• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?

    2021-09-28 02:17:28WeiZhang張偉MingYuanLi李明遠(yuǎn)QiLiangWu吳啟亮andAnXi襲安
    Chinese Physics B 2021年9期
    關(guān)鍵詞:張偉

    Wei Zhang(張偉),Ming-Yuan Li(李明遠(yuǎn)),Qi-Liang Wu(吳啟亮),and An Xi(襲安)

    1Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures,Beijing University of Technology,Beijing 100124,China

    2College of Mechanical Engineering,Beijing University of Technology,Beijing 100124,China

    3School of Artificial Intelligence,Tiangong University,Tianjin 300387,China

    4The Fifth Electronic Research Institute of MIIT,Guangzhou 510610,China

    Keywords:iced cable,wind excitation,galloping,chaotic motion

    1.Introduction

    The nonlinear statics,dynamics,and stability of cables have received considerable attention due to their extensive applications in the engineering field.High-voltage transmission lines are a flexible cable structure widely used in transmission engineering due to their ability to conduct power over long distances.Cable dynamics have a rich history,which has been summarized in the review articles by Irvine and Caughey,[1]Starossek,[2]and Rega and Ibrahim.[3–5]Among all the different types of cable structures,the suspended cable is a fundamental type used in theoretical studies,and exhibits various dynamic phenomena as a prototype model in applied mechanics.

    The nonlinear dynamic responses of elastic suspended cables due to finite vibration amplitudes have received considerable research attention,as suspended cables exhibit a variety of phenomena due to their high flexibility and low damping characteristics.Perkins[6]derived a continuum model that describes the nonlinear,three-dimensional response of an elastic cable to tangential oscillations of one support.A twodegree-of-freedom approximation was used to examine the coupled in-plane and out-of-plane response.Additionally,a four-degree-of-freedom model was developed from the continuum equations by Benedettini et al.,[7]and is able to capture the main phenomena that are likely to occur in the nonplanar finite dynamics of an elastic suspended cable subjected to external force and support motion.Gattulli et al.[8]used analytical and finite element models to study the modal interactions in both planar and spatial responses to harmonic in-plane and out-of-plane loads.Luongo et al.[9,10]derived a nonlinear model of a twisted cable and studied the effect of the twist angle on the nonlinear galloping of suspended cables.Luongo et al.[11]also established a nonlinear two-degree-of-freedom model to describe a flexible elastic suspended cable undergoing galloping oscillations.Kim and Perkins[12]investigated the resonant responses of suspended elastic cables driven by a steady current.Srinil and Rega[13]presented a model formulation capable of reflecting the large-amplitude free vibrations of a suspended cable in three dimensions.Based on a multidegree-of-freedom model,numerical procedures were implemented to solve both spatial and temporal problems.Zhao and Wang[14]investigated the nonlinear responses of suspended homogeneous elastic cables with low initial sag-to-span ratio in the case of 3:1 internal resonance by considering the vertical load.Casciati and Ubertini[15]considered the nonlinear vibration of shallow cables equipped with a semi-active control device.Abdel-Rohman and Spencer[16]studied the along-wind and across-wind responses of suspended cables.Zheng et al.[17]investigated the super-harmonic and internal resonance characteristics of a viscously damped cable with nearly commensurable natural frequencies via a novel method.Chang et al.[18]studied the nonlinear interaction of the first two inplane modes of a suspended cable with a moving fluid along the plane of the cable.Ouni and Kahla[19]investigated the nonlinear dynamics of a cable under first-and second-order parametric excitations.Zhao et al.[20,21]investigated the approximate series solutions of nonlinear free vibrations of suspended cables via the Lindstedt–Poincar′e method and the homotopy analysis method.

    Owing to the combination of quadratic and cubic nonlinearities,suspended cables exhibit various planar and nonplanar internal resonance conditions.Srinil et al.[22]and Srinil and Rega[23]conducted an analytical investigation of resonant multimodal dynamics resulting from 2:1 internal resonance in the finite-amplitude free vibrations of horizontal/inclined cables.Nayfeh et al.[24]investigated the nonlinear,nonplanar responses of suspended cables subjected to external excitation.Lacarbonara and Rega[25]investigated 1:1,2:1,3:1,and internal resonances in undamped,unforced,one-dimensional systems with arbitrary linear,quadratic,and cubic nonlinearities for a class of shallow symmetric structural systems.Kamel and Hamed[26]studied the nonlinear behavior of an elastic cable subjected to harmonic excitation.Rega et al.[27]studied an experimental model of an elastic cable carrying eight concentrated masses and hanging from in-phase or out-of-phase vertically-moving supports.Zhang and Tang[28]investigated the chaotic dynamics and global bifurcations[29–31]of a suspended elastic cable under combined parametric and external excitations.Considering 1:1 internal resonance,Abe[32]investigated the accuracy of nonlinear vibration analyses of suspended cables that possess quadratic nonlinearity and cubic nonlinearity,respectively.By the Galerkin method,Huang et al.[33]derived the governing equations describing the motion of a coupled suspended cable-stayed beam structure,and studied its 1:2 internal resonance.Taking into account the bending stiffness,Kang et al.[34,35]systematically investigated the linear and nonlinear dynamics of a suspended cable.

