their busy degree in the network.Therefore,based on the idea of network splitting and CPS,the N coupling nonlinear and diffusion of the multi-weighted complex transportation networks with multiple delays model,with each node as an n-dimensional nonlinear system is described as follows:

    Remark 1The model(1)is very useful for understanding the multi-weighted complex transportation networkmodel with multiple coupling delays.In the real world,many practical systems can be abstracted by the model(1),such as biological networks,and communication networks.The model(1)is a synthesis and generalization of many other models.For example,when M0=M1=···=Mm=1,the model(1)is degenerated to the complex network model with multiple delays in Refs.[34,35].Whenτ1=τ2=···=τm=0,the model(1)is degenerated to the multi-weighted complex networks in Ref.[36].Moreover,the following results do not have to satisfy the conditions in the past of outer coupling configuration matrices to be symmetric or irreducible.

    When the states x1(t)→···→xN(t)→s(t),as t→T?,the multi-weighted complex transportation networks model with multiple delays(1)realizes finite-time synchronization.Where s(t)∈Rnis the solution of an isolated node,i.e.,

    where s(t;t0;s0)is a solution of the system(2)with s0∈Rn,then the multi-weighted complex transportation networks model with multiple delays(1)is said to realize finite-time synchronization,andΛ×Λ×···×Λis called the region of finite-time synchrony of the multi-weighted complex transportation networks model with multiple delays(1).

    In order to reach the following conclusions,we give the following necessary assumptions and lemmas.

    Assumption 1There exists positive constant Li(i=1,2,...,N).f:Rn×R→Rnis a nonlinear vector-valued continuous function,which satisfies the Lipschiz condition

    Lemma 1[27]Suppose that function V(t)is continuous and non-negative when t∈[?τ,+∞)and satisfies the following conditions:

    where l=0,1,2,...,α,β>0,0<γ<1.If there exists a constantψ∈(0,1),whereψis defined as follows:

    then the following inequality holds:

    where the constant T is the settling time.

    Remark 2Lemma 1 plays an important role in the intermittent finite-time synchronization analysis and control of complex networks via periodically intermittent control.In the Lemma 1,tl+1?tlis the length of the lth aperiodical control period.tl+1?sland sl?tlrepresent the non-control time and control time in the l-th control period respectively.

    Lemma 2[40]For any n dimensional column vectors x,y,positive definite n×n dimensional matrix Q,the following matrix inequality holds:

    If not specified,inequality Q>0(Q<0,Q≥0,Q≤0)means Q is a positive(or negative,or semi-positive,or semi-negative)definite matrix.

    Lemma 3[41]Letξ1,ξ2,...,ξnare positive numbers and 0≤μ1<μ2,then

    3.Aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays

    For the convenience of proof,we defnie the error vector as follows:

    Then the error system corresponding to model(1)is can be described by

    When the error dynamical system(8)achieves finite-time stabilization,the multi-weighted complex transportation networks with multiple delays(1)realize finite-time synchronization.

    In order to enable the multi-weighted complex transportation networks with multiple delays(1)finite-time synchronization,we design the following aperiodically intermittent adaptive finite-time controllers:

    and updating laws

    Using the theory of stability theory,the technique of adaptive control,aperiodically intermittent control and finite-time control theory,the synchronization controller of the multiweighted complex transportation networks with multiple delays(1)under the aperiodically intermittent adaptive finitetime synchronization controllers(9)and(10)can be got as following.

    Theorem 1If the Assumption 1 holds,there exist positive constantsψ∈(0,1)and positive definite matrixΦdefined as follows,such that the following inequality holds:

    By Lemma 2,the subsequent inequation holds:

    Combining with the Assumption 1,and substituting inequality(14)into Eq.(13),we can get

    Because0≤σ≤1,based on Lemma 3,it is easy to obtain the following inequality:

    and we have

    Similarly,when sl

    So we can derive the following result:

    i.e.,

    Next,we give the value of finite-time T?.Apparently,T?satisfies the following equation:

    Take the derivative of both sides of the Eq.(23)with respect to t,and properly arrange it to obtain

    Substituting Eq.(24)back into Eq.(23),we can get

    Then we apply condition(25)to discuss the value of finitetime T?.

