• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage

    2022-03-12 07:44:38NingLi李寧XinLi李鑫MingYueZhang張明越JingYingMiao苗景迎ShenChengFu付申成andXinTongZhang張昕彤
    Chinese Physics B 2022年3期
    關(guān)鍵詞:李鑫李寧

    Ning Li(李寧) Xin Li(李鑫) Ming-Yue Zhang(張明越) Jing-Ying Miao(苗景迎)Shen-Cheng Fu(付申成) and Xin-Tong Zhang(張昕彤)

    1Center for Advanced Optoelectronic Functional Material Research,Northeast Normal University,Changchun 130024,China

    2Key Laboratory of UV-Emitting Materials and Technology(Northeast Normal University),Ministry of Education,Changchun 130024,China

    Keywords: holographic,ZnO nanowires,Ag nanoparticles

    1. Introduction

    With the rapid development of information communication technology, massive data are exchanged in the Internet every moment. It is estimated that the amount of information generated in the world will reach 175 ZB(zettabyte)in 2025.A big challenge to store large-volume data in photosensitive media efficiently still exists.[1]Compared with electromagnetic storage,optical memory has potential advantages of high density,long life and low power consumption.[2-6]The shorter the wavelength of recording light,the higher the storage density. Holographic technology can use interference fringes to record the whole object information at the Airy disc of photosensitive materials.[7-10]In addition,the“page”mode of holographic recording also provides possibility for a high-speed data transmission.[7]

    In recent years, noble-metal/metal-oxide-semiconductor nanostructures have attracted much attention for their excellent photoelectric and chemical properties.[11-20]Especially,the discovery of photochromism in such an inorganic system promotes the development of holographic storage.[21-25]ZnO has advantages of wide band gap, large exciton binding energy and high electron mobility, which make it being a candidate for multifunctional devices.[26]ZnO nanomaterials with wurtzite structure can be made into a variety of morphologies in nanoscale, such as nanorods,[27]nanosheets,[28]and nanotubes.[29]Among them,the regularly arranged ZnO nanowire arrays need no complex preparation process while have large specific surface area afterc-axis oriented growth.[30]So far, nano-Ag/ZnO nanocomposites have been widely investigated in the fields of gas sensors, photocatalysis and photo-electrochemistry.[31-33]Unfortunately,no reports are found on the holographic storage in nano-Ag/ZnO nanocomposite films. As ZnO nanowires (NWs) have low chemical activity on their surface, hot electrons in localized surface plasmon resonance (LSPR) are difficult to transfer from metal to the semiconductor sides.The transition from Ag to Ag+is thus partly inhibited.To resolve the issue,ZnO NWs with oxygen defects are fabricated by hydrothermal method in this paper. Meanwhile, an idea of “electron reverse transfer”is proposed that visible light induces reduction of Ag+ions through the excitation of ZnO. An obvious plasmon spectral enhancement is observed after a blue-ray excitation. Highefficient hologram reconstruction is realized after optimizing nanowire density,oxygen defects and surface roughness.

    2. Experimental details

    2.1. Preparation of Ag+/ZnO NWs

    A two-step hydrothermal method was used to synthesize ZnO NWs. Before preparation, the FTO glass substrates of 2 cm×2 cm were ultrasonically treated in ultra-pure water,acetone and isopropanol for 15 min, respectively, and were dried naturally in air.Meanwhile,in order to remove the residual organic compounds and increase the surface hydrophilicity,the FTO substrate was pretreated with ultraviolet ozone for 15 min. Afterwards,zinc acetate,ethanolamine and methanol were mixed by magnetic stirring at room temperature for 90 min to obtain ZnO seed solution. Then, the ZnO seed solution(50 μL)was spin-coated on the FTO substrate with the speed of 1500 r/min for 30 s. The sample was then placed on a hot plate at 350°C and annealed for 30 min to form a ZnO seed layer. Next, zinc nitrate hexahydrate, polyethylenimine and urotropine(HMTA)were mixed with ultrapure water and stirred at room temperature (300 K) for 60 min to obtain homogeneous ZnO growth solution. Finally,the growth solution and the sample loaded with seed layer were put into a stainless steel reactor and heated in an oven at 95°C for 1 h, 2 h,and 3 h to obtain three kinds of NWs with different lengths.ZnO NWs were then immersed in AgNO3solution of 0.2 M for 10 min in darkness so that Ag+ions can be adsorbed on the NW surface sufficiently. After air-gun drying,Ag+/ZnO NW complexes,named Ag+/ZnO1h,Ag+/ZnO2hand Ag+/ZnO3h,respectively,were obtained. The whole preparation process is shown in Fig.1.

    Fig. 1. Preparation process of Ag+/ZnO nanowires composite films.Hydrothermal times are 1 h,2 h and 3 h,respectively.

