• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage

    2022-03-12 07:44:38NingLi李寧XinLi李鑫MingYueZhang張明越JingYingMiao苗景迎ShenChengFu付申成andXinTongZhang張昕彤
    Chinese Physics B 2022年3期
    關(guān)鍵詞:李鑫李寧

    Ning Li(李寧) Xin Li(李鑫) Ming-Yue Zhang(張明越) Jing-Ying Miao(苗景迎)Shen-Cheng Fu(付申成) and Xin-Tong Zhang(張昕彤)

    1Center for Advanced Optoelectronic Functional Material Research,Northeast Normal University,Changchun 130024,China

    2Key Laboratory of UV-Emitting Materials and Technology(Northeast Normal University),Ministry of Education,Changchun 130024,China

    Keywords: holographic,ZnO nanowires,Ag nanoparticles

    1. Introduction

    With the rapid development of information communication technology, massive data are exchanged in the Internet every moment. It is estimated that the amount of information generated in the world will reach 175 ZB(zettabyte)in 2025.A big challenge to store large-volume data in photosensitive media efficiently still exists.[1]Compared with electromagnetic storage,optical memory has potential advantages of high density,long life and low power consumption.[2-6]The shorter the wavelength of recording light,the higher the storage density. Holographic technology can use interference fringes to record the whole object information at the Airy disc of photosensitive materials.[7-10]In addition,the“page”mode of holographic recording also provides possibility for a high-speed data transmission.[7]

    In recent years, noble-metal/metal-oxide-semiconductor nanostructures have attracted much attention for their excellent photoelectric and chemical properties.[11-20]Especially,the discovery of photochromism in such an inorganic system promotes the development of holographic storage.[21-25]ZnO has advantages of wide band gap, large exciton binding energy and high electron mobility, which make it being a candidate for multifunctional devices.[26]ZnO nanomaterials with wurtzite structure can be made into a variety of morphologies in nanoscale, such as nanorods,[27]nanosheets,[28]and nanotubes.[29]Among them,the regularly arranged ZnO nanowire arrays need no complex preparation process while have large specific surface area afterc-axis oriented growth.[30]So far, nano-Ag/ZnO nanocomposites have been widely investigated in the fields of gas sensors, photocatalysis and photo-electrochemistry.[31-33]Unfortunately,no reports are found on the holographic storage in nano-Ag/ZnO nanocomposite films. As ZnO nanowires (NWs) have low chemical activity on their surface, hot electrons in localized surface plasmon resonance (LSPR) are difficult to transfer from metal to the semiconductor sides.The transition from Ag to Ag+is thus partly inhibited.To resolve the issue,ZnO NWs with oxygen defects are fabricated by hydrothermal method in this paper. Meanwhile, an idea of “electron reverse transfer”is proposed that visible light induces reduction of Ag+ions through the excitation of ZnO. An obvious plasmon spectral enhancement is observed after a blue-ray excitation. Highefficient hologram reconstruction is realized after optimizing nanowire density,oxygen defects and surface roughness.

    2. Experimental details

    2.1. Preparation of Ag+/ZnO NWs

    A two-step hydrothermal method was used to synthesize ZnO NWs. Before preparation, the FTO glass substrates of 2 cm×2 cm were ultrasonically treated in ultra-pure water,acetone and isopropanol for 15 min, respectively, and were dried naturally in air.Meanwhile,in order to remove the residual organic compounds and increase the surface hydrophilicity,the FTO substrate was pretreated with ultraviolet ozone for 15 min. Afterwards,zinc acetate,ethanolamine and methanol were mixed by magnetic stirring at room temperature for 90 min to obtain ZnO seed solution. Then, the ZnO seed solution(50 μL)was spin-coated on the FTO substrate with the speed of 1500 r/min for 30 s. The sample was then placed on a hot plate at 350°C and annealed for 30 min to form a ZnO seed layer. Next, zinc nitrate hexahydrate, polyethylenimine and urotropine(HMTA)were mixed with ultrapure water and stirred at room temperature (300 K) for 60 min to obtain homogeneous ZnO growth solution. Finally,the growth solution and the sample loaded with seed layer were put into a stainless steel reactor and heated in an oven at 95°C for 1 h, 2 h,and 3 h to obtain three kinds of NWs with different lengths.ZnO NWs were then immersed in AgNO3solution of 0.2 M for 10 min in darkness so that Ag+ions can be adsorbed on the NW surface sufficiently. After air-gun drying,Ag+/ZnO NW complexes,named Ag+/ZnO1h,Ag+/ZnO2hand Ag+/ZnO3h,respectively,were obtained. The whole preparation process is shown in Fig.1.

    Fig. 1. Preparation process of Ag+/ZnO nanowires composite films.Hydrothermal times are 1 h,2 h and 3 h,respectively.