    The proof is completed.

    Remark 3If tl+1?tl=T and tl+1?sl=δ(l=0,1,2,...),where T andδare positive constants,the aperiodically adaptive intermittent finite-time control strategy becomes the adaptive periodic intermittent finite-time control strategy.Therefore,the control strategy we designed is more general and more flexible to use.And we also give the condition for finite-time synchronization and the specific time T?of finitetime synchronization.

    Remark 4In the complex networks(1),when M0=M1=···=Mm=1,the multi-weighted complex transportation networks with multiple delays(1)is degenerated to the following form:

    Equation(26)is the complex networks with multiple delays of Ref.[34]We take the same aperiodically intermittent adaptive finite-time controllers(9)and updating laws(10)to get the following corollary.

    Corollary 1If the Assumption 1 holds,there exist positive constantsψ∈(0,1)and positive definite matrixΩdefined as follows,such that the following inequality holds:

    Remark 5In the complex networks(1),whenτ1=τ2=···=τm=0,the multi-weighted complex transportation networks with multiple delays(1)is degenerated to the following form:

    Equation(28)is the complex networks with multi-weighted of Ref.[36].Accordingly,we design the aperiodically intermittent adaptive finite-time controllers as follows:

    Then we select the following Lyapunov–Krasovskii function:

    Corollary 2If the Assumption 1 holds,there exist positive constantsψ∈(0,1)and positive definite matrixΔdefined as follows,such that the following inequality holds:

    4.Numerical simulation

    To verify the validity of the proposed theorem in the section III,we give the numerical example.

    Example 1In this example,we choose 10 cities as the nodes of the complex transportation networks.Air transportation,railway transportation and highway transportation are three modes of transportation in complex transportation network.According to the level of the city and the busy degree of a certain vehicle,the weight is divided into three orders of magnitude.We abstract it as the complex transportation networks with 3-weighted and 2 coupling delays,which can be described as follows:

    Chen system as the single node of dynamical equationf(·)is described as follows:

    When the parameters a=35,b=?7,c=28d=?3,the Chen system has a chaotic attractor.Similar to Ref.[25],there exists L=5.5619 that makes Assumption 1 hold.

    In this simulation,the initial values of states xi(0)(i=1,2,...,5)are given at random.s(0)=(1,1,1)T,ki(0)=1 andθi=5(i=1,2,...,10),σ=1/4,θ=6.The aperiodically intermittent control period is randomly assigned to the interval.[1,2]The control time is randomly assigned to[0.5,1.5].ThenΨ=1/4.

    It can be obtained by verification that all the conditions of Theorem 1 are satisfied.Applying Theorem 1,the multiweighted complex transportation networks with multiple delays(33)can be synchronized by applying the following aperiodically intermittent adaptive finite-time controllers(9)and the update laws(10)with a finite time T?=2.88.

    Fig.1.Synchronization errors ei1(t)of network(33)under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.2.Synchronization errors ei2(t)of network(33)under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.3.Synchronization errors ei3(t)of network(33)under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Figures 1–3 show the synchronization errors of ei1(t),ei2(t),ei3(t)with aperiodically intermittent adaptive finitetime controllers(9)–(10).It is obvious that the synchronous errors of network(33)with adaptive feedback controller(9)under the updating laws(10)converge to zero after a short period of time.Because this paper uses intermittent control,the error system is not immediately asymptotically stable.During the period of time that is not controlled,the system response curve may oscillate slightly and gradually stabilize,as shown in Figs.1–3,from 1 second to 1.5 seconds,the error increases and then converges to zero.When the air transportation,railway transportation and road transportation reach the synchronization after a period of time,it can reduce the time of goods staying in the logistics center,reduce the empty rate of transport vehicles,and shorten the average inventory time.

    All other parameters are the same as Eq.(33).We plot the synchronization quality Q(t)in the Fig.4.

    Fig.4.The qualities Q(t)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers.

    Fig.5.Synchronization errors ei1(t)of network(33)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.6.Synchronization errors ei2(t)of network(33)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Fig.7.Synchronization errors ei3(t)of network(33)with the disturbance signal under the aperiodically intermittent adaptive finite-time controllers(9)–(10).