    Considering the effect of the geometric nonlinearity of the cable on the coupled behavior between the modes of the beam and cable,Wei et al.[36]developed and investigated a model of the cable-stayed beam system.Wu and Qi studied the dynamic responses of an iced suspended cable were investigated[37]by the finite element method.Jing et al.[38]proposed a numerical model of a wind-loaded two-dimensional(2D)cable,and analyzed the vibration responses induced by rain-wind.The bases of the flow behavior and phenomena existing during 2D airflow were explained by Gorski et al.[39]to analyze the motions of an ice-accreted bridge cable.Via the use of the optimal equivalent control algorithm,Zhao et al.[40]studied a method of controlling the vibration responses of a stay cable.Chang et al.[41]reported experimental results of the mechanism and mitigation of the vibrations of stay cables under rainwind load.Electromagnetic inertial mass dampers were considered by Li et al.[42]to experimentally and analytically study the vibration mitigation of stay cables.

    In recent years,some investigations of suspended cable models and research methods have been updated.Using the method of multiple scales,Huang et al.[43]developed a new nonlinear partial differential equation to investigate a suspended cable-stayed beam structure by considering the finite deformations of the structure and the initial configuration of the main cable.Ahmad et al.[44]established an analytical model of a hybrid system composed of two parallel taut cables interconnected by a transverse linear flexible cross-tie.Ishihara and Oka[45]studied the aerodynamic coefficients of a single bundled iced suspension cable and four bundled iced suspension cables for comparison with the results of a wind tunnel test.Akkaya and Horssen[46]described a model of the rain-wind-induced oscillations of an inclined cable.Based on the mode superposition method with enhanced shape functions,Javanbakht et al.[47]proposed a control-oriented numerical model to evaluate the dynamic response of a stay cable.Li et al.[48]established a generalized gust loading model for predicting the buffeting response,which is applicable to both small-aspect-ratio and long-span,line-like bridges.Guo et al.[49]proposed an elastic cable-rigid body coupled model to investigate the dynamic interaction between the torsional dynamics of the boundary tower and the nonlinear transversal vibrations of the cables.According to catenary theory,Mansour et al.[50]studied the free undamped vibration of a suspension cable with arbitrary sag and inclination.Zhao et al.[51,52]investigated the influence of the temperature on the vibration characteristics of suspension cables related to the excitation amplitude and sag-to-span ratio,and the results revealed that temperature variation gave rise to qualitative and/or quantitative changes of the nonlinear vibration properties.

    The present study focuses on the complex nonlinear vibrations of a three-degree-of-freedom iced cable.The influences of the support displacement and wind excitation on the nonlinear dynamic responses of the system are analyzed.Considering the galloping of the suspended structure under transverse wind,a nonlinear dynamic model of the three-degree-offreedom iced cable is established.The nonlinear partial differential equations of motion for the iced cable are established via Hamilton’s principle.Additionally,the dimensionless differential equations of motion are obtained and reduced into a set of nonlinear ordinary differential equations by the Galerkin method.[53,54]With the assistance of the method of multiple scales,the averaged equations of the system in the presence of principal parametric resonance?1/2 subharmonic resonance and 2:1 internal resonance are obtained.According to the averaged equations,the numerical results including bifurcation diagrams,waveforms,phase plots,and frequency spectrum are obtained to investigate the intrinsically nonlinear behaviors of the iced cable.It is demonstrated that the iced cable exhibits alternating periodic and chaotic motions according to the influences of the nonlinear factors.

    2.Theory and formulation

    Fig.1.Model of iced cable.

    Considering the interception of a small section of the iced cable for centralized mass,the center of mass of the line lies on the origin O.In the Cartesian coordinate(oxy)system,the vertical coordinate of the center of mass is y.For a wind speed Vm,the relative velocity is Vr=Vw?

    then the angle of attackαwill be

    Because the cross-section of the iced cable is a non-circular irregular shape,the gust of the suspension produces not only a resistance Fdin the Vrdirection,but also a lift FLand a torsional force Fwthat are perpendicular to it.According to the aerodynamic principle,the following equations can be obtained:

    The tangential force and normal force of the cable are respectively

    Because the model considers low-frequency vibration,the value ofαis very small;thus,the following approximate expressions can be held:

    By substituting Eqs.(2),(3),and(5)into Eq.(4),the effects of the wind along the cable in the tangential,normal,and rotational directions of the component can be calculated,respectively,as

    where d is the maximum dimension of the aerial surface of the cable,and CL,CD,and CMare respectively the lift,drag,and torsional coefficients,which are the functions of the crosssectional shape and the angle of attack.

