• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*

    2014-07-18 11:56:04ZHOUHualan周華蘭WUYajing吳雅靜ZHANGWei張偉andWANGJun王軍
    關(guān)鍵詞:雅靜王軍張偉

    ZHOU Hualan (周華蘭), WU Yajing (吳雅靜), ZHANG Wei (張偉)and WANG Jun (王軍),**

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    2College of Sciences, Nanjing University of Technology, Nanjing 210009, China

    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*

    ZHOU Hualan (周華蘭)1, WU Yajing (吳雅靜)2, ZHANG Wei (張偉)1and WANG Jun (王軍)1,**

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    2College of Sciences, Nanjing University of Technology, Nanjing 210009, China

    Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SiO2/Al2O3molar ratio 21-25, KOH/SiO2molar ratio 0.33-0.43, H2O/SiO2molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160 °C, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.

    crystal growth, microporous materials, SUZ-4 zeolite, zeolite synthesis, organic template-free

    1 INTRODUCTION

    SUZ-4 zeolite patented by British Petroleum Company in 1992 [1] has a framework topology similar to ferrierite and ZSM-57 [1-5]. Its two-dimensional pore system consists of interconnected ten- and eight-membered ring channels which are elliptical in shape; the ten-membered rings have pore openings of 0.46×0.52 nm [2] and demonstrate as the good catalyst for many processes [6-9], including the conversion of n-hexane [6], elimination of nitrogen oxides [8], and transformation of methanol to dimethylether [9]. The synthesis of SUZ-4 zeolite, however, is still not so easy, which limits its practical application.

    The synthesis of SUZ-4 zeolite is mostly reported by using a rotating hydrothermal crystallization in the presence of the organic template tetraethylammonium cation (TEA) [5, 10, 11]. The other organic templates such as quinuclidine and N,N,N,N,N,N-hexaethylpentane-diammonium bromide (Et6-diquat-5) are also used for the synthesis of SUZ-4 zeolite [1, 3]. Normally, the organic templates direct the assembly pathways of zeolite precursors and ultimately fill the pore space of a zeolite [11-14]. It has been accepted for a long time that the templating species are essential in the synthesis of zeolites, especially in the case of high-silica zeolites [15]. The use of organic templates, however, has many negative subsequences such as the environmental pollution and high energy consumption for the removal of organic templates during high-temperature calcination. Therefore, organotemplate-free method for zeolite synthesis is much desirable, for example, the organotemplate-free synthesis of ZSM-5 zeolite [16-18].

    In the past decades, many efforts have been devoted to the organotemplate-free synthesis of zeolites in the presence of the additives of methyl ethyl ketone [19], methanol/ethanol [20], acetone [21], and crystal seeds [22]. It is known that the addition of crystalline seeds into the starting aluminosilicate gels can remarkably accelerate zeolite crystallization [22-25]. Moreover, the seeded hydrothermal route has been proved to be very effective in the synthesis of zeolites without organic templates involved. With the methods, zeolites of ECR-1 [26], Beta [27, 28], ZSM-34 [29], ZSM-12 [30], FER [31] and LEV [32] have been sythesized. But the synthesis of SUZ-4 zeolite without using any organic templates has not been reported up to date. Very recently, our group [33] reported the preliminary data for an organotemplate-free hydrothermal synthesis of SUZ-4 zeolite aided by SUZ-4 crystal seeds. In this study, we investigate in detail the influences of various conditions on the organotemplate-free synthesis of SUZ-4 zeolite, aiming to obtain the optimal synthesis window of the conditions.

    2 EXPERIMENTAL

    2.1 Materials

    Potassium hydroxide (Sinopharm Chemical Reagent Co., AR); aluminum powder (99%, Sinopharm Chemical Reagent Co.); colloidal silica [40% (by mass) SiO2, Zhejiang Yuda Chem. Co., LR]; tetraethylammonium hydroxide [TEAOH, 35% (by mass) in water, AR, Jiangsu Jintan Xinan Chemical Research Institute].

    2.2 Synthesis

    The SUZ-4 zeolite that is used as the seed was prepared using the organic template TEAOH according to the conventional rotation method [7], followedwith a calcination at 550 °C for 5 h.

