• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?

    2021-09-28 02:17:28WeiZhang張偉MingYuanLi李明遠(yuǎn)QiLiangWu吳啟亮andAnXi襲安
    Chinese Physics B 2021年9期
    關(guān)鍵詞:張偉

    Wei Zhang(張偉),Ming-Yuan Li(李明遠(yuǎn)),Qi-Liang Wu(吳啟亮),and An Xi(襲安)

    1Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures,Beijing University of Technology,Beijing 100124,China

    2College of Mechanical Engineering,Beijing University of Technology,Beijing 100124,China

    3School of Artificial Intelligence,Tiangong University,Tianjin 300387,China

    4The Fifth Electronic Research Institute of MIIT,Guangzhou 510610,China

    Keywords:iced cable,wind excitation,galloping,chaotic motion

    1.Introduction

    The nonlinear statics,dynamics,and stability of cables have received considerable attention due to their extensive applications in the engineering field.High-voltage transmission lines are a flexible cable structure widely used in transmission engineering due to their ability to conduct power over long distances.Cable dynamics have a rich history,which has been summarized in the review articles by Irvine and Caughey,[1]Starossek,[2]and Rega and Ibrahim.[3–5]Among all the different types of cable structures,the suspended cable is a fundamental type used in theoretical studies,and exhibits various dynamic phenomena as a prototype model in applied mechanics.

    The nonlinear dynamic responses of elastic suspended cables due to finite vibration amplitudes have received considerable research attention,as suspended cables exhibit a variety of phenomena due to their high flexibility and low damping characteristics.Perkins[6]derived a continuum model that describes the nonlinear,three-dimensional response of an elastic cable to tangential oscillations of one support.A twodegree-of-freedom approximation was used to examine the coupled in-plane and out-of-plane response.Additionally,a four-degree-of-freedom model was developed from the continuum equations by Benedettini et al.,[7]and is able to capture the main phenomena that are likely to occur in the nonplanar finite dynamics of an elastic suspended cable subjected to external force and support motion.Gattulli et al.[8]used analytical and finite element models to study the modal interactions in both planar and spatial responses to harmonic in-plane and out-of-plane loads.Luongo et al.[9,10]derived a nonlinear model of a twisted cable and studied the effect of the twist angle on the nonlinear galloping of suspended cables.Luongo et al.[11]also established a nonlinear two-degree-of-freedom model to describe a flexible elastic suspended cable undergoing galloping oscillations.Kim and Perkins[12]investigated the resonant responses of suspended elastic cables driven by a steady current.Srinil and Rega[13]presented a model formulation capable of reflecting the large-amplitude free vibrations of a suspended cable in three dimensions.Based on a multidegree-of-freedom model,numerical procedures were implemented to solve both spatial and temporal problems.Zhao and Wang[14]investigated the nonlinear responses of suspended homogeneous elastic cables with low initial sag-to-span ratio in the case of 3:1 internal resonance by considering the vertical load.Casciati and Ubertini[15]considered the nonlinear vibration of shallow cables equipped with a semi-active control device.Abdel-Rohman and Spencer[16]studied the along-wind and across-wind responses of suspended cables.Zheng et al.[17]investigated the super-harmonic and internal resonance characteristics of a viscously damped cable with nearly commensurable natural frequencies via a novel method.Chang et al.[18]studied the nonlinear interaction of the first two inplane modes of a suspended cable with a moving fluid along the plane of the cable.Ouni and Kahla[19]investigated the nonlinear dynamics of a cable under first-and second-order parametric excitations.Zhao et al.[20,21]investigated the approximate series solutions of nonlinear free vibrations of suspended cables via the Lindstedt–Poincar′e method and the homotopy analysis method.

    Owing to the combination of quadratic and cubic nonlinearities,suspended cables exhibit various planar and nonplanar internal resonance conditions.Srinil et al.[22]and Srinil and Rega[23]conducted an analytical investigation of resonant multimodal dynamics resulting from 2:1 internal resonance in the finite-amplitude free vibrations of horizontal/inclined cables.Nayfeh et al.[24]investigated the nonlinear,nonplanar responses of suspended cables subjected to external excitation.Lacarbonara and Rega[25]investigated 1:1,2:1,3:1,and internal resonances in undamped,unforced,one-dimensional systems with arbitrary linear,quadratic,and cubic nonlinearities for a class of shallow symmetric structural systems.Kamel and Hamed[26]studied the nonlinear behavior of an elastic cable subjected to harmonic excitation.Rega et al.[27]studied an experimental model of an elastic cable carrying eight concentrated masses and hanging from in-phase or out-of-phase vertically-moving supports.Zhang and Tang[28]investigated the chaotic dynamics and global bifurcations[29–31]of a suspended elastic cable under combined parametric and external excitations.Considering 1:1 internal resonance,Abe[32]investigated the accuracy of nonlinear vibration analyses of suspended cables that possess quadratic nonlinearity and cubic nonlinearity,respectively.By the Galerkin method,Huang et al.[33]derived the governing equations describing the motion of a coupled suspended cable-stayed beam structure,and studied its 1:2 internal resonance.Taking into account the bending stiffness,Kang et al.[34,35]systematically investigated the linear and nonlinear dynamics of a suspended cable.