    According to Hamilton’s principle,

    whereΠT,ΠS,andΠWare the kinetic energy,strain energy,and external force work,respectively.The equations of motion can be obtained by applying Hamilton’s principle as follows:

    The boundary conditions of the cable are given as

    The tension and curvature expressions are respectively

    where

    Equation(11)shows that when the sag-to-span ratioD/H≤1/8,P0≥ρgL.By taking the Taylor expansion of Eq.(10),the following equation is obtained:

    The dimensionless curvature is k=KL=ρgL/P0,and can be regarded as a small perturbation parameter.By expanding Eq.(8)and omitting k2and higher-order terms,the dynamic equations of small sag are obtained as follows:

    To obtain the dimensionless governing equation of motion,the transformations of the variables and parameters are introduced as

    Substitution of these parameters into Eq.(13)yields the following equations:

    Because the vibration in the tangential direction of the suspension cable does not play a major role,the vibration in the L1direction is ignored,which yields

    therefore,

    where

    Substitution of Eq.(17)into Eq.(15)yields the following equations:

    The boundary conditions are given as

    The Galerkin method is used to separate the variables,and the partial differential equations are then transformed into ordinary differential equations:

    The in-plane vibration mode is as follows:

    with

    whereωis determined by the following characteristic equation:

    The out-of-plane vibration mode is as follows:

    The torsional mode is

    By applying the Galerkin procedure to the dimensionless governing differential equation of motion,i.e.,by substituting Eqs.(22)–(27)into Eq.(20),the three-degree-of-freedom ordinary differential equations of the cable motion are obtained as follows:

    Equation(28c)is a linear differential equation,and equations(28a)and(28b)are uncoupled.Therefore,the solution of Eq.(28c)can be substituted into the other two equations,thereby reducing the three-degree-of-freedom governing equation into a two-degree-of-freedom governing equation.According to the theory of forced vibration,the solution of Eq.(28c)yields

    where

    Substitution of Eqs.(29)and(30)into Eqs.(28a)and(28b)yields the following equations:

    By substituting the one-term expansion

    into Eq.(31)and equating the coefficient of the harmonics to zero,an algebraic equation relating the frequencyωwith the amplitudes A1and A2can be obtained.

    3.Analysis of amplitude–frequency property

    The introduction of a small perturbation parameterεinto Eq.(31)yields the following equations:

    By the method of multiple scales,the following equations are obtained:

    where T0=t and T1=εt.

    The differential operator is

    where Dk=?/?Tkand k=0,1,...

    Considering the case of principal parametric resonance,i.e.,1/2 subharmonic resonance and 2:1 internal resonance,the following expressions are obtained:

    whereσ1andσ2are two detuning parameters,andΩ1=2.0.

    By substituting Eqs.(33)–(35)into Eq.(32),the following equations are obtained:The polar form solution of Eq.(36)is

    Substitute Eq.(39)into Eq.(38)and let the secular term be zero,then the following equations will be yielded:

    The averaged equation in the polar form of the iced suspended cable is derived as

    Let A2and A3be denoted in the following forms:

    and substitute Eq.(42)into Eq.(41)and separate the real part and imaginary part,then the averaged equation in polar form will be obtained below.

    By equating the coefficients of sine and cosine in Eq.(43)to zero,the relationship between the amplitude–frequency characteristics is obtained as follows:

    To study the complex dynamics of the iced cable,the amplitude–frequency characteristics curves of system(31)are analyzed.However,the analytical solutions of system(31)are very difficult to obtain;therefore,the following two special cases are considered:

    (i)the two modes are weakly coupled;

    (ii)the two modes are strongly coupled.

    For case(i),assume a3=1 in Eq.(44a)and a2=1 in Eq.(44b),then the amplitude–frequency relationship of the weakly coupled system will be expressed as

    Figures 2 and 3 respectively present the amplitudes a2and a3versus detuning parameterσ1and B2under different values of damping coefficientμ1.The results demonstrate that the increase of the damping coefficientμ1will lead to the decrease in the amplitudes a2and a3.Moreover,figures 2 and 3 present the hardening properties of the stiffness and jump phenomenon of the amplitude based on the amplitude–frequency curve.

    Fig.2.Weak coupling amplitude–frequency(a)A1 and(b)A2 versusσ1 under different damping coefficients.

    Fig.3.Weak coupling amplitude–frequency(a)A1 and(b)A2 versus B2 under different damping coefficients.

    For case(ii),assume a3=2 in Eq.(44a)and a2=2 in Eq.(44b),then the strongly coupled system will be obtained as follows:

    Fig.4.Strong coupling amplitude-frequency(a)A1 and(b)A2 versusσ1 under different damping coefficients.