    In a typical synthesis of SUZ-4 zeolite by the organotemplate-free hydrothermal approach, 2.6 g of KOH was dissolved in 20.0 g of deionized water, then 0.27 g of aluminum powder was added to the KOH solution under stirring to get the homogeneous solution A. Solution B was prepared by adding 15.8 g of colloidal silica into 15.6 g of deionized water under stirring. Then, solution B was added into solution A to make a gel mixture. Afterwards, 0.5 g of the seed (1% based on the total mass of the synthesis mixture) was added to the above gel, followed with an aging at room temperature for 24 h. The molar composition of the gel was 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O (SiO2/Al2O3: 21, KOH/SiO2: 0.38, H2O/SiO2: 23.8). The synthesis gel was finally transferred into a Teflon-lined autoclave and left static in the oven at 160 °C for 6 d under the autogenous pressure. The resultant was then filtrated, recovered, washed with deionized water and dried at 100 °C for 12 h. Thus obtained SUZ-4 zeolite was used as the reference material for calculating relative crystallinity of various samples synthesized under other conditions. The relative crystallinity was calculated by comparing the intensities of the ten featured X-ray diffraction (XRD) peaks for the SUZ-4 phase (2θ=7.9°, 12.0°, 15.3°, 19.0°, 19.6°, 22.75°, 23.5°, 25.0°, 25.8° and 28.7°). The investigation on synthesis conditions was performed by varying the reaction parameters as the following: SiO2/Al2O315-30, KOH/SiO20.29-0.57, H2O/SiO27.14-42.86, seed concentration 0-4% (by mass), aging time 0-24 h, crystallization temperature 140-200 °C, and crystallization time 0-12 d.

    2.3 Characterization

    XRD patterns were collected on a Bruker D8 ADVANCE powder diffractometer using Ni-filtrated Cu Kαradiation source at 40 kV and 20 mA, from 5° to 50° with a scan rate of 2°·min?1. The morphologies of the products were taken with a QUANTA 200 (FEI) scanning electron microscope (SEM). The Brunauer-Emmett-Teller (BET) surface area was obtained by recording the N2-sorption isotherm at the temperature of liquid nitrogen using a Micromeritics ASAP2010 analyzer. Thermal gravimetric analysis (TG) was conducted on a TA Instrument (Netzsch, TG/209/F3) operated under air atmosphere. Chemical compositions of the samples were obtained by a Jarrell-Ash 1100 inductively coupling plasma (ICP) spectrometer.

    3 RESULTS AND DISCUSSION

    3.1 Influence of the seed concentration

    Figure 1 XRD patterns for SUZ-4 samples synthesized at 21 SiO2: Al2O3: 7.9 KOH: 500 H2O, 160 °C, 6 d, with different mass concentrations of seeds (data in parentheses are comparative crystallinities)seed mass concentration: a—0; b—0.2%; c—0.5%; d—1%; e—2%; f—4% (4 d); g—4%

    The effect of seed concentration is shown in Fig. 1. It can be seen that only an amorphous product could be obtained in the unseeded system (Curve a) and low crystallinity zeolite appeared with a small amount of seed (Curve b). Curves d and e displayed a set of sharp and well resolved diffraction peaks assigned to the pure SUZ-4 phase [2], suggesting that the highly crystallized SUZ-4 zeolite can be obtained in the presence of 1%-2% (by mass) seed with a 6 d crystallization at 160 °C. When a larger mass amount of seed 4% (Curve f) was used, a highly crystallized SUZ-4 zeolite was got with a shorter hydrothermal time 4 d, whereas a 6 d hydrothermal treatment led to the detection of diffraction peaks at ca. 10° and 14° for mordenite (Curve g), a known competing zeolite phase in SUZ-4 synthesis [34].

    It has been proved that the added seed in an organotemplate-free aluminosilicate gel mixture favors crystallization started by the fast agglomeration of the small-sized particles at the seed-amorphous interface [35]. The results in Fig. 1 indicate that the seed is indispensable for organotemplate-free synthesis of SUZ-4 zeolite, and the well crystallized SUZ-4 zeolite can be obtained within the seed mass content range of 0.2%-2%.