    2.2. Optics setup

    The optical devices for holographic kinetics are shown in Fig. 2. Two coherent beams (403.4 nm, 140 mW·cm-2, spolarized) are generated from a blue-violet laser. One of the beams loaded with information is incident on the Ag+/ZnO NW arrays, and the other beam irradiates at the same point of the sample to inscribe holograms. A red laser (671 nm,14 mW·cm-2,s-polarized)is used as a detect source to monitor the formation of holographic fringes. The first-order diffraction signal is recorded on a photodiode which is connected to a computer. The diffraction efficiency of the holographic grating with Fresnel loss can be defined as the ratio of the intensity of the first-order diffraction beam to that of the probe beam passing through the sample.

    Fig.2. Optical device of Ag+/ZnO nanowire for dynamic recordings in holographic gratings and holograms(M:mirror;BS:beam splitter;PD:photodiode;BE:beam expander).

    3. Results and discussion

    A scanning electron microscope (SEM) was used to observe the surface morphology of ZnO NWs. The top views of ZnO NWs are shown in Figs.3(a)-3(c),and the cross-sectional views are inserted, correspondingly. ZnO NWs with a good vertical growth state on the FTO substrate is observed. The length of the NWs increases with prolonging hydrothermal time, which is measured to be 300 nm, 600 nm and 750 nm for the hydrothermal times of 1 h, 2 h and 3 h, respectively.From the top view of SEM images,the surface nanowire density is also dependent on hydrothermal time, which is statistically analyzed. The results show that the surface density of ZnO NWs for hydrothermal time of 1 h is the highest,reaching 2.5×1010cm-2. With the increase of hydrothermal time,the surface linear density decreases to 1.74×1010cm-2and 8.3×109cm-2for 2 h and 3 h, respectively. The difference may result from the fact that the ZnO NWs hardly keep growing vertically and uniformly all the time during the hydrothermal treatment process. Thus,some of the NWs cannot be observed on the sample surface. Figures 3(d)-3(f)show the NW diameter distribution and the cumulative percentage of volume fraction. The results show that the average values of NW diameters are 27.62 nm and 31.36 nm for ZnO1hand ZnO2h,respectively. The NW diameter less than 40 nm occupies 97.4%(ZnO1h)and 88.8%(ZnO2h).However,for ZnO3h,the NW diameter increases significantly,almost to 37.81 nm. Therefore,hydrothermal time plays a key role in the longitudinal length and surface diameters of NWs.

    X-ray diffraction(XRD)tests were carried out on ZnO1h,as shown in Fig. 4(a). Compared with the standard card of ZnO (PDF #79-0207), it is observed that the prepared ZnO NWs have excellent crystallinity. The diffraction angles of 34.381°and 36.181°correspond to the (002) and (101) crystal planes of wurtzite ZnO,respectively. Disappearance of the(100)diffraction pike that corresponds to the diffraction angle of 31.698°is most possibly resulted from thec-axis orientation growth of ZnO NWs. However,the(100)crystal plane can be observed by a transmission electron microscope(TEM)(data not shown here).Figure 4(b)shows electron paramagnetic resonance (ESR) for the three kinds of samples. The peak ofg=2.01 proves the existence of oxygen vacancy defect. The formation of this defect originates from the oxygen-deficient conditions such as the hydrothermally grown NWs.[34]The ESR signal intensity increases with prolonging hydrothermal time,which confirms that the defect content increases accordingly. Figure 4(c) shows that the absorbance of oxide NWs is weak in visible band for ZnO1h,which is enhanced significantly for ZnO3h. It is demonstrated that the sensitivity of the sample in the visible band is greatly improved after increasing hydrothermal time. Figure 4(d)shows the photoluminescence spectra for the three samples. Two luminescence peaks are found. One is the UV luminescence peak at 380 nm,which is called near-band-edge emission and generated by free-exciton recombination in the ZnO nanostructures through an excitonexciton collision process. The other is the weak broad greenyellow emission(~570 nm)that originates from the electronhole recombination at deep level defects namely in singly ionized oxygen vacancies(V+O).

    Fig. 3. Top view of SEM images of ZnO NWs for different hydrothermal times. The corresponding cross-sectional images are inserted. The NW diameter distribution and volume fraction cumulative percentages are shown below: (a)and(d)for ZnO1h,(b)and(e)for ZnO2h,(c)and(f)for ZnO3h.

    Fig. 4. (a) XRD pattern of ZnO1h NWs. (b) ESR spectra of ZnO NWs with different hydrothermal times. (c) Absorption spectra and (d)photoluminescence spectra of ZnO nanowires for different hydrothermal times.

    The prepared ZnO NWs have hexagonal wurtzite structure wherec-axis acts as the polar axis. In this case, oxygen ions are arranged in hexagonal dense packing while Zn ions fill the tetrahedral gap. Half of the tetrahedral gap in the structure is empty,which is easy to produce intrinsic donors of Zn gap defects and O vacancy defects. With prolonging hydrothermal time,the luminescence intensity in UV and visible regions are both enhanced, indicating the increasement of the V+Odefect population. The spectral observations are consistent with the ESR results.