    Figures 4 and 5 respectively present the amplitudes a2and a3versus detuning parametersσ1and B2under different values of damping coefficientμ1.Like case(i),with the increase of the damping coefficientμ1,the amplitudes a2and a3decrease.In addition,with the constant change of parameters,the amplitude of the system will present a jump phenomenon.It can be seen that the amplitudes in case(ii)are larger than those in case(i),which is due to the differences between the two cases.

    Fig.5.Strong coupling amplitude–frequency(a)A1 and(b)A2 versus B2 under different damping coefficients.

    4.Numerical simulations of periodic and chaotic motions

    Numerical simulations are performed to determine the periodic motion and chaotic motion of the iced suspended cable.The numerical integration of Eq.(31)is performed by using the Runge–Kutta algorithm with variable precision∈[0.0001,0.01].[38]More specifically,the transient effects are avoided by dropping the first 60% of the simulating time:2000 s.The excitation V is a main controlling parameter in the research of the nonlinear dynamic behaviors of cables,and is selected as the controlling parameter to discover the complicated nonlinear dynamics.The parameters are set to be as follows:E=0.9×1011Pa,G=0.4×1011Pa,g=9.8 N/kg,L=400 m,ρ=0.92 kg/m,ρair=1.2 kg/m3,R=10×10?3m,and um=1 m.

    In this section,the emphasis is placed on the influence of external excitation on the motion of a three-degree-of-freedom iced suspended cable structure.The horizontal wind speed V is taken as the control parameter.The amplitude of the wind speed pulse is constant,and the amplitude umof the bearing motion is assumed to be a constant value.The dependence of the three-degree-of-freedom iced cable on the horizontal wind speed V is investigated.Considering the parametric and external excitation on the iced cable,there exist abundant dynamic behaviors.The dynamic motions of the iced cable under different wind speeds are calculated based on the torsional vibration of the three-degree-of-freedom system which occurs in a single cycle.Table 1 exhibits the typical examples of the motion forms of the iced cable under different wind speeds.The bifurcation diagrams of the two degrees of freedom v2and v3versus wind speed V are presented in Figs.6(a)and 6(b),respectively and figure 6(c)shows the largest Lyapunov exponent of v2.When V∈[0.78,0.88],V∈[1.36,1.75],and V>1.9,the system exhibits the typical characteristics of chaotic motion.

    Table 1.Typical examples of motion forms of iced cable under different wind speeds.

    Fig.6.Bifurcation diagram of v2 and v3 under different values of wind speed V1.

    Fig.7.Periodic motion of iced cable obtained when V=0.83 m/s.

    Fig.8.Multi-periodic motion of iced cable obtained when V=0.94 m/s.

    Fig.9.Chaotic motion of iced cable obtained when V=1.17 m/s.

    In each of Figs.7–9,panels(a)and(c)respectively show the phase portraits on the planes(v2,˙v2)and(v3,˙v3),panels(b)and(d)respectively represent the waveforms on the planes(t,v2)and(t,v3),and panels(e)and(f)respectively display the three-dimensional phase portrait in space(v2,˙v2,v3)and the frequency spectrum on plane(frequency,v2).It should be noted that the frequency spectrum can be used to distinguish between periodic motion and chaotic motion.The results reveal that there exist one-periodic motion(Fig.7),multiperiodic motion(Fig.8),and chaotic motion(Fig.9)when the system is under the action of different resonance mechanisms,including in-plane parametric resonance and out-of-plane superharmonic resonance.Moreover,the displacement of the vibration is found to be enhanced with the increase of the wind speed.

    5.Conclusions

    In this paper,the theory of nonlinear dynamics is used to investigate the wind-excited vibration response of an iced suspended cable.The effects of the system under both external and parametric excitation are investigated.Using Hamilton’s principle,a dynamic model of a three-degree-of-freedom iced suspended cable is first established.Then,the approximate equation in the case of small sag is derived,as shown in the dimensionless equation.The amplitude–frequency characteristics are obtained using the harmonic balance method.The perturbation equation is analyzed using the method of multiple scales,and the averaged equation is derived and used to capture the behaviors of the system under the action of inplane parametric resonance and out-of-plane superharmonic resonance.Based on the numerical simulation,the nonlinear vibration responses of the iced cable under parametric excitation and external excitation caused by horizontal wind are determined.The numerical results reveal that the iced suspended cable presents a periodic motion,multi-periodic motion,and chaotic motion under in-plane parametric resonance and out-of-plane main resonance.It is found that with the increase of the wind speed,the behavior of the system changes from a one-periodic motion into a multi-periodic motion,and finally into a chaotic motion.Compared with the results of a two-degree-of-freedom iced suspended cable,the effect of torsional vibration on the system cannot be neglected.Furthermore,theoretical analysis reveals that the vibration of the iced cable can be effectively controlled,which could be a useful technique to ensure the safety of the cable structure.