    Obviously,the synchronization quality Q(t)can not achieve synchronization without controller.The state of the error system diverges rapidly without controller,while the aperiodically intermittent adaptive finite-time controllers(9)–(10)can still guarantee the synchronization of the controlled network(33).It is shown that the aperiodically intermittent adaptive finite-time controllers have strong robustness against uncertainties.

    5.Conclusion

    In this paper,we have researched the adaptive finite-time synchronization of the multi-weighted complex transportation networks with multiple delays via aperiodically intermittent strategy based on the CPS.Using the technique of adaptive control,finite-time control,aperiodically intermittent control and the theory of Lyapunov stability,we design the adaptive aperiodically intermittent finite-time synchronization controllers.The controllers we designed are very useful for understanding the finite-time synchronization in the multi-weighted complex transportation networks with multiple delays.When the coupling strength or structure changes,the aperiodically intermittent adaptive finite-time controller designed still has strong robustness.Moreover,there is no requirement for the outer coupling configuration matrices to be irreducible or symmetric.Finally,the effectiveness of the adaptive aperiodically intermittent finite-time synchronization controllers is verified by numerical example.It shows that the controllers designed in this paper have correctness and effectiveness.

    猜你喜歡
    李寧
    Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
    回望祖山圖
    What Is Guochao?
    Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
    In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS
    李寧:“我還在路上”
    Progress in quantum well and quantum cascade infrared photodetectors in SITP?
    創(chuàng)始人回歸后李寧加速復(fù)蘇
    跌宕起伏“李寧”
    健康大使李寧如何養(yǎng)生保健
    健康必讀(2016年11期)2016-12-12 17:30:44