    The large amount of defect states greatly enhances the photoelectron generation under visible light excitation,which provides an effective way for the photoreduction of metal ions.Hence,we used blue-ray(403.4 nm,140 mW·cm-2)as the excitation light to investigate photochromism of the Ag+/ZnO1hcomposite system,as shown in Fig.5(a). The absorption spectra for the irradiation times from 0 min to 25 min are obtained. The differential absorption spectra exhibit an effective absorption enhancement covering the whole visible region from 400 nm to 800 nm, which is centered at 405 nm. The band is hard to be found within the initial irradiation period of 3 min, but increases significantly in the subsequent process. A similar result is obtained for the other two samples of Ag+/ZnO2hand Ag+/ZnO3h. We also measured thein situphotoluminescence spectra of Ag+/ZnO1hnanocomposite system under the excitation from a UV laser (325 nm, 35 mW)with different excitation periods (0 min, 5 min and 10 min,respectively), as shown in Fig. 5(b). It can be seen that the UV luminescence intensity of the ZnO loaded with silver ions decreases obviously. Differently, we found that the luminescence ability of ZnO in the visible region(centered at 570 nm)increases slightly after the adsorption of silver ions[Fig.5(b),inserted], which may be related to the localized surface plasmon enhancement.

    Fig.5.(a)Absorption spectra and differential absorption spectra(inserted)of the Ag/ZnO1h nanocomposite under the 403.4 nm laser irradiation.(b)Photoluminescence spectra of the ZnO1h NWs before and after the treatment of AgNO3 solution,as well as that under 325 nm excitation for different periods (0 min, 5 min and 10 min). The magnification graph in visible region is inserted. (c) Top view of SEM images for the nanocomposite system before and after the blue-ray irradiation. The TEM image is inserted for the ZnO1h NWs without Ag particle deposition.(d)TEM and HRTEM observations for the blue-ray induced emerging of Ag NPs on ZnO NWs via scratching from the prepared Ag/ZnO film.

    The absorption and photoluminescence spectral changes in visible region both indicate the possibility of generation of plasmonic particles. Accordingly, surface morphological change was measured byin situSEM for Ag+/ZnO1hbefore and after laser irradiation (140 mW·cm-2), as shown in Fig. 5(c). Before the irradiation, only the ZnO NW surface morphology can be observed, as shown in the inserted graph of Fig. 5(c). After the blue-violet excitation, Ag nanorods appear on the surface of ZnO NWs. The TEM was used to observe the change in the gap of ZnO NWs, as shown in Fig. 5(d). A large amount of spherical Ag nanoparticles(NPs)appear on ZnO NWs with a wide size distribution from 5 nm to 35 nm. High-resolution transmission electron microscopy (HRTEM, the right-side image in Fig. 5(d) proves the nature of the Ag/ZnO contact. The(111)crystal plane of Ag NPs and the (002) crystal plane of ZnO are determined.As ZnO is usually n-type, the Schottky contact may form at the metal-semiconductor interfaces according to our previous investigation.[35]The description equations of photochemical reaction process are expressed as follows:

    As is known, the electrons at ZnO defect state can absorb photons and jump to the conduction band under the irradiation of the blue-violet light. Ag+ions adsorbed on the surface of ZnO NWs during previous immersion are further photo-reduced. ZnO in exciting state is thus used as an electron donor,and the photogenerated electrons of ZnO interface are transferred to Ag+to generate Ag nucleus. Photochemical reaction is conducted on the surface or in the gap of NW arrays to induce Ag nuclei self-assembly. The regular surface structure of NWs provides convenience for the Ag particle aggregation,which results in large-sized Ag nanorods rather than small spherical NPs. Finally,rod-like Ag NPs emerges on the surface of the NW arrays. However,spherical Ag NPs tend to form in the gap of ZnO NWs due to the limited space. The one-dimensional NW structure has large specific surface area than planar structure,which can provide multiple sites for Ag+loading and form point/line heterojunction. In the reduction process, multiple electron transport channels are provided by sufficient contacting sites, which accelerate the reduction of the Ag+ions adsorbed on the NW surface. The emergence of Ag NPs results in LSPR absorption, which well explains the absorption band in visible region from 400 nm to 800 nm in Fig.5(a). However,in Fig.5(b),under the continuous irradiation of the excitation light source,the UV luminescence intensity decreases firstly(from 0 min to 5 min)and then increases(from 5 min to 10 min). We believe that this process is related to the capture of photogenerated electrons by silver ions and the resultant emergence of Ag NPs. The population decrease of the photoelectrons for recombination with holes results in weakening of intrinsic luminescence. After UV irradiation for 5 min,some silver nuclei are formed and quite amount of silver ions exist. At this time,the Ag+/ZnO nanocomposite system has a strong ability to absorb the 325 nm light energy to generate Ag NPs. When the system is illuminated for 10 min,the content of the resident silver ions decreases significantly,so the light absorption capacity at 325 nm is weakened and the intrinsic emission capacity is partially restored.