    Considering the effect of the geometric nonlinearity of the cable on the coupled behavior between the modes of the beam and cable,Wei et al.[36]developed and investigated a model of the cable-stayed beam system.Wu and Qi studied the dynamic responses of an iced suspended cable were investigated[37]by the finite element method.Jing et al.[38]proposed a numerical model of a wind-loaded two-dimensional(2D)cable,and analyzed the vibration responses induced by rain-wind.The bases of the flow behavior and phenomena existing during 2D airflow were explained by Gorski et al.[39]to analyze the motions of an ice-accreted bridge cable.Via the use of the optimal equivalent control algorithm,Zhao et al.[40]studied a method of controlling the vibration responses of a stay cable.Chang et al.[41]reported experimental results of the mechanism and mitigation of the vibrations of stay cables under rainwind load.Electromagnetic inertial mass dampers were considered by Li et al.[42]to experimentally and analytically study the vibration mitigation of stay cables.

    In recent years,some investigations of suspended cable models and research methods have been updated.Using the method of multiple scales,Huang et al.[43]developed a new nonlinear partial differential equation to investigate a suspended cable-stayed beam structure by considering the finite deformations of the structure and the initial configuration of the main cable.Ahmad et al.[44]established an analytical model of a hybrid system composed of two parallel taut cables interconnected by a transverse linear flexible cross-tie.Ishihara and Oka[45]studied the aerodynamic coefficients of a single bundled iced suspension cable and four bundled iced suspension cables for comparison with the results of a wind tunnel test.Akkaya and Horssen[46]described a model of the rain-wind-induced oscillations of an inclined cable.Based on the mode superposition method with enhanced shape functions,Javanbakht et al.[47]proposed a control-oriented numerical model to evaluate the dynamic response of a stay cable.Li et al.[48]established a generalized gust loading model for predicting the buffeting response,which is applicable to both small-aspect-ratio and long-span,line-like bridges.Guo et al.[49]proposed an elastic cable-rigid body coupled model to investigate the dynamic interaction between the torsional dynamics of the boundary tower and the nonlinear transversal vibrations of the cables.According to catenary theory,Mansour et al.[50]studied the free undamped vibration of a suspension cable with arbitrary sag and inclination.Zhao et al.[51,52]investigated the influence of the temperature on the vibration characteristics of suspension cables related to the excitation amplitude and sag-to-span ratio,and the results revealed that temperature variation gave rise to qualitative and/or quantitative changes of the nonlinear vibration properties.

    The present study focuses on the complex nonlinear vibrations of a three-degree-of-freedom iced cable.The influences of the support displacement and wind excitation on the nonlinear dynamic responses of the system are analyzed.Considering the galloping of the suspended structure under transverse wind,a nonlinear dynamic model of the three-degree-offreedom iced cable is established.The nonlinear partial differential equations of motion for the iced cable are established via Hamilton’s principle.Additionally,the dimensionless differential equations of motion are obtained and reduced into a set of nonlinear ordinary differential equations by the Galerkin method.[53,54]With the assistance of the method of multiple scales,the averaged equations of the system in the presence of principal parametric resonance?1/2 subharmonic resonance and 2:1 internal resonance are obtained.According to the averaged equations,the numerical results including bifurcation diagrams,waveforms,phase plots,and frequency spectrum are obtained to investigate the intrinsically nonlinear behaviors of the iced cable.It is demonstrated that the iced cable exhibits alternating periodic and chaotic motions according to the influences of the nonlinear factors.

    2.Theory and formulation

    Fig.1.Model of iced cable.

    Considering the interception of a small section of the iced cable for centralized mass,the center of mass of the line lies on the origin O.In the Cartesian coordinate(oxy)system,the vertical coordinate of the center of mass is y.For a wind speed Vm,the relative velocity is Vr=Vw?

    then the angle of attackαwill be

    Because the cross-section of the iced cable is a non-circular irregular shape,the gust of the suspension produces not only a resistance Fdin the Vrdirection,but also a lift FLand a torsional force Fwthat are perpendicular to it.According to the aerodynamic principle,the following equations can be obtained:

    The tangential force and normal force of the cable are respectively

    Because the model considers low-frequency vibration,the value ofαis very small;thus,the following approximate expressions can be held:

    By substituting Eqs.(2),(3),and(5)into Eq.(4),the effects of the wind along the cable in the tangential,normal,and rotational directions of the component can be calculated,respectively,as

    where d is the maximum dimension of the aerial surface of the cable,and CL,CD,and CMare respectively the lift,drag,and torsional coefficients,which are the functions of the crosssectional shape and the angle of attack.