    2.2. Optics setup

    The optical devices for holographic kinetics are shown in Fig. 2. Two coherent beams (403.4 nm, 140 mW·cm-2, spolarized) are generated from a blue-violet laser. One of the beams loaded with information is incident on the Ag+/ZnO NW arrays, and the other beam irradiates at the same point of the sample to inscribe holograms. A red laser (671 nm,14 mW·cm-2,s-polarized)is used as a detect source to monitor the formation of holographic fringes. The first-order diffraction signal is recorded on a photodiode which is connected to a computer. The diffraction efficiency of the holographic grating with Fresnel loss can be defined as the ratio of the intensity of the first-order diffraction beam to that of the probe beam passing through the sample.

    Fig.2. Optical device of Ag+/ZnO nanowire for dynamic recordings in holographic gratings and holograms(M:mirror;BS:beam splitter;PD:photodiode;BE:beam expander).

    3. Results and discussion

    A scanning electron microscope (SEM) was used to observe the surface morphology of ZnO NWs. The top views of ZnO NWs are shown in Figs.3(a)-3(c),and the cross-sectional views are inserted, correspondingly. ZnO NWs with a good vertical growth state on the FTO substrate is observed. The length of the NWs increases with prolonging hydrothermal time, which is measured to be 300 nm, 600 nm and 750 nm for the hydrothermal times of 1 h, 2 h and 3 h, respectively.From the top view of SEM images,the surface nanowire density is also dependent on hydrothermal time, which is statistically analyzed. The results show that the surface density of ZnO NWs for hydrothermal time of 1 h is the highest,reaching 2.5×1010cm-2. With the increase of hydrothermal time,the surface linear density decreases to 1.74×1010cm-2and 8.3×109cm-2for 2 h and 3 h, respectively. The difference may result from the fact that the ZnO NWs hardly keep growing vertically and uniformly all the time during the hydrothermal treatment process. Thus,some of the NWs cannot be observed on the sample surface. Figures 3(d)-3(f)show the NW diameter distribution and the cumulative percentage of volume fraction. The results show that the average values of NW diameters are 27.62 nm and 31.36 nm for ZnO1hand ZnO2h,respectively. The NW diameter less than 40 nm occupies 97.4%(ZnO1h)and 88.8%(ZnO2h).However,for ZnO3h,the NW diameter increases significantly,almost to 37.81 nm. Therefore,hydrothermal time plays a key role in the longitudinal length and surface diameters of NWs.

    X-ray diffraction(XRD)tests were carried out on ZnO1h,as shown in Fig. 4(a). Compared with the standard card of ZnO (PDF #79-0207), it is observed that the prepared ZnO NWs have excellent crystallinity. The diffraction angles of 34.381°and 36.181°correspond to the (002) and (101) crystal planes of wurtzite ZnO,respectively. Disappearance of the(100)diffraction pike that corresponds to the diffraction angle of 31.698°is most possibly resulted from thec-axis orientation growth of ZnO NWs. However,the(100)crystal plane can be observed by a transmission electron microscope(TEM)(data not shown here).Figure 4(b)shows electron paramagnetic resonance (ESR) for the three kinds of samples. The peak ofg=2.01 proves the existence of oxygen vacancy defect. The formation of this defect originates from the oxygen-deficient conditions such as the hydrothermally grown NWs.[34]The ESR signal intensity increases with prolonging hydrothermal time,which confirms that the defect content increases accordingly. Figure 4(c) shows that the absorbance of oxide NWs is weak in visible band for ZnO1h,which is enhanced significantly for ZnO3h. It is demonstrated that the sensitivity of the sample in the visible band is greatly improved after increasing hydrothermal time. Figure 4(d)shows the photoluminescence spectra for the three samples. Two luminescence peaks are found. One is the UV luminescence peak at 380 nm,which is called near-band-edge emission and generated by free-exciton recombination in the ZnO nanostructures through an excitonexciton collision process. The other is the weak broad greenyellow emission(~570 nm)that originates from the electronhole recombination at deep level defects namely in singly ionized oxygen vacancies(V+O).

    Fig. 3. Top view of SEM images of ZnO NWs for different hydrothermal times. The corresponding cross-sectional images are inserted. The NW diameter distribution and volume fraction cumulative percentages are shown below: (a)and(d)for ZnO1h,(b)and(e)for ZnO2h,(c)and(f)for ZnO3h.

    Fig. 4. (a) XRD pattern of ZnO1h NWs. (b) ESR spectra of ZnO NWs with different hydrothermal times. (c) Absorption spectra and (d)photoluminescence spectra of ZnO nanowires for different hydrothermal times.

    The prepared ZnO NWs have hexagonal wurtzite structure wherec-axis acts as the polar axis. In this case, oxygen ions are arranged in hexagonal dense packing while Zn ions fill the tetrahedral gap. Half of the tetrahedral gap in the structure is empty,which is easy to produce intrinsic donors of Zn gap defects and O vacancy defects. With prolonging hydrothermal time,the luminescence intensity in UV and visible regions are both enhanced, indicating the increasement of the V+Odefect population. The spectral observations are consistent with the ESR results.