    The results from Fig. 5 indicate that blue-ray irradiation plays a key role in variation of optical properties of the Ag+/ZnO NWs system. Thus holographic fringes with periodically bright and dark regions can be copied onto such a photosensitive medium. ZnO NWs in the bright area generate photoelectrons for the reduction of Ag+ions; while the medium in the dark area is not irradiated by the laser,and thus maintains its original properties. The Ag0in the bright area and Ag+in the dark area have a sharp contrast in absorbance and refractive index,and the information is thus stored on the sample as a form of interference fringes.The results for testing holographic efficiency are shown in Fig.6.

    Fig. 6. First-order diffraction efficiency versus time for Ag+/ZnO1h,Ag+/ZnO2h and Ag+/ZnO3h.

    The highest diffraction efficiency of Ag+/ZnO1hcomposite film can reach 0.08%. However, the diffraction efficiencies of the other two composite films of Ag+/ZnO2hand Ag+/ZnO3hare lower than that of the Ag+/ZnO1hcomposite system, with the highest diffraction efficiencies reaching 0.05% and 0.03%, respectively. We believe that the diffraction efficiency of the nanocomposite system is related to the factors such as generation efficiency of photoelectrons, loading amount of Ag+ions and light-scattering on sample surface. According to ESR test results,ZnO3hexhibits the largest amount of oxygen defects among the three kinds of samples. Under the same conditions, the number of photogenerated electrons is the largest. The formed holographic gratings should have presented the highest contrast between bright and dark regions. However, the test results show that the composite film of Ag+/ZnO3hhas the lowest diffraction efficiency during the same excitation period. That means that light scattering on the sample surface must be taken into account.When the length of ZnO NWs increases, it is impossible to ensure that each NW grows at the same rate. With the long-term growth of NWs, the surface flatness decreases. The incident light in the bright region can be easily scattered to the dark one,also weakening the grating contrast.At the same time,the amount of Ag+loading sites is insufficient on the surface due to the lowest NW density on the surface of Ag+/ZnO3h. Thus,the lowest diffraction efficiency for Ag+/ZnO3his reasonable.The above results indicate that the Ag+/ZnO nanocomposite system can effectively memorize holographic gratings under visible light excitation in short wavelength region,and the high diffraction efficiency of the Ag+/ZnO1hsample provides possibility for the storage and reconstruction of holographic images. Using red light(671 nm)as the read-out light,the image of the “Eiffel Tower” is stored. Figure 7 shows the original image and its holographic reconstruction at the writing times of 50 s, 100 s and 300 s, respectively. It is worth pointing out that the amount of defects generated in the hydrothermal process is still limited, although the internal defects of ZnO have provided important support for improving the diffraction efficiency of the sample. Towards the application of ultra-fast and high-density holographic storage,the sample performance can be optimized in two aspects: One is introducing impurities or plasma treatment in the ZnO to create more defects so as to expand optical response range and to increase the population of photogenerated electrons. The other is increasing the loading amount of Ag+ions to enhance the reduction reaction,to improve the grating contrast, and to realize more efficient hologram storage.

    Fig.7. Original image(left,black),and the hologram reconstruction in the Ag+/ZnO1h composite by red light.

    4. Conclusion

    In summary, an Ag+/ZnO nanocomposite system has been constructed using the hydrothermal-immersion method.The internal oxygen defects in ZnO broaden the light response band, and photogenerated electrons can be effectively generated under blue-violet excitation. The length and the defect content of NWs are dependent on hydrothermal time. Onedimensional nanostructures provide a large number of contacting sites for the subsequent loading of silver ions,forming multiple point/line hetero-interfaces, which are used to transfer photogenerated electrons from the semiconductor side to the silver ions, resulting in the formation of Ag nuclei. In addition, the NW structure provides an excellent growth environment for the formation of Ag nanorods on the array surface.We also compared the effect of NW length on the diffraction efficiency. The results show that the surface of ZnO1hNWs can reduce the light scattering,and improve the light energy utilization.The holographic diffraction efficiency reaches 0.08% for Ag+/ZnO1h. Efficient integration of generation,transmission and storage for optical information is expected to be realized in ZnO-based nano-devices.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Grant Nos.11974073,U19A2091,and 51732003), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. B13013), the Natural Science Foundation of Jilin Province of China (Grant No. 20180101218JC), and The 13th Five-Year Scientific Research Planning Project of the Education Department of Jilin Province,China(Grant No.JJKH20201161KJ).