    According to Hamilton’s principle,

    whereΠT,ΠS,andΠWare the kinetic energy,strain energy,and external force work,respectively.The equations of motion can be obtained by applying Hamilton’s principle as follows:

    The boundary conditions of the cable are given as

    The tension and curvature expressions are respectively

    where

    Equation(11)shows that when the sag-to-span ratioD/H≤1/8,P0≥ρgL.By taking the Taylor expansion of Eq.(10),the following equation is obtained:

    The dimensionless curvature is k=KL=ρgL/P0,and can be regarded as a small perturbation parameter.By expanding Eq.(8)and omitting k2and higher-order terms,the dynamic equations of small sag are obtained as follows:

    To obtain the dimensionless governing equation of motion,the transformations of the variables and parameters are introduced as

    Substitution of these parameters into Eq.(13)yields the following equations:

    Because the vibration in the tangential direction of the suspension cable does not play a major role,the vibration in the L1direction is ignored,which yields

    therefore,

    where

    Substitution of Eq.(17)into Eq.(15)yields the following equations:

    The boundary conditions are given as

    The Galerkin method is used to separate the variables,and the partial differential equations are then transformed into ordinary differential equations:

    The in-plane vibration mode is as follows:

    with

    whereωis determined by the following characteristic equation:

    The out-of-plane vibration mode is as follows:

    The torsional mode is

    By applying the Galerkin procedure to the dimensionless governing differential equation of motion,i.e.,by substituting Eqs.(22)–(27)into Eq.(20),the three-degree-of-freedom ordinary differential equations of the cable motion are obtained as follows:

    Equation(28c)is a linear differential equation,and equations(28a)and(28b)are uncoupled.Therefore,the solution of Eq.(28c)can be substituted into the other two equations,thereby reducing the three-degree-of-freedom governing equation into a two-degree-of-freedom governing equation.According to the theory of forced vibration,the solution of Eq.(28c)yields

    where

    Substitution of Eqs.(29)and(30)into Eqs.(28a)and(28b)yields the following equations:

    By substituting the one-term expansion

    into Eq.(31)and equating the coefficient of the harmonics to zero,an algebraic equation relating the frequencyωwith the amplitudes A1and A2can be obtained.

    3.Analysis of amplitude–frequency property

    The introduction of a small perturbation parameterεinto Eq.(31)yields the following equations:

    By the method of multiple scales,the following equations are obtained:

    where T0=t and T1=εt.

    The differential operator is

    where Dk=?/?Tkand k=0,1,...

    Considering the case of principal parametric resonance,i.e.,1/2 subharmonic resonance and 2:1 internal resonance,the following expressions are obtained:

    whereσ1andσ2are two detuning parameters,andΩ1=2.0.

    By substituting Eqs.(33)–(35)into Eq.(32),the following equations are obtained:The polar form solution of Eq.(36)is

    Substitute Eq.(39)into Eq.(38)and let the secular term be zero,then the following equations will be yielded:

    The averaged equation in the polar form of the iced suspended cable is derived as

    Let A2and A3be denoted in the following forms:

    and substitute Eq.(42)into Eq.(41)and separate the real part and imaginary part,then the averaged equation in polar form will be obtained below.

    By equating the coefficients of sine and cosine in Eq.(43)to zero,the relationship between the amplitude–frequency characteristics is obtained as follows:

    To study the complex dynamics of the iced cable,the amplitude–frequency characteristics curves of system(31)are analyzed.However,the analytical solutions of system(31)are very difficult to obtain;therefore,the following two special cases are considered:

    (i)the two modes are weakly coupled;

    (ii)the two modes are strongly coupled.

    For case(i),assume a3=1 in Eq.(44a)and a2=1 in Eq.(44b),then the amplitude–frequency relationship of the weakly coupled system will be expressed as

    Figures 2 and 3 respectively present the amplitudes a2and a3versus detuning parameterσ1and B2under different values of damping coefficientμ1.The results demonstrate that the increase of the damping coefficientμ1will lead to the decrease in the amplitudes a2and a3.Moreover,figures 2 and 3 present the hardening properties of the stiffness and jump phenomenon of the amplitude based on the amplitude–frequency curve.

    Fig.2.Weak coupling amplitude–frequency(a)A1 and(b)A2 versusσ1 under different damping coefficients.

    Fig.3.Weak coupling amplitude–frequency(a)A1 and(b)A2 versus B2 under different damping coefficients.

    For case(ii),assume a3=2 in Eq.(44a)and a2=2 in Eq.(44b),then the strongly coupled system will be obtained as follows:

    Fig.4.Strong coupling amplitude-frequency(a)A1 and(b)A2 versusσ1 under different damping coefficients.