    Figure 2 (a) shows the TG curves for selected samples. For the seed without the high-temperature calcination to remove the organic template TEAOH, the initial mass loss before 200 °C is attributed to the desorption of physically adsorbed water, and the large mass loss ranging from 200 °C to 550 °C is due to the decomposition of the charge compensating TEA+cations in the micropores of SUZ-4 zeolite [11]. In contrast, for the SUZ-4 sample synthesized by the present seed-assisted organotemplate-free hydrothermal approach, no detectable mass loss happened at 200-550 °C, confirming that the SUZ-4 product as synthesized does not bear any organic species. Fig. 2 (a) also verifies that the seed itself is actually organic template-free, which excludes the possibility that a slight of organic templates left in the seed play structure-directing roles in the present synthesis.

    Figure 2 (a) TG curves for SUZ-4 synthesized with 1% (by mass) seed shown in Fig. 1d, seed, and seed without the hightemperature calcination; (b) The nitrogen isotherm for SUZ-4 synthesized with 1% (by mass) seed shown in Fig. 1d a—SUZ-4 with seed in Fig. 1d; b—seed; c—seed without calcination

    Figure 3 SEM images for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH: 500 H2O, 160 °C, 6 d, with different mass concentrations of seeds: (a) 0.2%, (b) 0.5%, (c) 1%, and (d) 2%

    Figure 2 (b) gives the N2-sorption isotherm for the SUZ-4 sample obtained from the seed-assisted organotemplate-free hydrothermal method. A steep increase appeared in the relative pressure range 10?6

    The SEM images of SUZ-4 products obtained with various amounts of seeds are presented in Fig. 3. It is observed that the amount of seeds employed in the organotemplate-free hydrothermal synthesis affected the crystallization rate, as well as the crystal size. With 0.2% (by mass) seed, amorphous particles occurred surrounding the rod-like zeolite crystals [Fig. 3 (a)], which means that the aluminosilicate gels were not converted to SUZ-4 crystals completely due to a slow crystallization rate at such a low seed concentration. At higher seed mass concentrations of 0.5%, 1% and 2%, the obtained three SUZ-4 samples exhibited a well-defined rod-like morphology with average crystal sizes of 4.8 μm×0.77 μm, 4.4 μm×0.38 μm and 2.3 μm×0.29 μm, respectively. The decreased crystal size corresponds to the increased seed-amorphous interface areas available for crystal growth [23-25, 35].

    3.2 Influence of the SiO2/Al2O3ratio

    Usually, the SiO2/Al2O3molar ratio of 21 is used for the synthesis gel mixture in the previous organic template-aided synthesis of SUZ-4 zeolite, and it is still rather difficult to synthesize SUZ-4 zeolite with a higher SiO2/Al2O3molar ratio [11, 34]. The effect of SiO2/Al2O3ratio on the crystallization of SUZ-4 zeolitewithout organic templates was investigated in this work, with the XRD patterns for the obtained SUZ-4 samples shown in Fig. 4. It can be seen that pure SUZ-4 zeolites could be obtained from the synthesis gels with SiO2/Al2O3ratios of 21 and 25. Note that the crystallization of the sample with a SiO2/Al2O3ratio of 25 took a longer time of 10 d compared with 6 d for the ordinary SiO2/Al2O3ratio of 21. The corresponding SiO2/Al2O3ratios analyzed by ICP for the final solid products were 21.4 and 23.9, respectively. The surface areas for the two samples with SiO2/Al2O3ratios of 21 and 25 were measured to be 324 and 290 m2·g?1, respectively. The decrease of the surface area at the SiO2/Al2O3ratio of 25 may be due to the lower crystallinity, as shown by Curves b and c in Fig. 4.

    Figure 4 XRD patterns for SUZ-4 samples synthesized at Al2O3︰7.9 KOH: 500 H2O, 160 °C, 1% (by mass) seed, with different SiO2/Al2O3molar ratios and crystallization times (the data in parentheses are comparative crystallinities)a—SiO2/Al2O3: 15, 6 d; b—SiO2/Al2O3: 21, 6 d;c—SiO2/Al2O3: 25, 10 d; d—SiO2/Al2O3: 30, 10 d

    When the SiO2/Al2O3ratio was as low as 15, the XRD Pattern a in Fig. 4 showed a much lowered crystallinity of SUZ-4 phase, together with the diffraction peak at ca. 5.6° that is assignable to an impurity phase of perlialite. On the other hand, at the much higher SiO2/Al2O3ratio of 30, the 10 d crystallization seemed cause a comparatively high crystallinity of SUZ-4 zeolite, but with the concomitance of mordenite impurity [34].