    猜你喜歡
    李鑫李寧
    On Coupled Dirac Systems Under Chirality Boundary Condition
    回望祖山圖
    磁懸浮列車相關(guān)問題賞析
    What Is Guochao?
    In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS
    再不能分擔(dān)的孤獨(dú)
    Progress in quantum well and quantum cascade infrared photodetectors in SITP?
    憂傷詞
    滇池(2017年6期)2017-06-14 20:29:14
    跌宕起伏“李寧”
    商界評論(2017年5期)2017-05-17 18:44:16
    那一縷陽光
    午夜老司机福利剧场| 色哟哟哟哟哟哟| 性色avwww在线观看| 26uuu在线亚洲综合色| 久久精品国产99精品国产亚洲性色| 少妇的逼好多水| 日韩精品青青久久久久久| 欧美最新免费一区二区三区| 久久精品夜色国产| 国产精品一区二区三区四区久久| 不卡一级毛片| 久久久精品大字幕| 亚洲一区高清亚洲精品| 狠狠狠狠99中文字幕| 亚洲最大成人av| 国产一区二区在线观看日韩| 国产av在哪里看| 国产精品久久久久久久久免| 久久人人爽人人爽人人片va| 欧美最新免费一区二区三区| 97超碰精品成人国产| 麻豆乱淫一区二区| 97热精品久久久久久| 天美传媒精品一区二区| 国产一区亚洲一区在线观看| 亚洲乱码一区二区免费版| 色哟哟哟哟哟哟| 一个人看的www免费观看视频| 国产午夜精品论理片| 欧美精品国产亚洲| 少妇熟女aⅴ在线视频| 亚洲精品456在线播放app| 好男人视频免费观看在线| 日韩欧美精品v在线| 欧洲精品卡2卡3卡4卡5卡区| av卡一久久| 日本免费a在线| 精品久久久久久久人妻蜜臀av| 精品人妻熟女av久视频| 一本一本综合久久| 国产精品久久久久久av不卡| 欧美精品国产亚洲| 久久久久久久久大av| 全区人妻精品视频| 一级毛片久久久久久久久女| 亚洲久久久久久中文字幕| 久久欧美精品欧美久久欧美| 欧美+日韩+精品| 国产亚洲av片在线观看秒播厂 | 青春草国产在线视频 | 久久精品国产99精品国产亚洲性色| 国产高清三级在线| 免费看美女性在线毛片视频| 最新中文字幕久久久久| 不卡一级毛片| 国产成人freesex在线| 国产伦一二天堂av在线观看| 日日摸夜夜添夜夜添av毛片| 天堂av国产一区二区熟女人妻| 国产成人a区在线观看| 久久99热6这里只有精品| 久久精品国产清高在天天线| 大型黄色视频在线免费观看| 亚洲成人av在线免费| 国产成人精品一,二区 | 天堂av国产一区二区熟女人妻| 亚洲三级黄色毛片| 99热这里只有是精品50| 色尼玛亚洲综合影院| 午夜福利成人在线免费观看| 一级黄片播放器| 在线免费十八禁| 亚洲四区av| 男女做爰动态图高潮gif福利片| 国产伦在线观看视频一区| 可以在线观看的亚洲视频| 校园人妻丝袜中文字幕| www.色视频.com| 国产精品.久久久| 一级毛片aaaaaa免费看小| 免费在线观看成人毛片| 亚洲婷婷狠狠爱综合网| 日本av手机在线免费观看| 久久久久久国产a免费观看| 久久中文看片网| 日日撸夜夜添| 日韩制服骚丝袜av| 日韩,欧美,国产一区二区三区 | 国产亚洲5aaaaa淫片| 亚洲在线观看片| 啦啦啦啦在线视频资源| 麻豆国产av国片精品| 一区二区三区免费毛片| 久久韩国三级中文字幕| 日日干狠狠操夜夜爽| av在线天堂中文字幕| 九九热线精品视视频播放| 国产蜜桃级精品一区二区三区| 国产精品福利在线免费观看| 欧美+亚洲+日韩+国产| 亚洲成av人片在线播放无| 青春草视频在线免费观看| 久久人人爽人人片av| 久久人人爽人人片av| 日本黄色片子视频| 成人鲁丝片一二三区免费| 亚洲久久久久久中文字幕| 在现免费观看毛片| 丰满乱子伦码专区| 久久久精品94久久精品| 国产精品国产三级国产av玫瑰| 国产高清视频在线观看网站| 黄片无遮挡物在线观看| 欧美三级亚洲精品| 国产精品久久久久久久电影| 婷婷精品国产亚洲av| 人人妻人人看人人澡| 国产伦在线观看视频一区| 国产探花极品一区二区| 国语自产精品视频在线第100页| 国产精品1区2区在线观看.