    久久久久久久久久成人| 亚洲欧洲日产国产| 男人和女人高潮做爰伦理| 亚洲国产成人一精品久久久| 国产又色又爽无遮挡免| 熟女电影av网| 国内揄拍国产精品人妻在线| 国产高清有码在线观看视频| 日日啪夜夜撸| 我的女老师完整版在线观看| 亚洲av免费在线观看| 国产精品无大码| 自拍偷自拍亚洲精品老妇| 中文欧美无线码| 熟女电影av网| 日本-黄色视频高清免费观看| 成年版毛片免费区| 国产高清不卡午夜福利| 中文亚洲av片在线观看爽| 在线天堂最新版资源| 看十八女毛片水多多多| 在线天堂最新版资源| 亚洲精品乱码久久久久久按摩| 国产av在哪里看| 日本wwww免费看| 我要看日韩黄色一级片| 成人无遮挡网站| 2021少妇久久久久久久久久久| 中文乱码字字幕精品一区二区三区 | av在线老鸭窝| 国内精品一区二区在线观看| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 亚洲精品456在线播放app| 久久久久久久久中文| 午夜福利在线观看免费完整高清在| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区av在线| 色综合站精品国产| 国产精品嫩草影院av在线观看| 亚洲图色成人| 国产精品乱码一区二三区的特点| 日产精品乱码卡一卡2卡三| 亚洲内射少妇av| 一边摸一边抽搐一进一小说| 18禁动态无遮挡网站| 久久亚洲国产成人精品v| 亚洲精品aⅴ在线观看| 美女黄网站色视频| 六月丁香七月| 中文字幕制服av| 亚洲,欧美,日韩| 国产乱人视频| 精品国产三级普通话版| 国产成人精品婷婷| 国产黄色小视频在线观看| 中文乱码字字幕精品一区二区三区 | 精品久久久久久电影网 | 99视频精品全部免费 在线| 日韩精品有码人妻一区| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 白带黄色成豆腐渣| www.色视频.com| 91久久精品国产一区二区成人| 久久久国产成人精品二区| 亚洲,欧美,日韩| 91av网一区二区| 91在线精品国自产拍蜜月| 国产v大片淫在线免费观看| 国产精品乱码一区二三区的特点| 九九久久精品国产亚洲av麻豆| 欧美成人a在线观看| 九九爱精品视频在线观看| 看十八女毛片水多多多| 久久99热这里只有精品18| 午夜福利在线观看吧| 99久久成人亚洲精品观看| 精品不卡国产一区二区三区| av免费在线看不卡| 乱系列少妇在线播放| 精品久久久久久久人妻蜜臀av| 日韩精品青青久久久久久| 国产亚洲最大av| 三级国产精品片| 欧美人与善性xxx| 3wmmmm亚洲av在线观看| 春色校园在线视频观看| 波多野结衣巨乳人妻| 久久99精品国语久久久| 亚洲五月天丁香| videos熟女内射| 国产极品精品免费视频能看的| 国产成人精品婷婷| 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 3wmmmm亚洲av在线观看| 男插女下体视频免费在线播放| 成人综合一区亚洲| av播播在线观看一区| 午夜亚洲福利在线播放| 中文字幕人妻熟人妻熟丝袜美| av.在线天堂| 亚洲国产欧洲综合997久久,| 日韩一区二区三区影片| 国产精品.久久久| 国产精品久久久久久精品电影| 男插女下体视频免费在线播放| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 免费黄网站久久成人精品| 在线观看66精品国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品影院6| 亚洲人与动物交配视频| 91狼人影院| 黄片wwwwww| 一区二区三区免费毛片| 亚洲在线观看片| 全区人妻精品视频| 97人妻精品一区二区三区麻豆| 欧美bdsm另类| 欧美激情国产日韩精品一区| 九草在线视频观看| 成人三级黄色视频| 69人妻影院| 国产精品一二三区在线看| 国产激情偷乱视频一区二区| 成人毛片60女人毛片免费| 色吧在线观看| 能在线免费看毛片的网站| videos熟女内射| 日本黄大片高清| 丰满人妻一区二区三区视频av| 日本av手机在线免费观看| 午夜福利视频1000在线观看| 午夜久久久久精精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品影院6| 能在线免费看毛片的网站| 水蜜桃什么品种好| 日本三级黄在线观看| 亚洲丝袜综合中文字幕| 亚洲av二区三区四区| 国产极品天堂在线| 日日撸夜夜添| 观看美女的网站| 久久久久网色| 国产一级毛片在线| 大又大粗又爽又黄少妇毛片口| 99热精品在线国产| 亚洲成av人片在线播放无| 日韩成人伦理影院| 国产精品99久久久久久久久| 午夜福利网站1000一区二区三区| 欧美日韩精品成人综合77777| 日本猛色少妇xxxxx猛交久久| 少妇猛男粗大的猛烈进出视频 | 91aial.com中文字幕在线观看| 