    The SEM images for SUZ-4 products with different SiO2/Al2O3ratios are illustrated in Fig. 5. The samples with SiO2/Al2O3ratios of 21 and 25 exhibited rod-like crystalline morphologies, whereas the rods were thicker with the higher silica amount. For the two samples with the much low SiO2/Al2O3ratio of 15 and the high ratio of 30, impurities could be observed besides the rod-like SUZ-4 crystals, in agreement with the XRD results in Fig. 4.

    3.3 Influence of the aging time

    Before hydrothermal crystallization a synthesis mixture needs generally an aging treatment. Fig. 6 (a) presents the XRD patterns for the samples obtained with different aging times, and the corresponding crystallization curve is plotted in Fig. 6 (b). Though the peaks for SUZ-4 zeolite were detectable without aging, its crystallinity is at a very low level. A longer aging time is favorable to the formation of zeolite nuclei on the seed surface, accelerating the crystallization and enhancing the crystallinity [33]. It is drawn from Fig. 6 that 24 h is the optimal aging time to create a fully crystallized SUZ-4 zeolite.

    Figure 5 SEM images for SUZ-4 samples synthesized at Al2O3︰7.9 KOH: 500 H2O, 160 °C, 6 d, 1% (by mass) seed, with different SiO2/Al2O3molar ratios and crystallization times: (a) SiO2/Al2O3: 15, 6 d, (b) SiO2/Al2O3: 21, 6 d; (c) SiO2/Al2O3: 25, 10 d; and (d) SiO2/Al2O3: 30, 10 d

    Figure 6 (a) XRD patterns and (b) crystallization curve for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH︰500 H2O, 160 °C, 6 d, 1% (by mass) seed, with different aging times

    Figure 7 Crystallization curve for the samples obtained at various crystallization time with the synthesis gel composition 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O, 160 °C and 1% (by mass) seed (Insertions are the XRD patterns)

    3.4 Influence of the crystallization time

    Figure 7 plots the crystallization curve for the samples obtained at various crystallization time with the synthesis gel composition 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O, based on the inserted XRD patterns. It can be seen that crystallinity of the obtained SUZ-4 zeolites increased gradually with the prolongation of crystallization time, and when the time was beyond 4 d the crystallinity reached a level above 90%. The highest crystallinity was obtained at 6 d.

    3.5 Influence of the crystallization temperature

    The crystallization temperature was changed from 140 to 200 °C to measure its influence on the synthesis, with the XRD results shown in Fig. 8. At a low temperature of 140 °C, amorphous products were observed without any diffraction peaks if employing the standard 6 d crystallization time (XRD pattern not shown). Only with a much longer crystallization time of 12 d, SUZ-4 zeolite could be generated (Curve a). It is known that the increase of temperature can enhance the solubility of silicate species, leading to the rapid growth of zeolite crystals [34]. Therefore, 160 °C could cause the formation of well crystallized SUZ-4 zeolite (Curve b). However, at the high temperatures of 180 °C and 200 °C, SUZ-4 zeolites were produced even with a much shorter crystallization time of 2 d, but with the concomitance of mordenite impurity (Curves c and d) [34]. Consequently, 160 °C is selected as the most favorable crystallization temperature for the synthesis of SUZ-4 zeolite.

    3.6 Influence of the KOH/SiO2ratio

    Figure 8 XRD patterns for SUZ-4 samples synthesized with 21 SiO2︰Al2O3︰7.9 KOH︰500 H2O, 1% (by mass) seed, at different crystallization temperatures (the data in parentheses are comparative crystallinities)a—140 °C, 12 d; b—160 °C, 6 d; c—180 °C, 2 d; d—200 °C, 2 d

    Figure 9 XRD patterns for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰500 H2O, 160 °C, 6 d, 1% (by mass)seed, with different KOH/SiO2molar ratios (the data in parentheses are comparative crystallinities) a—0.29; b—0.33; c—0.38; d—NaOH/SiO2: 0.38; e—0.43; f—0.48; g—0.57