    Figures 4 and 5 respectively present the amplitudes a2and a3versus detuning parametersσ1and B2under different values of damping coefficientμ1.Like case(i),with the increase of the damping coefficientμ1,the amplitudes a2and a3decrease.In addition,with the constant change of parameters,the amplitude of the system will present a jump phenomenon.It can be seen that the amplitudes in case(ii)are larger than those in case(i),which is due to the differences between the two cases.

    Fig.5.Strong coupling amplitude–frequency(a)A1 and(b)A2 versus B2 under different damping coefficients.

    4.Numerical simulations of periodic and chaotic motions

    Numerical simulations are performed to determine the periodic motion and chaotic motion of the iced suspended cable.The numerical integration of Eq.(31)is performed by using the Runge–Kutta algorithm with variable precision∈[0.0001,0.01].[38]More specifically,the transient effects are avoided by dropping the first 60% of the simulating time:2000 s.The excitation V is a main controlling parameter in the research of the nonlinear dynamic behaviors of cables,and is selected as the controlling parameter to discover the complicated nonlinear dynamics.The parameters are set to be as follows:E=0.9×1011Pa,G=0.4×1011Pa,g=9.8 N/kg,L=400 m,ρ=0.92 kg/m,ρair=1.2 kg/m3,R=10×10?3m,and um=1 m.

    In this section,the emphasis is placed on the influence of external excitation on the motion of a three-degree-of-freedom iced suspended cable structure.The horizontal wind speed V is taken as the control parameter.The amplitude of the wind speed pulse is constant,and the amplitude umof the bearing motion is assumed to be a constant value.The dependence of the three-degree-of-freedom iced cable on the horizontal wind speed V is investigated.Considering the parametric and external excitation on the iced cable,there exist abundant dynamic behaviors.The dynamic motions of the iced cable under different wind speeds are calculated based on the torsional vibration of the three-degree-of-freedom system which occurs in a single cycle.Table 1 exhibits the typical examples of the motion forms of the iced cable under different wind speeds.The bifurcation diagrams of the two degrees of freedom v2and v3versus wind speed V are presented in Figs.6(a)and 6(b),respectively and figure 6(c)shows the largest Lyapunov exponent of v2.When V∈[0.78,0.88],V∈[1.36,1.75],and V>1.9,the system exhibits the typical characteristics of chaotic motion.

    Table 1.Typical examples of motion forms of iced cable under different wind speeds.

    Fig.6.Bifurcation diagram of v2 and v3 under different values of wind speed V1.

    Fig.7.Periodic motion of iced cable obtained when V=0.83 m/s.

    Fig.8.Multi-periodic motion of iced cable obtained when V=0.94 m/s.

    Fig.9.Chaotic motion of iced cable obtained when V=1.17 m/s.

    In each of Figs.7–9,panels(a)and(c)respectively show the phase portraits on the planes(v2,˙v2)and(v3,˙v3),panels(b)and(d)respectively represent the waveforms on the planes(t,v2)and(t,v3),and panels(e)and(f)respectively display the three-dimensional phase portrait in space(v2,˙v2,v3)and the frequency spectrum on plane(frequency,v2).It should be noted that the frequency spectrum can be used to distinguish between periodic motion and chaotic motion.The results reveal that there exist one-periodic motion(Fig.7),multiperiodic motion(Fig.8),and chaotic motion(Fig.9)when the system is under the action of different resonance mechanisms,including in-plane parametric resonance and out-of-plane superharmonic resonance.Moreover,the displacement of the vibration is found to be enhanced with the increase of the wind speed.

    5.Conclusions

    In this paper,the theory of nonlinear dynamics is used to investigate the wind-excited vibration response of an iced suspended cable.The effects of the system under both external and parametric excitation are investigated.Using Hamilton’s principle,a dynamic model of a three-degree-of-freedom iced suspended cable is first established.Then,the approximate equation in the case of small sag is derived,as shown in the dimensionless equation.The amplitude–frequency characteristics are obtained using the harmonic balance method.The perturbation equation is analyzed using the method of multiple scales,and the averaged equation is derived and used to capture the behaviors of the system under the action of inplane parametric resonance and out-of-plane superharmonic resonance.Based on the numerical simulation,the nonlinear vibration responses of the iced cable under parametric excitation and external excitation caused by horizontal wind are determined.The numerical results reveal that the iced suspended cable presents a periodic motion,multi-periodic motion,and chaotic motion under in-plane parametric resonance and out-of-plane main resonance.It is found that with the increase of the wind speed,the behavior of the system changes from a one-periodic motion into a multi-periodic motion,and finally into a chaotic motion.Compared with the results of a two-degree-of-freedom iced suspended cable,the effect of torsional vibration on the system cannot be neglected.Furthermore,theoretical analysis reveals that the vibration of the iced cable can be effectively controlled,which could be a useful technique to ensure the safety of the cable structure.