国产av不卡久久| av视频在线观看入口| 简卡轻食公司| 晚上一个人看的免费电影| 亚洲av中文字字幕乱码综合| 成年版毛片免费区| av播播在线观看一区| 九色成人免费人妻av| 欧美成人一区二区免费高清观看| 水蜜桃什么品种好| 亚洲国产精品国产精品| 看黄色毛片网站| 免费看光身美女| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 精品一区二区免费观看| 九九热线精品视视频播放| 一本一本综合久久| 国产一级毛片在线| 小蜜桃在线观看免费完整版高清| 欧美最新免费一区二区三区| 成人毛片a级毛片在线播放| 国产精品av视频在线免费观看| 国产亚洲最大av| 亚洲最大成人手机在线| 亚洲不卡免费看| 欧美高清成人免费视频www| 欧美日韩综合久久久久久| 大话2 男鬼变身卡| 亚洲美女视频黄频| 国产一区二区亚洲精品在线观看| 能在线免费看毛片的网站| 成人亚洲精品av一区二区| 亚洲人成网站在线观看播放| 亚洲中文字幕日韩| 亚洲欧洲国产日韩| 日韩强制内射视频| 久久精品国产亚洲网站| 啦啦啦观看免费观看视频高清| av天堂中文字幕网| 国产精品无大码| 变态另类丝袜制服| 搡老妇女老女人老熟妇| 精品人妻熟女av久视频| 久久久久久久久久久丰满| 日日摸夜夜添夜夜添av毛片| 久久久久久九九精品二区国产| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品成人久久久久久| 国产精品一区二区三区四区久久| 欧美成人一区二区免费高清观看| 亚洲久久久久久中文字幕| a级一级毛片免费在线观看| 日本黄色视频三级网站网址| 国产极品天堂在线| 日韩大片免费观看网站 | 久久草成人影院| 久久久欧美国产精品| 国产免费一级a男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件| 中文字幕精品亚洲无线码一区| 欧美一级a爱片免费观看看| 美女脱内裤让男人舔精品视频| 91av网一区二区| 亚洲av一区综合| 韩国高清视频一区二区三区| 国产精品不卡视频一区二区| 国产精品av视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 最近中文字幕2019免费版| 精品久久国产蜜桃| 国产精品久久电影中文字幕| 日韩av在线免费看完整版不卡| 亚洲精品日韩av片在线观看| 男插女下体视频免费在线播放| 国产伦在线观看视频一区| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 午夜福利高清视频| 国产成人a∨麻豆精品| 少妇的逼水好多| 久久久久久久久大av| 桃色一区二区三区在线观看| 在线天堂最新版资源| 精品免费久久久久久久清纯| 天堂av国产一区二区熟女人妻| 亚洲av成人精品一二三区| 久久人人爽人人片av| 久久精品91蜜桃| 国产黄片视频在线免费观看| 国产伦精品一区二区三区四那| 精品一区二区免费观看| 欧美3d第一页| 亚洲精品aⅴ在线观看| 欧美成人a在线观看| 国产午夜精品一二区理论片| 久久99热这里只有精品18| 日本黄色片子视频| 成人毛片60女人毛片免费| 精品久久久久久久末码| 少妇的逼水好多| 日韩欧美三级三区| 成人亚洲精品av一区二区| 婷婷色麻豆天堂久久 | 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 亚洲国产日韩欧美精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 老司机福利观看| 日韩av不卡免费在线播放| 美女cb高潮喷水在线观看| 国产精品国产高清国产av| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 免费播放大片免费观看视频在线观看 | 看黄色毛片网站| 亚洲av免费在线观看| 国产精品久久电影中文字幕| 欧美日本亚洲视频在线播放| 精品一区二区三区视频在线| 伦理电影大哥的女人| 嫩草影院精品99| 欧美97在线视频| www.