    The large amount of defect states greatly enhances the photoelectron generation under visible light excitation,which provides an effective way for the photoreduction of metal ions.Hence,we used blue-ray(403.4 nm,140 mW·cm-2)as the excitation light to investigate photochromism of the Ag+/ZnO1hcomposite system,as shown in Fig.5(a). The absorption spectra for the irradiation times from 0 min to 25 min are obtained. The differential absorption spectra exhibit an effective absorption enhancement covering the whole visible region from 400 nm to 800 nm, which is centered at 405 nm. The band is hard to be found within the initial irradiation period of 3 min, but increases significantly in the subsequent process. A similar result is obtained for the other two samples of Ag+/ZnO2hand Ag+/ZnO3h. We also measured thein situphotoluminescence spectra of Ag+/ZnO1hnanocomposite system under the excitation from a UV laser (325 nm, 35 mW)with different excitation periods (0 min, 5 min and 10 min,respectively), as shown in Fig. 5(b). It can be seen that the UV luminescence intensity of the ZnO loaded with silver ions decreases obviously. Differently, we found that the luminescence ability of ZnO in the visible region(centered at 570 nm)increases slightly after the adsorption of silver ions[Fig.5(b),inserted], which may be related to the localized surface plasmon enhancement.

    Fig.5.(a)Absorption spectra and differential absorption spectra(inserted)of the Ag/ZnO1h nanocomposite under the 403.4 nm laser irradiation.(b)Photoluminescence spectra of the ZnO1h NWs before and after the treatment of AgNO3 solution,as well as that under 325 nm excitation for different periods (0 min, 5 min and 10 min). The magnification graph in visible region is inserted. (c) Top view of SEM images for the nanocomposite system before and after the blue-ray irradiation. The TEM image is inserted for the ZnO1h NWs without Ag particle deposition.(d)TEM and HRTEM observations for the blue-ray induced emerging of Ag NPs on ZnO NWs via scratching from the prepared Ag/ZnO film.

    The absorption and photoluminescence spectral changes in visible region both indicate the possibility of generation of plasmonic particles. Accordingly, surface morphological change was measured byin situSEM for Ag+/ZnO1hbefore and after laser irradiation (140 mW·cm-2), as shown in Fig. 5(c). Before the irradiation, only the ZnO NW surface morphology can be observed, as shown in the inserted graph of Fig. 5(c). After the blue-violet excitation, Ag nanorods appear on the surface of ZnO NWs. The TEM was used to observe the change in the gap of ZnO NWs, as shown in Fig. 5(d). A large amount of spherical Ag nanoparticles(NPs)appear on ZnO NWs with a wide size distribution from 5 nm to 35 nm. High-resolution transmission electron microscopy (HRTEM, the right-side image in Fig. 5(d) proves the nature of the Ag/ZnO contact. The(111)crystal plane of Ag NPs and the (002) crystal plane of ZnO are determined.As ZnO is usually n-type, the Schottky contact may form at the metal-semiconductor interfaces according to our previous investigation.[35]The description equations of photochemical reaction process are expressed as follows:

    As is known, the electrons at ZnO defect state can absorb photons and jump to the conduction band under the irradiation of the blue-violet light. Ag+ions adsorbed on the surface of ZnO NWs during previous immersion are further photo-reduced. ZnO in exciting state is thus used as an electron donor,and the photogenerated electrons of ZnO interface are transferred to Ag+to generate Ag nucleus. Photochemical reaction is conducted on the surface or in the gap of NW arrays to induce Ag nuclei self-assembly. The regular surface structure of NWs provides convenience for the Ag particle aggregation,which results in large-sized Ag nanorods rather than small spherical NPs. Finally,rod-like Ag NPs emerges on the surface of the NW arrays. However,spherical Ag NPs tend to form in the gap of ZnO NWs due to the limited space. The one-dimensional NW structure has large specific surface area than planar structure,which can provide multiple sites for Ag+loading and form point/line heterojunction. In the reduction process, multiple electron transport channels are provided by sufficient contacting sites, which accelerate the reduction of the Ag+ions adsorbed on the NW surface. The emergence of Ag NPs results in LSPR absorption, which well explains the absorption band in visible region from 400 nm to 800 nm in Fig.5(a). However,in Fig.5(b),under the continuous irradiation of the excitation light source,the UV luminescence intensity decreases firstly(from 0 min to 5 min)and then increases(from 5 min to 10 min). We believe that this process is related to the capture of photogenerated electrons by silver ions and the resultant emergence of Ag NPs. The population decrease of the photoelectrons for recombination with holes results in weakening of intrinsic luminescence. After UV irradiation for 5 min,some silver nuclei are formed and quite amount of silver ions exist. At this time,the Ag+/ZnO nanocomposite system has a strong ability to absorb the 325 nm light energy to generate Ag NPs. When the system is illuminated for 10 min,the content of the resident silver ions decreases significantly,so the light absorption capacity at 325 nm is weakened and the intrinsic emission capacity is partially restored.