    The alkalinity of starting gels is an important parameter to influence the crystallization of zeolite, thus KOH/SiO2molar ratios were varied from 0.29 to 0.57 to evaluate the influence of gel’s alkalinities. The XRD patterns in Fig. 9 indicate that SUZ-4 zeolite was obtained when the KOH/SiO2ratio was in the range 0.33-0.43. At a low alkalinity (KOH/SiO2: 0.29), a poorly crystallized SUZ-4 phase was observed because the low concentration of hydroxyl ions could not depolymerize the silica source to provide sufficient solubilized aluminosilicate species to form nuclei [36]. On the contrary, a high alkalinity (KOH/SiO2: 0.48) made the crystallinity lowered remarkably, probably due to the dissolution of the already formed zeolite nuclei in the presence of excess hydroxyl ions [36]. KOH/SiO2up to 0.57 caused the formation of pure perlialite crystals (Curve g). Moreover, NaOH was also attempted as the alkaline source in comparison with KOH. It can be seen in Curve d that mordenite was the only crystallite produced, which is in agreement with the previous result that K+is a necessity for creating the SUZ-4 phase [11]. Accordingly, the optimal KOH/SiO2ratio of 0.33-0.43 is crucial for creating the pure phase of SUZ-4 zeolite.

    3.7 Influence of the H2O/SiO2ratio

    The water content of a synthesis system is also known as a key condition for the hydrothermal synthesis of zeolite. Fig. 10 shows the XRD patterns for the samples synthesized with various H2O/SiO2ratios of 7.14-42.86. The pure and well crystallized SUZ-4 zeolite could be obtained even from the very concentrated gel with the low H2O/SiO2ratio of 7.14. A broad window of H2O/SiO2ratios 7.14-38.1 was observed for the synthesis of SUZ-4 zeolite. However, at the much lower H2O/SiO2ratios of less than 7.14, the viscosity of the aluminosilicate gel is too large for substrates to diffuse freely to form SUZ-4 crystalline [37, 38]. Also, the much diluted gel mixture (H2O/SiO2: 42.86) could not give pure SUZ-4 zeolite, which is ascribed to the very slow nucleation rate arising for the longer distance between nutrients in this diluted solution [39].

    Figure 10 XRD patterns for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH, 160 °C, 6 d, 1% (by mass) seed, with different H2O/SiO2ratios (the data in parentheses are comparative crystallinities) a—7.14; b—14.28; c—23.81; d—38.10; e—42.86

    4 CONCLUSIONS

    Pure and highly crystallized SUZ-4 zeolite can be synthesized by the organotemplate-free static hydrothermal route in the presence of the seed under following conditions: SiO2/Al2O3: 21-25 mol·mol?1, KOH/SiO2: 0.33-0.43 mol·mol?1, H2O/SiO2: 7.14-38.1 mol·mol?1, seed mass concentration=0.2%-2%, aging time = 24 h, crystallization temperature=160 °C, and crystallization time=6-10 d. The optimal condition (SiO2/Al2O321, KOH/SiO20.38, H2O/SiO223.8, seed mass concentration 1%, aging 24 h, 160 °C and 6 d) results in the SUZ-4 product with BET surface area 324 m2·g?1, micropore volume 0.13 cm3·g?1, mesopore diameter 2.26 nm and the size of rod-like crystals around 4.4 μm×0.38 μm.

    REFERENCES

    1 Barri, S.A.I., “Crystalline (metallo) silicates and germanates-SUZ-4”, US Pat. 5118483 (1992).

    2 Lawton, S.L., Bennett, J.M., Schlenker, J.L., Rubin, M.K., “Synthesis and proposed framework topology of zeolite SUZ-4”, J. Chem. Soc. Chem. Commun., (11), 894-896 (1993).

    3 Paik, W.C., Shin, C.H., Hong, S.B., “Synthesis of zeolites P1 and SUZ-4 through a synergy of organic N,N,N,N′,N′,N′-hexaethylpentanediammonium and inorganic cations”, Chem. Commun., (17), 1609-1610 (2000).

    4 Paik, W.C., Shin, C.H., Lee, J.M., Ahn, B.J., Hong, S.B., “A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media”, J. Phys. Chem. B, 105 (41), 9994-10000 (2001).