色视频.com| 国产v大片淫在线免费观看| 国产三级中文精品| 一本一本综合久久| 黄色日韩在线| 久久精品久久精品一区二区三区| 97超碰精品成人国产| 久久人人爽人人爽人人片va| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 人妻系列 视频| 成人毛片a级毛片在线播放| 亚洲综合精品二区| 欧美不卡视频在线免费观看| 国产精品女同一区二区软件| 麻豆一二三区av精品| 亚洲自偷自拍三级| 精品久久久久久久久久久久久| av国产免费在线观看| 精品无人区乱码1区二区| 午夜福利网站1000一区二区三区| 亚洲综合精品二区| 亚洲av二区三区四区| 免费观看性生交大片5| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| 观看免费一级毛片| 国产精品av视频在线免费观看| 极品教师在线视频| 免费看a级黄色片| 最近2019中文字幕mv第一页| 国内精品美女久久久久久| 97热精品久久久久久| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 日韩成人伦理影院| 九九热线精品视视频播放| 国产精品电影一区二区三区| 亚洲av免费在线观看| 日韩欧美国产在线观看| 搡女人真爽免费视频火全软件| 国产一级毛片在线| 2021天堂中文幕一二区在线观| 午夜爱爱视频在线播放| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡免费网站照片| 一个人看的www免费观看视频| 搡老妇女老女人老熟妇| 国产午夜精品论理片| 国产视频首页在线观看| 秋霞伦理黄片| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| av国产免费在线观看| 女人被狂操c到高潮| 只有这里有精品99| 午夜激情福利司机影院| 中文字幕av成人在线电影| 简卡轻食公司| 亚洲精品aⅴ在线观看| 国产精品嫩草影院av在线观看| 久久精品91蜜桃| 国产在视频线精品| 成人亚洲欧美一区二区av| 一二三四中文在线观看免费高清| 两性午夜刺激爽爽歪歪视频在线观看| 久久综合国产亚洲精品| 国产精品人妻久久久久久| 国产亚洲午夜精品一区二区久久 | 欧美成人免费av一区二区三区| 神马国产精品三级电影在线观看| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 国产老妇伦熟女老妇高清| 身体一侧抽搐| 一本一本综合久久| av在线蜜桃| 中文乱码字字幕精品一区二区三区 | 成人毛片a级毛片在线播放| 中文乱码字字幕精品一区二区三区 | 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 精品一区二区三区人妻视频| 春色校园在线视频观看| 九九在线视频观看精品| 丰满少妇做爰视频| 大香蕉久久网| av卡一久久| 免费无遮挡裸体视频| 丝袜美腿在线中文| 久久久久久久久久久免费av| 成人午夜高清在线视频| 搞女人的毛片| 一区二区三区四区激情视频| 成人高潮视频无遮挡免费网站| 一区二区三区四区激情视频| 色综合色国产| av卡一久久| 欧美日韩综合久久久久久| 亚洲av中文av极速乱| 国产精品一区www在线观看| 小说图片视频综合网站| 亚洲伊人久久精品综合 | 人人妻人人澡人人爽人人夜夜 | 日本av手机在线免费观看| 亚洲,欧美,日韩| 久久久久久国产a免费观看| 少妇的逼水好多| 国国产精品蜜臀av免费| 成人欧美大片| 国产精品日韩av在线免费观看| a级一级毛片免费在线观看| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 免费大片18禁| 天天一区二区日本电影三级| 日本免费a在线| 伊人久久精品亚洲午夜| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| av视频在线观看入口| h日本视频在线播放| 能在线免费看毛片的网站| 免费观看在线日韩| 男人和女人高潮做爰伦理| 久久久久久九九精品二区国产| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 男人狂女人下面高潮的视频| 男女下面进入的视频免费午夜| 国产在线一区二区三区精 | 欧美极品一区二区三区四区| 99久久精品热视频| 日本一本二区三区精品| 日本猛色少妇xxxxx猛交久久| 午夜视频国产福利| 成人漫画全彩无遮挡| 国产精品乱码一区二三区的特点| 性插视频无遮挡在线免费观看| 在线a可以看的网站| 一区二区三区乱码不卡18| 久久精品91蜜桃| 国产人妻一区二区三区在| 成人毛片60女人毛片免费| 亚洲欧美一区二区三区国产| 麻豆久久精品国产亚洲av| 免费搜索国产男女视频| 日本黄色视频三级网站网址| 狂野欧美白嫩少妇大欣赏| 村上凉子中文字幕在线| 啦啦啦啦在线视频资源| 午夜a级毛片| 国产又黄又爽又无遮挡在线| 97在线视频观看| 久久亚洲国产成人精品v| av在线播放精品| 亚洲成人av在线免费| 国产精华一区二区三区| 午夜日本视频在线| 久久久久久久国产电影| av又黄又爽大尺度在线免费看 | av又黄又爽大尺度在线免费看 | 亚洲熟妇中文字幕五十中出| 小蜜桃在线观看免费完整版高清| 91在线精品国自产拍蜜月| 