    猜你喜歡
    張偉
    文化名家
    ——張偉
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    Solvability for Fractional p-Laplacian Differential Equation with Integral Boundary Conditions at Resonance on Infinite Interval
    Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface?
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    藝術(shù)廣角
    數(shù)學(xué)潛能知識月月賽
    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*
    真的記住了
    故事會(2014年10期)2014-05-14 15:24:18
    日韩欧美一区二区三区在线观看| 看片在线看免费视频| 国语自产精品视频在线第100页| 人人妻,人人澡人人爽秒播| 精品人妻在线不人妻| 性色av乱码一区二区三区2| 午夜精品久久久久久毛片777| 伦理电影免费视频| 9热在线视频观看99| 18禁观看日本| 90打野战视频偷拍视频| 国产精品美女特级片免费视频播放器 | 在线观看舔阴道视频| 12—13女人毛片做爰片一| 国产精品久久久久久精品电影 | 可以免费在线观看a视频的电影网站| 99国产精品99久久久久| 久久人人97超碰香蕉20202| 欧美老熟妇乱子伦牲交| 免费搜索国产男女视频| 欧美国产日韩亚洲一区| 国产视频一区二区在线看| avwww免费| 国产av精品麻豆| 99久久国产精品久久久| 黄色毛片三级朝国网站| 99国产极品粉嫩在线观看| 亚洲精品粉嫩美女一区| 操出白浆在线播放| 国产三级在线视频| 久久久久久久午夜电影| 女人精品久久久久毛片| 欧美国产精品va在线观看不卡| 亚洲精品一区av在线观看| 国产亚洲欧美在线一区二区| 免费在线观看亚洲国产| 国产亚洲精品综合一区在线观看 | 国内久久婷婷六月综合欲色啪| 久久 成人 亚洲| 香蕉久久夜色| 国产野战对白在线观看| 欧美成人性av电影在线观看| www.精华液| 欧美日韩瑟瑟在线播放| 久久婷婷人人爽人人干人人爱 | 久久国产精品影院| 国产精品二区激情视频| 国产麻豆成人av免费视频| 亚洲 欧美一区二区三区| 中文亚洲av片在线观看爽| 日韩欧美一区二区三区在线观看| 国产色视频综合| 久久影院123| 精品少妇一区二区三区视频日本电影| 亚洲男人天堂网一区| 桃红色精品国产亚洲av| 一级毛片女人18水好多| 午夜免费成人在线视频| а√天堂www在线а√下载| 亚洲成国产人片在线观看| 咕卡用的链子| 午夜a级毛片| 啪啪无遮挡十八禁网站| 淫妇啪啪啪对白视频| 亚洲国产高清在线一区二区三 | 淫秽高清视频在线观看| 成年女人毛片免费观看观看9| 国产成+人综合+亚洲专区| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 在线观看日韩欧美| 国产伦一二天堂av在线观看| 一区二区日韩欧美中文字幕| 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 亚洲美女黄片视频| av网站免费在线观看视频| 国产激情久久老熟女| 老司机在亚洲福利影院| 欧美黑人欧美精品刺激| 三级毛片av免费| 亚洲午夜理论影院| 日韩精品免费视频一区二区三区| 国产精品久久视频播放| 久久青草综合色| 午夜精品国产一区二区电影| 少妇裸体淫交视频免费看高清 | av视频在线观看入口| 成人三级做爰电影| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| tocl精华| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 电影成人av| 黄色丝袜av网址大全| 久久精品91蜜桃| 日本精品一区二区三区蜜桃| x7x7x7水蜜桃| 老熟妇乱子伦视频在线观看| 免费av毛片视频| 亚洲五月婷婷丁香| 99久久99久久久精品蜜桃| 久久人人精品亚洲av| 国产伦人伦偷精品视频| 午夜久久久在线观看| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 国产精品久久电影中文字幕| 久久久久久人人人人人| 亚洲aⅴ乱码一区二区在线播放 | 国产精品 欧美亚洲| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 可以在线观看的亚洲视频| 国产成人精品久久二区二区免费| 国产不卡一卡二| 最近最新免费中文字幕在线| 99国产精品99久久久久| 精品人妻在线不人妻| 国产亚洲av嫩草精品影院| 中文字幕久久专区| 亚洲第一av免费看| a级毛片在线看网站| 两个人看的免费小视频| 亚洲精品一区av在线观看| 亚洲一码二码三码区别大吗| 久久人人爽av亚洲精品天堂| 午夜福利18| 高清黄色对白视频在线免费看| 成人18禁在线播放| 