| 欧美日韩综合久久久久久| 亚洲国产高清在线一区二区三| 中文在线观看免费www的网站| 日本欧美国产在线视频| 欧美在线一区亚洲| 亚洲国产欧美在线一区| 国产精品久久久久久亚洲av鲁大| 两性午夜刺激爽爽歪歪视频在线观看| 国产色婷婷99| 在线播放无遮挡| 少妇的逼水好多| 精品久久久久久久人妻蜜臀av| 特级一级黄色大片| 熟妇人妻久久中文字幕3abv| 人人妻人人澡人人爽人人夜夜 | 变态另类成人亚洲欧美熟女| 国产精品麻豆人妻色哟哟久久 | 亚洲精华国产精华液的使用体验 | 国语自产精品视频在线第100页| 麻豆成人av视频| 国产欧美日韩精品一区二区| 国内精品久久久久精免费| av黄色大香蕉| 国产大屁股一区二区在线视频| 丝袜喷水一区| 大又大粗又爽又黄少妇毛片口| 日韩大尺度精品在线看网址| 成年av动漫网址| 真实男女啪啪啪动态图| 成人综合一区亚洲| 99热精品在线国产| 免费看日本二区| 国产淫片久久久久久久久| 国产成人aa在线观看| 久久人人爽人人片av| 亚洲av不卡在线观看| 九九爱精品视频在线观看| 亚洲精品乱码久久久v下载方式| 性插视频无遮挡在线免费观看| 亚州av有码| 五月伊人婷婷丁香| 少妇被粗大猛烈的视频| 免费av毛片视频| 亚洲欧美日韩无卡精品| 最新中文字幕久久久久| 精品一区二区免费观看| 久久精品国产亚洲av香蕉五月| 欧美bdsm另类| www.色视频.com| 亚洲18禁久久av| 久久久精品94久久精品| 99国产精品一区二区蜜桃av| 最新中文字幕久久久久| 又粗又爽又猛毛片免费看| 中文亚洲av片在线观看爽| 18+在线观看网站| 直男gayav资源| 国产69精品久久久久777片| 97热精品久久久久久| 一本久久中文字幕| 亚洲国产精品成人综合色| 一个人免费在线观看电影| 国产亚洲精品久久久com| 午夜激情福利司机影院| 国产一级毛片在线| 中文字幕人妻熟人妻熟丝袜美| av专区在线播放| 熟妇人妻久久中文字幕3abv| 久久久国产成人精品二区| 有码 亚洲区| 男女啪啪激烈高潮av片| 九草在线视频观看| 国内精品一区二区在线观看| 黄色日韩在线| 日本成人三级电影网站| 久久久久久九九精品二区国产| 自拍偷自拍亚洲精品老妇| 国产高清激情床上av| 爱豆传媒免费全集在线观看| 国产午夜精品久久久久久一区二区三区| 欧美一区二区精品小视频在线| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 亚洲欧洲国产日韩| 国产男人的电影天堂91| 国产高清激情床上av| 黄色视频,在线免费观看| 狂野欧美激情性xxxx在线观看| 免费看美女性在线毛片视频| 国模一区二区三区四区视频| 99久国产av精品国产电影| 久久久国产成人精品二区| 免费人成在线观看视频色| 女的被弄到高潮叫床怎么办| 国产精品蜜桃在线观看 | 麻豆精品久久久久久蜜桃| 欧美高清性xxxxhd video| 国产v大片淫在线免费观看| 在线播放国产精品三级| 国产激情偷乱视频一区二区| 欧美+日韩+精品| 成年女人看的毛片在线观看| 国产精品综合久久久久久久免费| 成人国产麻豆网| 国产成人精品婷婷| 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| 麻豆成人午夜福利视频| 久久九九热精品免费| 好男人视频免费观看在线| 18禁在线无遮挡免费观看视频| 欧美在线一区亚洲| 岛国在线免费视频观看| 亚洲精品影视一区二区三区av| 免费av不卡在线播放| 尾随美女入室| 成人高潮视频无遮挡免费网站| 亚洲国产高清在线一区二区三| 美女大奶头视频| 少妇的逼好多水| 精品久久久久久久末码| 欧美xxxx性猛交bbbb| 精品久久久久久久久久久久久| 不卡视频在线观看欧美| 久久久久久九九精品二区国产| 婷婷六月久久综合丁香| 久久99热这里只有精品18| 成人国产麻豆网| 97超视频在线观看视频| 国产黄a三级三级三级人| 九色成人免费人妻av| 69人妻影院| 国产亚洲av嫩草精品影院| 久久人人爽人人片av| 在线播放国产精品三级| 91狼人影院| 亚洲成人久久性| 日韩制服骚丝袜av| 国国产精品蜜臀av免费| 最近中文字幕高清免费大全6| 久99久视频精品免费| 99久久人妻综合| 伦精品一区二区三区| 身体一侧抽搐| 91av网一区二区| 99久久精品热视频| 天美传媒精品一区二区| 麻豆国产av国片精品| 男人狂女人下面高潮的视频| 久久这里有精品视频免费| 日本成人三级电影网站| 欧美一区二区精品小视频在线| 亚洲成人精品中文字幕电影| 日日撸夜夜添| 亚洲七黄色美女视频| 国产美女午夜福利| 国产亚洲av片在线观看秒播厂 | 不卡视频在线观看欧美| 亚洲第一区二区三区不卡| 3wmmmm亚洲av在线观看| АⅤ资源中文在线天堂| 免费搜索国产男女视频| 国产日本99.