小说图片视频综合网站| 国产成人aa在线观看| 欧美日韩在线观看h| 欧美高清性xxxxhd video| 日日撸夜夜添| 国产在线男女| 99国产精品一区二区蜜桃av| 精品熟女少妇av免费看| 久久人人爽人人片av| 欧美日韩精品成人综合77777| 日韩欧美国产在线观看| 丰满乱子伦码专区| 国产精品国产高清国产av| 男插女下体视频免费在线播放| 在线观看av片永久免费下载| 特大巨黑吊av在线直播| 色吧在线观看| 97超碰精品成人国产| 欧美zozozo另类| 夜夜看夜夜爽夜夜摸| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 日本一本二区三区精品| 欧美性猛交╳xxx乱大交人| 色综合色国产| 精品一区二区三区视频在线| 少妇人妻一区二区三区视频| 久久人妻av系列| 久久久精品94久久精品| 看免费成人av毛片| 一边摸一边抽搐一进一小说| 男女啪啪激烈高潮av片| 特大巨黑吊av在线直播| 国产精品人妻久久久影院| 亚洲欧美成人精品一区二区| 嫩草影院入口| 欧美一区二区精品小视频在线| 久久精品国产99精品国产亚洲性色| 久久久久久伊人网av| 秋霞伦理黄片| 日日摸夜夜添夜夜爱| 国产午夜福利久久久久久| 少妇熟女欧美另类| 草草在线视频免费看| 精品久久久噜噜| 免费看美女性在线毛片视频| 中文亚洲av片在线观看爽| 一级黄片播放器| 免费播放大片免费观看视频在线观看 | 国产免费又黄又爽又色| 免费观看人在逋| 老司机影院毛片| 水蜜桃什么品种好| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| 成人午夜高清在线视频| 午夜福利网站1000一区二区三区| 99久国产av精品| 亚洲av免费在线观看| 亚洲无线观看免费| 国语对白做爰xxxⅹ性视频网站| 亚洲av中文av极速乱| 亚洲美女搞黄在线观看| 亚洲国产欧美人成| h日本视频在线播放| 乱系列少妇在线播放| 欧美日韩在线观看h| 久久久a久久爽久久v久久| 国产亚洲最大av| .国产精品久久| 久久精品夜色国产| 精品久久久久久电影网 | 91精品伊人久久大香线蕉| 纵有疾风起免费观看全集完整版 | 日本一本二区三区精品| 在线观看美女被高潮喷水网站| 小说图片视频综合网站| 国产视频内射| 最近最新中文字幕免费大全7| 日韩成人伦理影院| 男人的好看免费观看在线视频| 自拍偷自拍亚洲精品老妇| 别揉我奶头 嗯啊视频| 成年女人永久免费观看视频| 国产毛片a区久久久久| 国产在视频线精品| 亚洲欧美日韩无卡精品| 国产色婷婷99| av视频在线观看入口| 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 九九热线精品视视频播放| .国产精品久久| 少妇熟女欧美另类| 美女黄网站色视频| 久久精品国产亚洲av涩爱| 美女cb高潮喷水在线观看| 日韩欧美精品v在线| 99热这里只有是精品50| 日本av手机在线免费观看| 国产精品一区二区性色av| 中文字幕制服av| 国产一区二区亚洲精品在线观看| 亚洲av二区三区四区| 久久人人爽人人片av| 我的女老师完整版在线观看| 人人妻人人看人人澡| 午夜老司机福利剧场| 亚洲欧美精品专区久久| 中文在线观看免费www的网站| 深爱激情五月婷婷| 日本免费在线观看一区| 极品教师在线视频| 亚洲国产欧美人成| 欧美日韩综合久久久久久| 国产69精品久久久久777片| 日韩三级伦理在线观看| 免费看光身美女| 人妻少妇偷人精品九色| 亚洲国产精品专区欧美| 久久久久久久久久成人| 麻豆成人午夜福利视频| 精品久久久久久电影网 | 一区二区三区乱码不卡18| 中文欧美无线码| 免费观看精品视频网站| 六月丁香七月| 国产三级在线视频| 欧美97在线视频| 天天躁日日操中文字幕| 欧美一区二区精品小视频在线| 国产在线一区二区三区精 | 免费一级毛片在线播放高清视频| 69人妻影院| ponron亚洲| 亚洲国产精品国产精品| 观看美女的网站| 成人毛片60女人毛片免费| 亚洲国产精品久久男人天堂| 欧美性猛交╳xxx乱大交人| 三级国产精品欧美在线观看| 九九爱精品视频在线观看| 国产精华一区二区三区| 91av网一区二区| 国产欧美日韩精品一区二区| 国模一区二区三区四区视频| 国产 一区精品| 国产日韩欧美在线精品| 欧美zozozo另类| 少妇的逼好多水| 色综合色国产| 青春草国产在线视频| 久久人人爽人人爽人人片va| 国产精品一区二区在线观看99 | 日本三级黄在线观看| 久久综合国产亚洲精品| 亚洲精品自拍成人| 国产精品麻豆人妻色哟哟久久 | 亚洲不卡免费看| 青青草视频在线视频观看| 午夜福利高清视频| 久久久a久久爽久久v久久| 日韩av在线大香蕉|