    猜你喜歡
    張偉
    文化名家
    ——張偉
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    Solvability for Fractional p-Laplacian Differential Equation with Integral Boundary Conditions at Resonance on Infinite Interval
    Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface?
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    藝術(shù)廣角
    數(shù)學(xué)潛能知識月月賽
    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*
    真的記住了
    故事會(2014年10期)2014-05-14 15:24:18
    精品人妻熟女毛片av久久网站| 国产精品香港三级国产av潘金莲 | 在线观看免费高清a一片| 夜夜骑夜夜射夜夜干| 成人二区视频| 日韩在线高清观看一区二区三区| 人成视频在线观看免费观看| 日本猛色少妇xxxxx猛交久久| 亚洲国产欧美网| 亚洲精品中文字幕在线视频| 赤兔流量卡办理| 国产伦理片在线播放av一区| 男女啪啪激烈高潮av片| 观看av在线不卡| 啦啦啦在线观看免费高清www| av国产久精品久网站免费入址| 飞空精品影院首页| 中文字幕人妻丝袜一区二区 | 欧美精品av麻豆av| 韩国av在线不卡| 在线观看免费视频网站a站| 中文字幕人妻丝袜制服| 国产一区亚洲一区在线观看| 亚洲欧美清纯卡通| 亚洲第一av免费看| 久久精品国产亚洲av高清一级| 精品一区二区免费观看| 少妇猛男粗大的猛烈进出视频| 亚洲av综合色区一区| 亚洲精华国产精华液的使用体验| 国产极品天堂在线| 日韩av免费高清视频| 精品卡一卡二卡四卡免费| 午夜激情av网站| 国产老妇伦熟女老妇高清| 亚洲欧美清纯卡通| 久久国内精品自在自线图片| 97精品久久久久久久久久精品| 国产精品久久久久久久久免| 亚洲国产精品国产精品| h视频一区二区三区| 久久精品国产亚洲av涩爱| 久久国产精品大桥未久av| 日本-黄色视频高清免费观看| 久久精品国产亚洲av高清一级| 如日韩欧美国产精品一区二区三区| 午夜av观看不卡| 亚洲精品乱久久久久久| av女优亚洲男人天堂| 麻豆精品久久久久久蜜桃| 男女午夜视频在线观看| 国产成人精品久久二区二区91 | 成人黄色视频免费在线看| 国产精品 欧美亚洲| 久久久久网色| 国产精品国产av在线观看| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 亚洲av综合色区一区| 国产成人一区二区在线| 美女主播在线视频| 亚洲,一卡二卡三卡| 妹子高潮喷水视频| 99re6热这里在线精品视频| 大香蕉久久成人网| 中文字幕av电影在线播放| 国产成人欧美| 波野结衣二区三区在线| 熟女少妇亚洲综合色aaa.| 五月天丁香电影| 免费少妇av软件| 国产免费福利视频在线观看| 黑人猛操日本美女一级片| 9热在线视频观看99| 日韩精品免费视频一区二区三区| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 日本欧美国产在线视频| 亚洲三级黄色毛片| 国产成人精品无人区| 大片电影免费在线观看免费| 国产精品99久久99久久久不卡 | 伊人亚洲综合成人网| www.精华液| 99热全是精品| 日本黄色日本黄色录像| av片东京热男人的天堂| 丝袜脚勾引网站| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 日本av手机在线免费观看| 久久久久久人人人人人| 女性生殖器流出的白浆| 七月丁香在线播放| 水蜜桃什么品种好| 精品人妻熟女毛片av久久网站| 少妇被粗大猛烈的视频| av电影中文网址| 欧美av亚洲av综合av国产av | 男女边吃奶边做爰视频| 国产精品久久久久久精品古装| 十八禁网站网址无遮挡| 爱豆传媒免费全集在线观看| 麻豆精品久久久久久蜜桃| 中文字幕人妻丝袜一区二区 | 精品卡一卡二卡四卡免费| 日本91视频免费播放| 欧美xxⅹ黑人| 观看美女的网站| 飞空精品影院首页| 国产精品亚洲av一区麻豆 | 男女午夜视频在线观看| 交换朋友夫妻互换小说| 最近中文字幕高清免费大全6| 亚洲国产成人一精品久久久| 制服丝袜香蕉在线| 欧美国产精品一级二级三级| 18禁动态无遮挡网站| 伦理电影大哥的女人| 七月丁香在线播放| 国产精品一二三区在线看| 捣出白浆h1v1| 精品久久久久久电影网| 国产黄色视频一区二区在线观看| 人人妻人人爽人人添夜夜欢视频| 26uuu在线亚洲综合色| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 国产一区二区三区av在线| 亚洲精品av麻豆狂野| 国产日韩欧美亚洲二区| 精品福利永久在线观看| 啦啦啦中文免费视频观看日本| www.