免费观看| 一级毛片aaaaaa免费看小| 熟女电影av网| 久久99热这里只有精品18| 男女下面进入的视频免费午夜| 哪个播放器可以免费观看大片| 国产成人91sexporn| 久久久久久伊人网av| 亚洲无线在线观看| 亚洲七黄色美女视频| 亚洲五月天丁香| 国产美女午夜福利| 蜜桃久久精品国产亚洲av| 国产色爽女视频免费观看| 麻豆成人av视频| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 最后的刺客免费高清国语| 国产精品蜜桃在线观看 | 两个人的视频大全免费| 亚洲av男天堂| 少妇猛男粗大的猛烈进出视频 | 99久久中文字幕三级久久日本| 深夜精品福利| 91在线精品国自产拍蜜月| 桃色一区二区三区在线观看| 成人美女网站在线观看视频| 人体艺术视频欧美日本| 男女做爰动态图高潮gif福利片| 岛国在线免费视频观看| 免费看av在线观看网站| 欧美高清成人免费视频www| 三级国产精品欧美在线观看| 99热网站在线观看| 男女视频在线观看网站免费| 老司机福利观看| 亚洲精华国产精华液的使用体验 | 国产国拍精品亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| 伦精品一区二区三区| 人妻夜夜爽99麻豆av| 国产精品免费一区二区三区在线| 能在线免费看毛片的网站| 中文在线观看免费www的网站| 人体艺术视频欧美日本| 久久这里只有精品中国| 国模一区二区三区四区视频| 亚洲不卡免费看| 九九在线视频观看精品| 日韩制服骚丝袜av| 欧美在线一区亚洲| 亚洲精品456在线播放app| 国产免费男女视频| 欧美日韩在线观看h| 欧美日韩乱码在线| 美女高潮的动态| 色5月婷婷丁香| 日韩精品青青久久久久久| 一级毛片电影观看 | 久久久成人免费电影| 91久久精品国产一区二区成人| 一级av片app| 青青草视频在线视频观看| 能在线免费观看的黄片| 大又大粗又爽又黄少妇毛片口| 2021天堂中文幕一二区在线观| 国产精品av视频在线免费观看| 女人十人毛片免费观看3o分钟| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 欧美+日韩+精品| 日韩欧美精品v在线| 国产一区亚洲一区在线观看| 在现免费观看毛片| 欧美成人免费av一区二区三区| 亚洲欧美日韩东京热| 波多野结衣高清无吗| 日本av手机在线免费观看| 又爽又黄无遮挡网站| 亚洲国产精品合色在线| 最新中文字幕久久久久| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 全区人妻精品视频| 久久精品国产清高在天天线| 99久久精品国产国产毛片| 日本一本二区三区精品| 日本黄色视频三级网站网址| 欧美精品国产亚洲| 午夜精品在线福利| 久久久精品大字幕| 99视频精品全部免费 在线| 久久热精品热| 男女下面进入的视频免费午夜| 狠狠狠狠99中文字幕| 人妻久久中文字幕网| 亚洲最大成人中文| 亚洲成人中文字幕在线播放| 欧美激情在线99| 日韩欧美国产在线观看| 国产精品一区二区性色av| 一级毛片电影观看 | 亚洲综合色惰| 欧美色视频一区免费| 波多野结衣巨乳人妻| 亚洲精品成人久久久久久| 毛片一级片免费看久久久久| 国产精品人妻久久久久久| 国产高清激情床上av| 国产精品久久久久久精品电影小说 | 国语自产精品视频在线第100页| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 午夜视频国产福利| 国内揄拍国产精品人妻在线| 99在线视频只有这里精品首页| 国产伦精品一区二区三区四那| 免费观看a级毛片全部| 老司机影院成人| 人人妻人人澡人人爽人人夜夜 | 亚洲三级黄色毛片| 男女做爰动态图高潮gif福利片| 麻豆精品久久久久久蜜桃| 国内精品美女久久久久久| а√天堂www在线а√下载| 久久久久久久亚洲中文字幕| 黄片wwwwww| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 乱人视频在线观看| 天堂影院成人在线观看| 国产极品天堂在线| 男人和女人高潮做爰伦理| 人妻制服诱惑在线中文字幕| 一级毛片电影观看 | 桃色一区二区三区在线观看| 全区人妻精品视频| 最近中文字幕高清免费大全6| 国产在线男女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜爱爱视频在线播放| 变态另类成人亚洲欧美熟女| 深爱激情五月婷婷| 一级毛片aaaaaa免费看小| 国产精品久久久久久精品电影| 久久草成人影院| 2022亚洲国产成人精品| 麻豆成人午夜福利视频| 国产老妇女一区| 一区二区三区四区激情视频 | 国产一区二区亚洲精品在线观看| 婷婷色av中文字幕| 成人亚洲欧美一区二区av| 国产精品三级大全| 国产又黄又爽又无遮挡在线| 久久精品国产自在天天线| 好男人视频免费观看在线| 免费观看精品视频网站| 能在线免费观看的黄片| 又爽又黄a免费视频| 欧美精品一区二区大全| 我要搜黄色片| av黄色大香蕉| 男人舔奶头视频| 色播亚洲综合网| 成人综合一区亚洲| 国产一区二区三区av在线 | 国产av麻豆久久久久久久| 