    The results from Fig. 5 indicate that blue-ray irradiation plays a key role in variation of optical properties of the Ag+/ZnO NWs system. Thus holographic fringes with periodically bright and dark regions can be copied onto such a photosensitive medium. ZnO NWs in the bright area generate photoelectrons for the reduction of Ag+ions; while the medium in the dark area is not irradiated by the laser,and thus maintains its original properties. The Ag0in the bright area and Ag+in the dark area have a sharp contrast in absorbance and refractive index,and the information is thus stored on the sample as a form of interference fringes.The results for testing holographic efficiency are shown in Fig.6.

    Fig. 6. First-order diffraction efficiency versus time for Ag+/ZnO1h,Ag+/ZnO2h and Ag+/ZnO3h.

    The highest diffraction efficiency of Ag+/ZnO1hcomposite film can reach 0.08%. However, the diffraction efficiencies of the other two composite films of Ag+/ZnO2hand Ag+/ZnO3hare lower than that of the Ag+/ZnO1hcomposite system, with the highest diffraction efficiencies reaching 0.05% and 0.03%, respectively. We believe that the diffraction efficiency of the nanocomposite system is related to the factors such as generation efficiency of photoelectrons, loading amount of Ag+ions and light-scattering on sample surface. According to ESR test results,ZnO3hexhibits the largest amount of oxygen defects among the three kinds of samples. Under the same conditions, the number of photogenerated electrons is the largest. The formed holographic gratings should have presented the highest contrast between bright and dark regions. However, the test results show that the composite film of Ag+/ZnO3hhas the lowest diffraction efficiency during the same excitation period. That means that light scattering on the sample surface must be taken into account.When the length of ZnO NWs increases, it is impossible to ensure that each NW grows at the same rate. With the long-term growth of NWs, the surface flatness decreases. The incident light in the bright region can be easily scattered to the dark one,also weakening the grating contrast.At the same time,the amount of Ag+loading sites is insufficient on the surface due to the lowest NW density on the surface of Ag+/ZnO3h. Thus,the lowest diffraction efficiency for Ag+/ZnO3his reasonable.The above results indicate that the Ag+/ZnO nanocomposite system can effectively memorize holographic gratings under visible light excitation in short wavelength region,and the high diffraction efficiency of the Ag+/ZnO1hsample provides possibility for the storage and reconstruction of holographic images. Using red light(671 nm)as the read-out light,the image of the “Eiffel Tower” is stored. Figure 7 shows the original image and its holographic reconstruction at the writing times of 50 s, 100 s and 300 s, respectively. It is worth pointing out that the amount of defects generated in the hydrothermal process is still limited, although the internal defects of ZnO have provided important support for improving the diffraction efficiency of the sample. Towards the application of ultra-fast and high-density holographic storage,the sample performance can be optimized in two aspects: One is introducing impurities or plasma treatment in the ZnO to create more defects so as to expand optical response range and to increase the population of photogenerated electrons. The other is increasing the loading amount of Ag+ions to enhance the reduction reaction,to improve the grating contrast, and to realize more efficient hologram storage.

    Fig.7. Original image(left,black),and the hologram reconstruction in the Ag+/ZnO1h composite by red light.

    4. Conclusion

    In summary, an Ag+/ZnO nanocomposite system has been constructed using the hydrothermal-immersion method.The internal oxygen defects in ZnO broaden the light response band, and photogenerated electrons can be effectively generated under blue-violet excitation. The length and the defect content of NWs are dependent on hydrothermal time. Onedimensional nanostructures provide a large number of contacting sites for the subsequent loading of silver ions,forming multiple point/line hetero-interfaces, which are used to transfer photogenerated electrons from the semiconductor side to the silver ions, resulting in the formation of Ag nuclei. In addition, the NW structure provides an excellent growth environment for the formation of Ag nanorods on the array surface.We also compared the effect of NW length on the diffraction efficiency. The results show that the surface of ZnO1hNWs can reduce the light scattering,and improve the light energy utilization.The holographic diffraction efficiency reaches 0.08% for Ag+/ZnO1h. Efficient integration of generation,transmission and storage for optical information is expected to be realized in ZnO-based nano-devices.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Grant Nos.11974073,U19A2091,and 51732003), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. B13013), the Natural Science Foundation of Jilin Province of China (Grant No. 20180101218JC), and The 13th Five-Year Scientific Research Planning Project of the Education Department of Jilin Province,China(Grant No.JJKH20201161KJ).