自偷自拍.com| 国产精品 国内视频| 成人18禁高潮啪啪吃奶动态图| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 亚洲国产欧美在线一区| 久久久久久免费高清国产稀缺| 欧美激情极品国产一区二区三区| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 日韩,欧美,国产一区二区三区| 久久久精品国产亚洲av高清涩受| 9热在线视频观看99| 欧美黄色片欧美黄色片| 可以免费在线观看a视频的电影网站 | 超碰成人久久| 欧美日本中文国产一区发布| 欧美精品国产亚洲| 如何舔出高潮| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 午夜福利一区二区在线看| 香蕉国产在线看| 亚洲欧美一区二区三区久久| 亚洲视频免费观看视频| 国产精品亚洲av一区麻豆 | 熟女av电影| 国产精品成人在线| 大码成人一级视频| 一级毛片电影观看| 精品少妇久久久久久888优播| 天天躁日日躁夜夜躁夜夜| 久久精品久久久久久久性| 秋霞伦理黄片| 国产成人精品久久久久久| 国产精品秋霞免费鲁丝片| 黄片播放在线免费| 精品少妇一区二区三区视频日本电影 | 国产视频首页在线观看| 亚洲国产精品成人久久小说| 伊人久久国产一区二区| 免费观看av网站的网址| 午夜免费鲁丝| 日韩电影二区| 国产熟女午夜一区二区三区| 久久久久网色| 大香蕉久久网| 久久久精品94久久精品| 波多野结衣av一区二区av| 久久久亚洲精品成人影院| 亚洲色图综合在线观看| 亚洲国产日韩一区二区| 亚洲成国产人片在线观看| 麻豆乱淫一区二区| 寂寞人妻少妇视频99o| 久久午夜综合久久蜜桃| 亚洲精品一区蜜桃| 91国产中文字幕| 精品国产国语对白av| av视频免费观看在线观看| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区 | 丰满迷人的少妇在线观看| 丝瓜视频免费看黄片| av又黄又爽大尺度在线免费看| 伦理电影免费视频| 男女午夜视频在线观看| 69精品国产乱码久久久| 一二三四在线观看免费中文在| 免费大片黄手机在线观看| 少妇的丰满在线观看| 青春草国产在线视频| 夫妻性生交免费视频一级片| 黄片播放在线免费| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 性色av一级| 色网站视频免费| 国产精品人妻久久久影院| 国产成人欧美| 免费高清在线观看视频在线观看| 国产片特级美女逼逼视频| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 999精品在线视频| 满18在线观看网站| 色播在线永久视频| 亚洲,欧美精品.| 桃花免费在线播放| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 欧美 亚洲 国产 日韩一| 欧美黄色片欧美黄色片| 欧美国产精品一级二级三级| 亚洲第一av免费看| 亚洲av男天堂| 熟妇人妻不卡中文字幕| 久久99蜜桃精品久久| 在线观看免费高清a一片| 欧美变态另类bdsm刘玥| av网站在线播放免费| 黄色视频在线播放观看不卡| 丝袜喷水一区| 国产av一区二区精品久久| 女性被躁到高潮视频| 国产免费又黄又爽又色| 免费高清在线观看日韩| 日韩伦理黄色片| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 成人毛片60女人毛片免费| 可以免费在线观看a视频的电影网站 | 久久人妻熟女aⅴ| 日韩伦理黄色片| 黄色怎么调成土黄色| 侵犯人妻中文字幕一二三四区| 国产成人精品一,二区| 肉色欧美久久久久久久蜜桃| 国产成人精品婷婷| 国产精品免费视频内射| 午夜免费男女啪啪视频观看| 18在线观看网站| 在线观看美女被高潮喷水网站| 在线亚洲精品国产二区图片欧美| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| 人妻人人澡人人爽人人| 国产精品久久久av美女十八| 黄片无遮挡物在线观看| 国产日韩欧美视频二区| 成人毛片a级毛片在线播放| 久久午夜福利片| 免费在线观看完整版高清| 久久久国产一区二区| 精品亚洲乱码少妇综合久久| 日韩不卡一区二区三区视频在线| 欧美成人精品欧美一级黄| 久久久久久久久久久久大奶| 中文乱码字字幕精品一区二区三区| 国产成人精品在线电影| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 午夜久久久在线观看| 亚洲图色成人| 搡女人真爽免费视频火全软件| 99热全是精品| 这个男人来自地球电影免费观看 | 亚洲第一av免费看| 一本—道久久a久久精品蜜桃钙片| 啦啦啦啦在线视频资源| 婷婷色麻豆天堂久久| 一本大道久久a久久精品| 国产精品.