亚洲精品日韩av片在线观看| 99riav亚洲国产免费| 一级毛片aaaaaa免费看小| 国产真实伦视频高清在线观看| 一边摸一边抽搐一进一小说| 国产在线男女| 成人国产麻豆网| 午夜爱爱视频在线播放| 国产精品一区二区性色av| 91久久精品国产一区二区成人| av在线亚洲专区| 国产成年人精品一区二区| 老女人水多毛片| 黄片wwwwww| 国产精品一二三区在线看| 色哟哟哟哟哟哟| 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 欧美日韩在线观看h| 热99re8久久精品国产| 国产免费一级a男人的天堂| 舔av片在线| 99久国产av精品| 国内精品美女久久久久久| 69人妻影院| 青春草视频在线免费观看| avwww免费| 欧美xxxx性猛交bbbb| 亚洲人成网站在线播放欧美日韩| av在线天堂中文字幕| 国产成人精品一,二区 | 国产精品久久久久久精品电影小说 | 亚洲真实伦在线观看| 一级毛片我不卡| 少妇的逼水好多| 亚洲欧洲国产日韩| 国产精品美女特级片免费视频播放器| 看免费成人av毛片| 国产精品三级大全| 国产精品永久免费网站| av天堂在线播放| 春色校园在线视频观看| 特级一级黄色大片| 精品午夜福利在线看| 人妻久久中文字幕网| 日韩av不卡免费在线播放| 一区二区三区免费毛片| 国产伦理片在线播放av一区 | 欧美成人a在线观看| 人人妻人人看人人澡| 美女黄网站色视频| 色视频www国产| 永久网站在线| 卡戴珊不雅视频在线播放| 国产成人午夜福利电影在线观看| 91麻豆精品激情在线观看国产| 欧美3d第一页| 色哟哟哟哟哟哟| 天天躁日日操中文字幕| 久久久欧美国产精品| 在线免费观看的www视频| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 欧美xxxx黑人xx丫x性爽| 国产伦在线观看视频一区| 一边亲一边摸免费视频| 精品99又大又爽又粗少妇毛片| 此物有八面人人有两片| 人妻少妇偷人精品九色| 国产老妇女一区| 亚洲七黄色美女视频| 亚洲人成网站在线观看播放| 亚洲国产欧美在线一区| 日本在线视频免费播放| 亚洲欧美日韩无卡精品| 国产片特级美女逼逼视频| 亚洲av二区三区四区| 欧美性感艳星| a级一级毛片免费在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 中文亚洲av片在线观看爽| 一个人免费在线观看电影| 国产av麻豆久久久久久久| 亚洲av免费在线观看| 国内久久婷婷六月综合欲色啪| 深夜a级毛片| 99热6这里只有精品| 成人毛片60女人毛片免费| 一级毛片我不卡| 成年版毛片免费区| 欧美性感艳星| 麻豆一二三区av精品| 波多野结衣高清作品| 亚洲图色成人| 少妇人妻一区二区三区视频| 51国产日韩欧美| 成人特级黄色片久久久久久久| 日韩av在线大香蕉| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 男女那种视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 变态另类丝袜制服| 亚洲在线观看片| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 欧美3d第一页| 欧美日本亚洲视频在线播放| 久久人人爽人人片av| 久久欧美精品欧美久久欧美| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 乱系列少妇在线播放| 我的老师免费观看完整版| 国产精华一区二区三区| 亚洲国产高清在线一区二区三| 亚洲欧美清纯卡通| av.在线天堂| 国产精华一区二区三区| 亚洲中文字幕日韩| 亚洲精品影视一区二区三区av| 欧美人与善性xxx| 舔av片在线| 国产亚洲精品av在线| 亚洲无线在线观看| 在线国产一区二区在线| 一夜夜www| 不卡视频在线观看欧美| 99国产精品一区二区蜜桃av| 国产探花极品一区二区| 免费看美女性在线毛片视频| 91狼人影院| 免费观看人在逋| 一个人看视频在线观看www免费| 天美传媒精品一区二区| 免费看光身美女| 亚洲av熟女| 国产成人freesex在线| 一夜夜www| 欧美激情国产日韩精品一区| 青青草视频在线视频观看| 尾随美女入室| 一级二级三级毛片免费看| 欧美人与善性xxx| 深爱激情五月婷婷| 搞女人的毛片| 国产黄色小视频在线观看| 日本熟妇午夜| 欧美在线一区亚洲| 亚洲av二区三区四区| 欧美成人一区二区免费高清观看| av天堂中文字幕网| 最近手机中文字幕大全| 国产成人精品久久久久久| av女优亚洲男人天堂| 日韩欧美 国产精品| 韩国av在线不卡| 国产真实伦视频高清在线观看| 久久精品国产99精品国产亚洲性色| av国产免费在线观看|