韩国精品一区二区三区| 51午夜福利影视在线观看| √禁漫天堂资源中文www| 亚洲精品在线美女| 黄频高清免费视频| 欧美久久黑人一区二区| 99国产极品粉嫩在线观看| 两个人视频免费观看高清| 高清在线国产一区| 人人妻人人澡欧美一区二区 | 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| x7x7x7水蜜桃| 九色亚洲精品在线播放| 91精品三级在线观看| 久久这里只有精品19| 老司机深夜福利视频在线观看| 日本 av在线| 成年人黄色毛片网站| 精品高清国产在线一区| 美女免费视频网站| 亚洲五月婷婷丁香| 国产精品乱码一区二三区的特点 | 日日摸夜夜添夜夜添小说| 午夜福利18| 中国美女看黄片| 国产激情欧美一区二区| 精品久久久久久,| 电影成人av| 免费在线观看日本一区| 国产成人系列免费观看| 精品国产超薄肉色丝袜足j| 女生性感内裤真人,穿戴方法视频| 国产区一区二久久| 亚洲精品在线美女| 满18在线观看网站| 一级毛片女人18水好多| 最好的美女福利视频网| 亚洲成av人片免费观看| 咕卡用的链子| 99精品欧美一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 在线观看舔阴道视频| 国产av一区二区精品久久| 真人一进一出gif抽搐免费| 黑人操中国人逼视频| 久久精品国产亚洲av香蕉五月| 制服诱惑二区| 欧美 亚洲 国产 日韩一| 他把我摸到了高潮在线观看| 桃色一区二区三区在线观看| 亚洲五月色婷婷综合| 视频区欧美日本亚洲| 夜夜夜夜夜久久久久| 777久久人妻少妇嫩草av网站| 亚洲久久久国产精品| 两人在一起打扑克的视频| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线av高清观看| 老司机午夜福利在线观看视频| 久久精品91蜜桃| 亚洲九九香蕉| 国产精品一区二区免费欧美| 丁香欧美五月| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| 大陆偷拍与自拍| 国产高清videossex| 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 一级毛片精品| 久久精品国产清高在天天线| 亚洲欧美精品综合久久99| 亚洲精品在线美女| 亚洲国产欧美一区二区综合| 波多野结衣巨乳人妻| 一a级毛片在线观看| 一级作爱视频免费观看| 亚洲最大成人中文| 天天添夜夜摸| 中文字幕最新亚洲高清| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产区一区二| 国产精品久久久久久人妻精品电影| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| 99久久国产精品久久久| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 丝袜美足系列| 亚洲成人国产一区在线观看| 欧美丝袜亚洲另类 | 欧美日韩福利视频一区二区| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 国产片内射在线| 国产av在哪里看| 午夜福利视频1000在线观看 | 在线观看免费日韩欧美大片| 成年版毛片免费区| 欧美日韩乱码在线| 真人做人爱边吃奶动态| 99国产精品免费福利视频| 欧美成人免费av一区二区三区| 国产高清视频在线播放一区| 大香蕉久久成人网| 女性被躁到高潮视频| 国产一区二区在线av高清观看| 午夜成年电影在线免费观看| av天堂在线播放| 日韩大码丰满熟妇| 色老头精品视频在线观看| 女性生殖器流出的白浆| 我的亚洲天堂| 一进一出好大好爽视频| 国产亚洲欧美精品永久| 最好的美女福利视频网| 在线观看日韩欧美| 国产一级毛片七仙女欲春2 | av天堂久久9| 亚洲成人精品中文字幕电影| 免费在线观看亚洲国产| 日本免费一区二区三区高清不卡 | 一进一出抽搐gif免费好疼| 中亚洲国语对白在线视频| 黑人操中国人逼视频| 欧美黑人欧美精品刺激| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 国产午夜福利久久久久久| 国产成人精品久久二区二区91| 中文字幕av电影在线播放| 丰满的人妻完整版| 校园春色视频在线观看| 亚洲自拍偷在线| 一区在线观看完整版| 757午夜福利合集在线观看| 女性生殖器流出的白浆| 精品国内亚洲2022精品成人| 黄色女人牲交| 91麻豆av在线| 美女大奶头视频| 欧美日韩福利视频一区二区| 久久婷婷成人综合色麻豆| a级毛片在线看网站| 国产精品亚洲美女久久久| 女生性感内裤真人,穿戴方法视频| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 精品欧美一区二区三区在线| 无遮挡黄片免费观看| 国产精品美女特级片免费视频播放器 | 国产一区二区三区在线臀色熟女| 中文字幕av电影在线播放| 久久精品国产清高在天天线| 国产av一区在线观看免费| 美女免费视频网站| 久久草成人影院| 国产av在哪里看| 精品熟女少妇八av免费久了| 999精品在线视频| 