久久久| 久久久久人妻精品一区果冻| 久久久精品免费免费高清| 99久久中文字幕三级久久日本| 中文字幕制服av| 亚洲av国产av综合av卡| 97人妻天天添夜夜摸| 免费观看在线日韩| 国产精品久久久久成人av| 人人妻人人澡人人爽人人夜夜| 成人漫画全彩无遮挡| 亚洲国产看品久久| 中国三级夫妇交换| 久久久a久久爽久久v久久| 精品国产乱码久久久久久小说| 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站| 美国免费a级毛片| 国产成人午夜福利电影在线观看| 亚洲成人av在线免费| 黑人巨大精品欧美一区二区蜜桃| 女人久久www免费人成看片| 欧美日韩一级在线毛片| 午夜老司机福利剧场| 午夜免费观看性视频| 两性夫妻黄色片| 美国免费a级毛片| 少妇被粗大的猛进出69影院| 又大又黄又爽视频免费| 女性被躁到高潮视频| videos熟女内射| 国产成人一区二区在线| 搡女人真爽免费视频火全软件| 久久久久网色| 亚洲久久久国产精品| 十分钟在线观看高清视频www| 免费日韩欧美在线观看| 国产高清不卡午夜福利| 美国免费a级毛片| 午夜福利在线免费观看网站| 亚洲成人手机| 最近中文字幕2019免费版| 国产精品久久久久久av不卡| 性高湖久久久久久久久免费观看| 精品少妇内射三级| 90打野战视频偷拍视频| 乱人伦中国视频| 大香蕉久久成人网| 成人二区视频| 中文字幕人妻熟女乱码| 免费黄网站久久成人精品| av福利片在线| 黑人巨大精品欧美一区二区蜜桃| 精品一区二区三区四区五区乱码 | 日韩中文字幕视频在线看片| 亚洲伊人色综图| 少妇被粗大猛烈的视频| 天天躁夜夜躁狠狠躁躁| 视频区图区小说| 欧美 日韩 精品 国产| 一区二区三区精品91| 久久久久国产精品人妻一区二区| 国产精品国产三级专区第一集| 国产成人aa在线观看| 久久久久久久久久久久大奶| 少妇人妻精品综合一区二区| 一区二区三区精品91| 青春草国产在线视频| 超色免费av| 人妻系列 视频| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 一级片免费观看大全| 久久久久网色| 麻豆av在线久日| 少妇人妻精品综合一区二区| 91国产中文字幕| 热re99久久精品国产66热6| 国产精品国产三级专区第一集| 亚洲精品成人av观看孕妇| 亚洲av国产av综合av卡| 精品国产超薄肉色丝袜足j| 汤姆久久久久久久影院中文字幕| 亚洲成人一二三区av| 男人操女人黄网站| 精品国产超薄肉色丝袜足j| 亚洲第一区二区三区不卡| 日本猛色少妇xxxxx猛交久久| 美女国产高潮福利片在线看| 国产免费又黄又爽又色| 最黄视频免费看| 久久久久网色| 在线精品无人区一区二区三| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 亚洲国产毛片av蜜桃av| 国产精品成人在线| 99久久精品国产国产毛片| 亚洲男人天堂网一区| 成年女人毛片免费观看观看9 | 人妻少妇偷人精品九色| 99国产精品免费福利视频| 人人妻人人澡人人看| 久久久久网色| 看免费成人av毛片| 国产亚洲最大av| 日韩制服丝袜自拍偷拍| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 亚洲av中文av极速乱| 嫩草影院入口| 欧美变态另类bdsm刘玥| 中文欧美无线码| 9191精品国产免费久久| 考比视频在线观看| 精品国产一区二区久久| www日本在线高清视频| kizo精华| 精品午夜福利在线看| 国产精品一二三区在线看| 夫妻性生交免费视频一级片| 亚洲综合色惰| 亚洲精品中文字幕在线视频| 日韩av在线免费看完整版不卡| 色播在线永久视频| 久久久久精品人妻al黑| 一本色道久久久久久精品综合| av女优亚洲男人天堂| 人妻 亚洲 视频| 久久这里只有精品19| 性色av一级| 狠狠婷婷综合久久久久久88av| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 日韩一本色道免费dvd| 精品国产国语对白av| 成人午夜精彩视频在线观看| 青草久久国产| 99久久精品国产国产毛片| 黄色一级大片看看| 久久久久人妻精品一区果冻| 一级爰片在线观看| 欧美日韩一级在线毛片| 国产日韩欧美视频二区| 亚洲国产精品一区二区三区在线| 日韩成人av中文字幕在线观看| 午夜福利乱码中文字幕| 色婷婷av一区二区三区视频| 人妻系列 视频| 天天操日日干夜夜撸| 天天躁日日躁夜夜躁夜夜| 欧美激情极品国产一区二区三区| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 亚洲国产av新网站| 久热久热在线精品观看| 汤姆久久久久久久影院中文字幕| 色婷婷久久久亚洲欧美| 9191精品国产免费久久| 久热这里只有精品99| 国产一区亚洲一区在线观看| av在线app专区| 最新中文字幕久久久久| 日韩中文字幕欧美一区二区 | 国产精品熟女久久久久浪| 国产成人精品福利久久| 久久ye,这里只有精品| 欧美97在线视频| 国产一区二区三区av在线| 性色avwww在线观看| 久久精品人人爽人人爽视色| 国产综合精华液| 青春草视频在线免费观看| 十分钟在线观看高清视频www| 免费黄网站久久成人精品| 哪个播放器可以免费观看大片| 韩国av在线不卡| 日韩av不卡免费在线播放| 五月天丁香电影| 国产精品.