    猜你喜歡
    李鑫李寧
    On Coupled Dirac Systems Under Chirality Boundary Condition
    回望祖山圖
    磁懸浮列車相關(guān)問題賞析
    What Is Guochao?
    In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS
    再不能分擔(dān)的孤獨(dú)
    Progress in quantum well and quantum cascade infrared photodetectors in SITP?
    憂傷詞
    滇池(2017年6期)2017-06-14 20:29:14
    跌宕起伏“李寧”
    商界評論(2017年5期)2017-05-17 18:44:16
    那一縷陽光
    日日撸夜夜添| 熟女人妻精品中文字幕| 精品亚洲乱码少妇综合久久| www.av在线官网国产| 久久久午夜欧美精品| 又粗又硬又长又爽又黄的视频| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线播| 99国产精品免费福利视频| 成人毛片60女人毛片免费| 精品一区二区免费观看| 久久 成人 亚洲| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说 | 日韩制服骚丝袜av| 毛片一级片免费看久久久久| 啦啦啦啦在线视频资源| 另类亚洲欧美激情| 亚洲激情五月婷婷啪啪| 国产男女内射视频| 亚洲欧美中文字幕日韩二区| 免费人成在线观看视频色| 亚洲成人av在线免费| 亚洲精品日韩av片在线观看| 久久99热这里只频精品6学生| 国产精品国产三级国产专区5o| 久热这里只有精品99| 国产免费福利视频在线观看| 大码成人一级视频| 国产精品熟女久久久久浪| 国产亚洲av片在线观看秒播厂| 欧美+日韩+精品| 国产精品国产三级专区第一集| 国国产精品蜜臀av免费| 国产精品久久久久久精品电影小说| 少妇精品久久久久久久| 午夜福利在线观看免费完整高清在| 亚洲av男天堂| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 国产成人精品在线电影| 国产伦精品一区二区三区视频9| 一区二区三区四区激情视频| 亚洲人成网站在线播| www.av在线官网国产| av免费观看日本| 青青草视频在线视频观看| 国产视频内射| 十八禁网站网址无遮挡| 精品久久久久久久久亚洲| 视频中文字幕在线观看| 亚洲国产欧美日韩在线播放| 亚洲久久久国产精品| 国产精品偷伦视频观看了| av天堂久久9| 51国产日韩欧美| 日韩一区二区视频免费看| 满18在线观看网站| 亚洲av福利一区| 美女cb高潮喷水在线观看| 高清在线视频一区二区三区| av.在线天堂| 99久久中文字幕三级久久日本| 日韩欧美精品免费久久| 在线观看一区二区三区激情| 亚洲国产精品一区二区三区在线| 啦啦啦在线观看免费高清www| 欧美 亚洲 国产 日韩一| 91成人精品电影| 九九在线视频观看精品| 爱豆传媒免费全集在线观看| 下体分泌物呈黄色| 18+在线观看网站| 免费高清在线观看视频在线观看| 久久久久久久精品精品| 99久久人妻综合| .国产精品久久| 亚洲国产精品专区欧美| 大香蕉97超碰在线| 秋霞伦理黄片| 国产极品天堂在线| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 女性生殖器流出的白浆| 亚洲国产精品专区欧美| 在线观看人妻少妇| 国产免费一级a男人的天堂| 高清av免费在线| 中文乱码字字幕精品一区二区三区| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 人人妻人人添人人爽欧美一区卜| 亚洲人成网站在线播| 亚洲人成77777在线视频| 极品人妻少妇av视频| 丰满少妇做爰视频| 精品视频人人做人人爽| 免费高清在线观看视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲精品国产av蜜桃| 日韩熟女老妇一区二区性免费视频| 亚洲欧美成人综合另类久久久| 成人无遮挡网站| 丝袜喷水一区| 男女啪啪激烈高潮av片| 欧美日韩视频高清一区二区三区二| 亚洲av综合色区一区| 欧美激情极品国产一区二区三区 | 高清不卡的av网站| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 一级二级三级毛片免费看| 亚洲精品456在线播放app| 黄色一级大片看看| 十分钟在线观看高清视频www| 国内精品宾馆在线| 亚洲精品一二三| 亚洲熟女精品中文字幕| 91久久精品国产一区二区成人| 久久久久久久大尺度免费视频| 久久av网站| 婷婷色麻豆天堂久久| 人人澡人人妻人| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 