在线观看午夜福利视频| 少妇 在线观看| 日本a在线网址| 国产1区2区3区精品| 国产91精品成人一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久亚洲av鲁大| av福利片在线| 久久精品91蜜桃| 中国美女看黄片| 757午夜福利合集在线观看| 黑丝袜美女国产一区| 国产精品野战在线观看| 在线天堂中文资源库| 最新美女视频免费是黄的| 欧美黑人精品巨大| 法律面前人人平等表现在哪些方面| 色在线成人网| 国产精品亚洲av一区麻豆| 91字幕亚洲| 中国美女看黄片| 韩国av一区二区三区四区| 男女床上黄色一级片免费看| 欧美色视频一区免费| 波多野结衣一区麻豆| 最新在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲三区欧美一区| 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 久久精品国产亚洲av香蕉五月| 香蕉国产在线看| 亚洲av成人一区二区三| 国产精品久久久久久亚洲av鲁大| 久久中文字幕人妻熟女| 国产成人一区二区三区免费视频网站| 超碰成人久久| 老汉色av国产亚洲站长工具| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 久久天堂一区二区三区四区| 精品午夜福利视频在线观看一区| 亚洲精品在线美女| 久久中文字幕一级| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 两个人视频免费观看高清| 亚洲精品av麻豆狂野| 亚洲第一av免费看| 午夜免费激情av| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 欧美乱妇无乱码| 怎么达到女性高潮| 亚洲国产精品999在线| 在线观看日韩欧美| 变态另类成人亚洲欧美熟女 | 日本vs欧美在线观看视频| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 亚洲电影在线观看av| 欧美日本中文国产一区发布| 老司机午夜福利在线观看视频| 夜夜看夜夜爽夜夜摸| 90打野战视频偷拍视频| 人妻久久中文字幕网| 激情视频va一区二区三区| 90打野战视频偷拍视频| 国产精品一区二区在线不卡| 亚洲精品在线观看二区| 一级片免费观看大全| 午夜免费鲁丝| 亚洲国产精品999在线| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯| 手机成人av网站| 高清黄色对白视频在线免费看| 久久久久国产精品人妻aⅴ院| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| a级毛片在线看网站| 一级a爱视频在线免费观看| 1024视频免费在线观看| 国产亚洲精品久久久久久毛片| 免费看十八禁软件| 不卡一级毛片| 黄色片一级片一级黄色片| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 午夜福利18| 久久久久国产一级毛片高清牌| 国产一区在线观看成人免费| 多毛熟女@视频| 国产高清激情床上av| 多毛熟女@视频| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频| 久久精品人人爽人人爽视色| 中文字幕精品免费在线观看视频| 国产精品久久久久久人妻精品电影| 午夜激情av网站| a级毛片在线看网站| 国产亚洲精品久久久久久毛片| 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| 女警被强在线播放| 亚洲成人精品中文字幕电影| 亚洲男人的天堂狠狠| 在线永久观看黄色视频| 欧美久久黑人一区二区| 国产亚洲欧美在线一区二区| 久久精品亚洲精品国产色婷小说| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| 亚洲人成电影免费在线| 91成人精品电影| 国产单亲对白刺激| 久久精品国产亚洲av香蕉五月| av天堂久久9| 99国产精品免费福利视频| 国产精品野战在线观看| 丝袜美腿诱惑在线| www日本在线高清视频| av超薄肉色丝袜交足视频| 午夜两性在线视频| 日本一区二区免费在线视频| 欧美av亚洲av综合av国产av| 欧洲精品卡2卡3卡4卡5卡区| 天堂动漫精品| 午夜日韩欧美国产| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 制服诱惑二区| 午夜免费成人在线视频| 精品久久久久久成人av| 日韩欧美三级三区| 国产成人精品久久二区二区免费| 久久精品国产亚洲av高清一级| 国产精品1区2区在线观看.