久久久| 看免费av毛片| 高清视频免费观看一区二区| 多毛熟女@视频| 亚洲国产看品久久| 少妇的丰满在线观看| 极品少妇高潮喷水抽搐| 日韩不卡一区二区三区视频在线| 丰满饥渴人妻一区二区三| 男女边摸边吃奶| 9热在线视频观看99| 满18在线观看网站| 日本av手机在线免费观看| 午夜福利乱码中文字幕| 又粗又硬又长又爽又黄的视频| 精品人妻一区二区三区麻豆| 又大又黄又爽视频免费| 18禁动态无遮挡网站| 如日韩欧美国产精品一区二区三区| 少妇人妻精品综合一区二区| 男女下面插进去视频免费观看| 国产精品久久久久成人av| 国产av精品麻豆| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 观看美女的网站| 亚洲,欧美,日韩| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 色哟哟·www| 国产成人精品一,二区| 各种免费的搞黄视频| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产鲁丝片午夜精品| 日本av免费视频播放| 国产精品国产三级国产专区5o| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区| 少妇的逼水好多| 只有这里有精品99| 国产精品国产三级国产专区5o| a级毛片在线看网站| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 精品少妇内射三级| 亚洲人成77777在线视频| 大片免费播放器 马上看| 亚洲在久久综合| 色视频在线一区二区三区| 国产探花极品一区二区| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 亚洲 欧美一区二区三区| 成年人免费黄色播放视频| 亚洲精品国产色婷婷电影| 日韩一本色道免费dvd| 成人亚洲欧美一区二区av| 久久免费观看电影| 丝袜美腿诱惑在线| 2018国产大陆天天弄谢| 亚洲综合色网址| 狠狠精品人妻久久久久久综合| 黑丝袜美女国产一区| 日韩精品有码人妻一区| 超碰97精品在线观看| 观看av在线不卡| 久久精品国产a三级三级三级| 性少妇av在线| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| 99精国产麻豆久久婷婷| 97精品久久久久久久久久精品| 国产福利在线免费观看视频| 欧美 日韩 精品 国产| 美女国产视频在线观看| 国产在线一区二区三区精| 欧美国产精品一级二级三级| 性高湖久久久久久久久免费观看| 国产片特级美女逼逼视频| 亚洲人成电影观看| 免费黄色在线免费观看| 69精品国产乱码久久久| 日韩视频在线欧美| 丰满迷人的少妇在线观看| 大陆偷拍与自拍| 国产 精品1| 最新中文字幕久久久久| 久久精品熟女亚洲av麻豆精品| 午夜免费鲁丝| 亚洲国产精品一区二区三区在线| 满18在线观看网站| 国产精品国产三级国产专区5o| 精品国产一区二区三区久久久樱花| www.熟女人妻精品国产| 久久久久久人人人人人| 午夜福利在线免费观看网站| 精品国产一区二区久久| 老司机影院成人| 亚洲精品美女久久久久99蜜臀 | 最近2019中文字幕mv第一页| 大话2 男鬼变身卡| 咕卡用的链子| 亚洲经典国产精华液单| 国产av国产精品国产| 久久久久精品人妻al黑| 天美传媒精品一区二区| 99国产精品免费福利视频| 国产综合精华液| 亚洲精品美女久久久久99蜜臀 | 欧美精品一区二区大全| 亚洲精品国产av蜜桃| www.精华液| 亚洲av电影在线进入| 韩国av在线不卡| 成人国产av品久久久| 91精品三级在线观看| 高清欧美精品videossex| 午夜av观看不卡| 精品一区二区三卡| 少妇猛男粗大的猛烈进出视频| 91午夜精品亚洲一区二区三区| 日日啪夜夜爽| 精品少妇久久久久久888优播| 纵有疾风起免费观看全集完整版| 纯流量卡能插随身wifi吗| 多毛熟女@视频| 欧美日韩综合久久久久久| 国产亚洲一区二区精品| 中文精品一卡2卡3卡4更新| www.av在线官网国产| 国产精品免费视频内射| 美女国产视频在线观看| 亚洲精品美女久久久久99蜜臀 | 99久国产av精品国产电影| 99香蕉大伊视频| 日韩欧美一区视频在线观看| 丝袜美足系列| 超色免费av| 国产xxxxx性猛交| 男男h啪啪无遮挡| av在线观看视频网站免费| 国产精品久久久av美女十八| 日日摸夜夜添夜夜爱| 亚洲一区二区三区欧美精品| 丝袜喷水一区|