日韩三级伦理在线观看| 精品人妻熟女av久视频| 91精品三级在线观看| 少妇丰满av| 日韩免费高清中文字幕av| 亚洲三级黄色毛片| 国产精品成人在线| 好男人视频免费观看在线| 久久久a久久爽久久v久久| 91久久精品电影网| 国产成人av激情在线播放 | 亚洲精品久久久久久婷婷小说| 欧美性感艳星| 精品亚洲乱码少妇综合久久| 男女免费视频国产| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 欧美精品一区二区大全| 天美传媒精品一区二区| 一个人免费看片子| 超色免费av| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 国产精品久久久久久久久免| 日本-黄色视频高清免费观看| 黑人猛操日本美女一级片| 欧美亚洲日本最大视频资源| 欧美最新免费一区二区三区| 国产精品欧美亚洲77777| 成人二区视频| 在线天堂最新版资源| 精品久久国产蜜桃| 亚洲av不卡在线观看| 插逼视频在线观看| 中文字幕最新亚洲高清| 熟妇人妻不卡中文字幕| 国产永久视频网站| 日日摸夜夜添夜夜爱| 新久久久久国产一级毛片| 午夜福利网站1000一区二区三区| av在线播放精品| 丁香六月天网| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 午夜激情av网站| 亚洲国产日韩一区二区| xxx大片免费视频| 久久99热6这里只有精品| 国产精品.久久久| 自拍欧美九色日韩亚洲蝌蚪91| 少妇熟女欧美另类| 熟女电影av网| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 亚洲精品自拍成人| 大片免费播放器 马上看| 久久狼人影院| 久久精品国产自在天天线| 婷婷色综合www| 日韩成人伦理影院| 亚洲精品乱久久久久久| 如何舔出高潮| 日本黄大片高清| 一级二级三级毛片免费看| 99久久人妻综合| 国产永久视频网站| 国产成人免费无遮挡视频| 国产色婷婷99| 亚洲精品日韩av片在线观看| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 又粗又硬又长又爽又黄的视频| 蜜桃国产av成人99| 人成视频在线观看免费观看| 毛片一级片免费看久久久久| 中国美白少妇内射xxxbb| 亚洲国产av影院在线观看| 国产精品99久久99久久久不卡 | 亚洲av免费高清在线观看| 久久av网站| 十分钟在线观看高清视频www| 一边摸一边做爽爽视频免费| 在线天堂最新版资源| 黑人欧美特级aaaaaa片| 青春草视频在线免费观看| 亚洲色图 男人天堂 中文字幕 | 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 我的老师免费观看完整版| 色吧在线观看| 97精品久久久久久久久久精品| 九草在线视频观看| 国产视频首页在线观看| 老女人水多毛片| 欧美亚洲 丝袜 人妻 在线| 国模一区二区三区四区视频| 亚洲在久久综合| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区蜜桃 | 国产高清国产精品国产三级| 亚洲第一av免费看| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 久久鲁丝午夜福利片| 又粗又硬又长又爽又黄的视频| 亚洲av不卡在线观看| 久久热精品热| 好男人视频免费观看在线| 蜜桃在线观看..| 最近最新中文字幕免费大全7| 免费看av在线观看网站| 亚洲av欧美aⅴ国产| 91精品国产国语对白视频| 午夜视频国产福利| 久久久久视频综合| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 中文字幕精品免费在线观看视频 | av福利片在线| 麻豆精品久久久久久蜜桃| 日本免费在线观看一区| av卡一久久| 国产成人午夜福利电影在线观看| 日韩三级伦理在线观看| 久久精品国产鲁丝片午夜精品| 91国产中文字幕| 免费观看的影片在线观看| 国产在线视频一区二区| 中国国产av一级| 国产日韩欧美在线精品| 久久久久久久久大av| 婷婷色av中文字幕| 一级,二级,三级黄色视频| 99九九在线精品视频| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 日本91视频免费播放| 日本av免费视频播放| 久久久久精品性色| 永久网站在线| 日韩欧美精品免费久久| 日韩熟女老妇一区二区性免费视频| 久久久国产精品麻豆| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在| 久久 成人 亚洲| 国产精品不卡视频一区二区| 激情五月婷婷亚洲| 美女中出高潮动态图| 国产伦精品一区二区三区视频9| 超碰97精品在线观看| 人成视频在线观看免费观看| 日韩亚洲欧美综合| 国产熟女欧美一区二区| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 国产成人免费无遮挡视频| 亚洲无线观看免费| 久久午夜综合久久蜜桃| 国产精品国产av在线观看| 五月玫瑰六月丁香| tube8黄色片| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 我的老师免费观看完整版| 亚洲婷婷狠狠爱综合网| 亚洲经典国产精华液单| 国产精品久久久久久av不卡| 亚洲国产日韩一区二区| 日本爱情动作片www.