| 嫁个100分男人电影在线观看| 丝袜在线中文字幕| 91精品国产国语对白视频| 99国产精品免费福利视频| 成人精品一区二区免费| 免费观看人在逋| 97人妻天天添夜夜摸| 国产亚洲av嫩草精品影院| 18禁观看日本| 欧美一级毛片孕妇| 亚洲成人国产一区在线观看| 成人精品一区二区免费| 最近最新中文字幕大全免费视频| 日韩中文字幕欧美一区二区| 女警被强在线播放| 精品国产一区二区三区四区第35| 最近最新中文字幕大全电影3 | 搡老妇女老女人老熟妇| 侵犯人妻中文字幕一二三四区| 一区在线观看完整版| 国产男靠女视频免费网站| 人妻久久中文字幕网| 亚洲激情在线av| 一级毛片精品| 狠狠狠狠99中文字幕| 国产精品99久久99久久久不卡| 欧美成狂野欧美在线观看| 91字幕亚洲| 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| 国产成人精品久久二区二区免费| 免费人成视频x8x8入口观看| 久久婷婷成人综合色麻豆| 97超级碰碰碰精品色视频在线观看| 在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 久久精品人人爽人人爽视色| 亚洲午夜精品一区,二区,三区| 青草久久国产| 国产亚洲精品第一综合不卡| 亚洲男人的天堂狠狠| 日韩欧美一区视频在线观看| 欧美黄色淫秽网站| 欧美日本亚洲视频在线播放| 亚洲免费av在线视频| 无遮挡黄片免费观看| 中出人妻视频一区二区| 99热只有精品国产| 色播在线永久视频| 亚洲国产精品成人综合色| 亚洲成人免费电影在线观看| 性少妇av在线| 免费av毛片视频| 国产1区2区3区精品| 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 别揉我奶头~嗯~啊~动态视频| 男女午夜视频在线观看| av天堂久久9| 国产成人精品在线电影| 黄色成人免费大全| 一级作爱视频免费观看| 国产真人三级小视频在线观看| 亚洲第一电影网av| 国产一区二区三区综合在线观看| 日韩国内少妇激情av| 亚洲五月婷婷丁香| 久久人人精品亚洲av| 久久伊人香网站| 国产三级黄色录像| 老司机在亚洲福利影院| 可以在线观看的亚洲视频| 欧美乱妇无乱码| 欧美+亚洲+日韩+国产| 美女扒开内裤让男人捅视频| 亚洲成av片中文字幕在线观看| 91九色精品人成在线观看| 夜夜爽天天搞| 国产精品综合久久久久久久免费 | 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 国产在线观看jvid| 日韩大尺度精品在线看网址 | 精品一区二区三区视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 丰满的人妻完整版| 丝袜美足系列| 这个男人来自地球电影免费观看| 黑人巨大精品欧美一区二区蜜桃| 成人18禁在线播放| 亚洲av日韩精品久久久久久密| 国产乱人伦免费视频| 别揉我奶头~嗯~啊~动态视频| 中文字幕人成人乱码亚洲影| 啦啦啦韩国在线观看视频| 两个人视频免费观看高清| 黄色 视频免费看| 国内精品久久久久久久电影| 男女做爰动态图高潮gif福利片 | 美女高潮喷水抽搐中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产av又大| 巨乳人妻的诱惑在线观看| 一级毛片女人18水好多| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品在线美女| 精品久久蜜臀av无| 亚洲精品美女久久av网站| 国产精品国产高清国产av| 午夜精品久久久久久毛片777| 国产又色又爽无遮挡免费看| 国产成人免费无遮挡视频| 日本 欧美在线| 国产精品久久久久久亚洲av鲁大| 中文字幕最新亚洲高清| 叶爱在线成人免费视频播放| 国产99白浆流出| 91麻豆av在线| 美女高潮到喷水免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国内精品久久久久久久电影| 久久天堂一区二区三区四区| 搡老熟女国产l中国老女人| 十八禁人妻一区二区| 午夜影院日韩av| 久久人人爽av亚洲精品天堂| 高清黄色对白视频在线免费看| 日韩免费av在线播放| 国内久久婷婷六月综合欲色啪| 黑丝袜美女国产一区| 亚洲电影在线观看av| 91麻豆av在线| 久久久久久久午夜电影| 一边摸一边做爽爽视频免费| 亚洲免费av在线视频| 国产精品一区二区三区四区久久 | 久久婷婷成人综合色麻豆| 欧美日韩亚洲国产一区二区在线观看| 视频区欧美日本亚洲| 中文亚洲av片在线观看爽| 久久精品国产99精品国产亚洲性色 | 色精品久久人妻99蜜桃| 国产野战对白在线观看| 一级毛片女人18水好多| av超薄肉色丝袜交足视频| 国产男靠女视频免费网站| 50天的宝宝边吃奶边哭怎么回事| 免费人成视频x8x8入口观看| 亚洲精品在线观看二区| 人人澡人人妻人| 国产成人精品无人区| 成人国产一区最新在线观看| 国产精品一区二区在线不卡| 亚洲欧美一区二区三区黑人| 大型黄色视频在线免费观看| 久久午夜综合久久蜜桃| 久久精品国产亚洲av高清一级| 亚洲专区中文字幕在线| 欧美大码av| 亚洲一码二码三码区别大吗| 日韩欧美国产一区二区入口| 国产在线精品亚洲第一网站| 狠狠狠狠99中文字幕| 韩国精品一区二区三区| 久久人人爽av亚洲精品天堂| 色播亚洲综合网| 涩涩av久久男人的天堂| 脱女人内裤的视频| 欧美成人一区二区免费高清观看 | 国产高清有码在线观看视频 | 免费人成视频x8x8入口观看| 久久久久亚洲av毛片大全| 欧美一级a爱片免费观看看 |