在线观看| 国产精品国产av在线观看| 亚洲av福利一区| 新久久久久国产一级毛片| 国产一区二区在线观看日韩| 热re99久久精品国产66热6| 国产永久视频网站| 欧美日韩av久久| 亚洲第一区二区三区不卡| 美女内射精品一级片tv| 人人妻人人澡人人爽人人夜夜| 天美传媒精品一区二区| 国产探花极品一区二区| 人人澡人人妻人| 另类亚洲欧美激情| 亚洲精品国产色婷婷电影| 大又大粗又爽又黄少妇毛片口| 又大又黄又爽视频免费| 久久久久久人妻| 制服诱惑二区| 另类精品久久| 男人操女人黄网站| 美女视频免费永久观看网站| 亚洲熟女精品中文字幕| 飞空精品影院首页| 久久精品国产自在天天线| 成人二区视频| 欧美人与性动交α欧美精品济南到 | 国产av码专区亚洲av| 啦啦啦视频在线资源免费观看| 久久av网站| 成人影院久久| 欧美变态另类bdsm刘玥| 国产片内射在线| 一区二区日韩欧美中文字幕 | 午夜免费鲁丝| 十八禁网站网址无遮挡| 啦啦啦中文免费视频观看日本| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放 | 九色成人免费人妻av| 精品久久久噜噜| 最近最新中文字幕免费大全7| 十八禁高潮呻吟视频| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 日本wwww免费看| 中文字幕亚洲精品专区| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 国产熟女午夜一区二区三区 | 日日撸夜夜添| 又黄又爽又刺激的免费视频.| 中国三级夫妇交换| 国产日韩欧美在线精品| 有码 亚洲区| 青春草视频在线免费观看| 精品午夜福利在线看| 午夜影院在线不卡| 一级片'在线观看视频| 国产日韩欧美在线精品| 午夜久久久在线观看| 欧美一级a爱片免费观看看| 日韩中文字幕视频在线看片| 男人添女人高潮全过程视频| 多毛熟女@视频| 人妻 亚洲 视频| 日韩av免费高清视频| 久久婷婷青草| 中文字幕最新亚洲高清| 99re6热这里在线精品视频| 成人18禁高潮啪啪吃奶动态图 | 色哟哟·www| 亚洲精品久久成人aⅴ小说 | 久久狼人影院| 国产片内射在线| 亚洲精华国产精华液的使用体验| 成人漫画全彩无遮挡| 国产伦理片在线播放av一区| 观看美女的网站| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 看十八女毛片水多多多| 国模一区二区三区四区视频| 欧美xxⅹ黑人| 水蜜桃什么品种好| 蜜臀久久99精品久久宅男| 国产亚洲一区二区精品| 少妇被粗大猛烈的视频| 亚洲av在线观看美女高潮| 久久久久久伊人网av| 久久久a久久爽久久v久久| 日韩中文字幕视频在线看片| h视频一区二区三区| 多毛熟女@视频| 久久毛片免费看一区二区三区| av天堂久久9| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 国产精品一区二区三区四区免费观看| videossex国产| 你懂的网址亚洲精品在线观看| 一本一本综合久久| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 草草在线视频免费看| 久久精品国产亚洲av天美| 久久久久久久久大av| 午夜影院在线不卡| 久久久精品94久久精品| 国产毛片在线视频| 黄色毛片三级朝国网站| 国产高清不卡午夜福利| 久久久久网色| 久久99精品国语久久久| 纯流量卡能插随身wifi吗| 亚洲国产av影院在线观看| 国产亚洲av片在线观看秒播厂| 国产精品人妻久久久影院| 久久狼人影院| 欧美性感艳星| 久久久国产精品麻豆| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品自产自拍| 一级黄片播放器| 黄片无遮挡物在线观看| av线在线观看网站| 精品久久蜜臀av无| 蜜桃在线观看..| 久久久久久久精品精品| 最近中文字幕2019免费版| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 亚洲精品中文字幕在线视频| 精品一区二区免费观看| 久久精品熟女亚洲av麻豆精品| 伦理电影免费视频| 免费看光身美女| 亚洲成人手机| 国产成人精品无人区| 97精品久久久久久久久久精品| 91aial.com中文字幕在线观看| 熟妇人妻不卡中文字幕| 中文精品一卡2卡3卡4更新| 日韩欧美一区视频在线观看| 久久综合国产亚洲精品| 亚洲成色77777| 日本欧美国产在线视频| 日产精品乱码卡一卡2卡三| 欧美亚洲日本最大视频资源| 桃花免费在线播放| 亚洲精品久久成人aⅴ小说 | 热99久久久久精品小说推荐| 免费观看性生交大片5| 大陆偷拍与自拍| 亚洲国产精品成人久久小说| 国产午夜精品久久久久久一区二区三区| 美女国产视频在线观看| 九色亚洲精品在线播放| 69精品国产乱码久久久| av在线老鸭窝| 久久久久人妻精品一区果冻| 伦理电影大哥的女人| 免费观看的影片在线观看| 日韩av不卡免费在线播放| 蜜桃国产av成人99| 一区二区av电影网| 精品久久久噜噜| 久久久久人妻精品一区果冻| 国产成人精品在线电影| 国产精品一区www在线观看| 中文欧美无线码| 久久精品国产a三级三级三级| 在线观看三级黄色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人手机av| 久久精品国产a三级三级三级| 大片电影免费在线观看免费| 99国产精品免费福利视频| 能在线免费看毛片的网站| 91久久精品电影网| 欧美成人精品欧美一级黄| 最近最新中文字幕免费大全7| 考比视频在线观看| 啦啦啦视频在线资源免费观看| 成年美女黄网站色视频大全免费 | 亚洲国产av新网站| 久久婷婷青草| 91在线精品国自产拍蜜月| 全区人妻精品视频| 国产日韩欧美视频二区| 亚洲欧洲国产日韩| 精品一品国产午夜福利视频| 免费观看性生交大片5| 夜夜看夜夜爽夜夜摸| 久久人人爽人人片av| 免费播放大片免费观看视频在线观看| 成人综合一区亚洲| 精品少妇久久久久久888优播| 国产av码专区亚洲av| 一级黄片播放器| 亚洲av成人精品一二三区| 免费人成在线观看视频色| 色视频在线一区二区三区| 99视频精品全部免费 在线| 久久久久国产精品人妻一区二区| 少妇被粗大猛烈的视频| 精品视频人人做人人爽| 久久97久久精品| 大话2 男鬼变身卡| 国产一级毛片在线| 国产男人的电影天堂91| 亚洲精品美女久久av网站| 日本欧美国产在线视频| 亚洲天堂av无毛| 一级爰片在线观看| 校园人妻丝袜中文字幕| 寂寞人妻少妇视频99o| 婷婷色av中文字幕| 日韩中文字幕视频在线看片| 在线精品无人区一区二区三| 日韩免费高清中文字幕av| 蜜臀久久99精品久久宅男| 国产乱人偷精品视频| 一级毛片电影观看| 免费av不卡在线播放| 狂野欧美激情性bbbbbb| 一区二区av电影网| 国产精品国产av在线观看| 嫩草影院入口| 亚洲精品自拍成人| 高清在线视频一区二区三区| 青春草亚洲视频在线观看| 免费高清在线观看日韩| 久久精品国产亚洲网站| 久久久久久久久大av| 欧美老熟妇乱子伦牲交| 性色avwww在线观看| 免费人妻精品一区二区三区视频| 国产亚洲av片在线观看秒播厂| 成人漫画全彩无遮挡| 国产精品久久久久久久电影| 欧美3d第一页| 中文精品一卡2卡3卡4更新| 成年人免费黄色播放视频| 精品一区二区三区视频在线| 99热国产这里只有精品6| 亚洲精品久久成人aⅴ小说 | 免费看光身美女| 五月天丁香电影| av福利片在线| 一区二区日韩欧美中文字幕 | 亚洲人与动物交配视频| 少妇人妻久久综合中文| 尾随美女入室| 春色校园在线视频观看| 亚洲精品日韩av片在线观看| 国产淫语在线视频| 丝袜美足系列| 欧美日韩成人在线一区二区| 国产精品麻豆人妻色哟哟久久| 日本av手机在线免费观看| 国产免费一级a男人的天堂| 三上悠亚av全集在线观看| 精品久久久久久久久av| 波野结衣二区三区在线| 韩国av在线不卡| 十分钟在线观看高清视频www| 国产精品99久久久久久久久| 热99国产精品久久久久久7| 日韩中字成人| 少妇被粗大的猛进出69影院 | 日韩 亚洲 欧美在线| 一区二区av电影网| a级片在线免费高清观看视频| 亚洲精品国产av成人精品| 国产精品一国产av| 久久婷婷青草| 99九九在线精品视频| 街头女战士在线观看网站| 夜夜爽夜夜爽视频| 午夜福利视频精品| 亚洲精品久久久久久婷婷小说| 亚洲国产毛片av蜜桃av| 国精品久久久久久国模美| 亚洲一区二区三区欧美精品| 一个人免费看片子| 国精品久久久久久国模美| 一级,二级,三级黄色视频| 91成人精品电影| 久久青草综合色| 日韩av不卡免费在线播放| 精品亚洲成国产av| 色视频在线一区二区三区| 欧美精品人与动牲交sv欧美| 新久久久久国产一级毛片| 亚洲精品久久午夜乱码| 男女啪啪激烈高潮av片| 国产色爽女视频免费观看| 亚洲精品av麻豆狂野| 18在线观看网站| 久久久a久久爽久久v久久| 亚洲精品av麻豆狂野| 18在线观看网站| 国产免费又黄又爽又色| 国产成人a∨麻豆精品| 久久99精品国语久久久| 大又大粗又爽又黄少妇毛片口| 18禁在线无遮挡免费观看视频| 欧美日韩在线观看h| 久久久精品免费免费高清| 美女cb高潮喷水在线观看| 国产欧美日韩综合在线一区二区| 免费看不卡的av|