    5 Strohmaier, K.G., Afeworki, M., Dorset, D.L., “The crystal structures of polymorphic SUZ-4”, Z. Kristallogr., 221, 689-698 (2006).

    6 Lukyanov, D.B., Zholobenko, V.L., Dwyer, J., Barri, S.A. I., Smith, W.J., “On the structural, acidic and catalytic properties of zeolite SUZ-4”, J. Phys. Chem., 103 (1), 197-202 (1999).

    7 Asensi, M.A., Camblor, M.A., Martinez, A., “Zeolite SUZ-4: Reproducible synthesis, physicochemical characterization and catalytic evaluation for the skeletal isomerization of n-butenes”, Micropor. Mesopor. Mater., 28, 427-436 (1999).

    8 Subbiah, A., Cho, B.K., Blint, R.J., Gujar, A.C., Price, G.L., Yie, J.E.,“NOxreduction over metal-ion exchanged novel zeolite under lean conditions: Activity and hydrothermal stability”, Appl Catal B Envir., 42, 155-178 (2003).

    9 Jiang, S., Hwang, Y.K., Jhung, S.H., Chang, J.S., Hwang, J.S., “Zeolite SUZ-4 as selective dehydration catalyst for methanol conversion to dimethyl ether”, Chem Lett., 33 (8), 1048-1049 (2004).

    10 Gujar, A.C., Moye, A.A., Coghill, P.A., Teeters, D.C., Roberts, K.P., Price, G.L., “Raman investigation of the SUZ-4 zeolite”, Micropor. Mesopor. Mater., 78, 131-137 (2005).

    11 Gujar, A.C., Price, G.L., “Synthesis of SUZ-4 in the K+/TEA+system”, Micropor. Mesopor. Mater., 54, 201-205 (2002).

    12 Barrer, R.M., Denny, P.J., “Hydrothermal chemistry of the silicates. Part IV. Nitrogenous aluminosilicates”, J. Chem. Soc., 971-982 (1961).

    13 Davis, M.E., Lobo, R.F., “Zeolite and molecular sieve synthesis”, Chem. Mater., 4, 756-768 (1992).

    14 Lawton, S.L., Rohrbaugh, W.J., “The framework topology of ZSM-18, a novel zeolite containing rings of three (Si,Al)-O species”, Science., 247, 1319-1322 (1990).

    15 Fyfe, C.A., Darton, R.J., Mowatt, H., Lin, Z.S., “Efficient, low-cost, minimal reagent syntheses of high silica zeolites using extremely dense gels below 100 °C”, Micropor. Mesopor. Mater., 144, 57-66 (2011).

    16 Li, H.X., Xiang, S.H., Wu, D.M., Liu, Y.T., Zhang, X.S., Liu, S.S.,“Study on the synthesis of zeolite ZSM-5”, Chem. J. Chin. Univ., 2 (4), 517-519 (1981).

    17 Wang, F.S., Cheng, W.C., Zhang, S., “Synthesis of inorgano-ammonium high silica zeolites of ZSM series”, Chin. J. Catal., 2 (4), 282-287 (1981).

    18 Shiralkar, V.P., Clearfield, A., “Synthesis of the molecular sieve ZSM-5 without the aid of templates”, Zeolites, 9, 363-370 (1989).

    19 Narita, E., Sato, K., Okabe, T., “A convenient method for crystallization of zeilite ZSM-5 by using seed crystals in acetone/water mixture system”, Chem. Lett., 13 (7), 1055-1058 (1984).

    20 Plank, C.J., Rosinski, E.J., Rubin, M.K., “Method for producing zeolites”, US Pat. 4175114 (1979).

    21 Narita, E., Yatabe, N., Okabe, T., “Synthesis and crystal growth of zeolite ZSM-5 from sodium aluminosilicate systems free of organic templates”, Ind. Eng. Chem. Prod. Res. Dev., 24 (4), 507-512 (1985).

    22 Edelman, R.D., Kudalkar, D.V., Ong, T., Warzywoda, J., Thompson, R.W., “Crystallization phenomena in seeded zeolite syntheses”, Zeolites, 9, 496-502 (1989).

    23 Lu, B., Tsuda, T., Oumi, Y., Itabashi, K., Sano, T., “Direct synthesis of high-silica mordenite using seed crystals”, Micropor. Mesopor. Mater., 76, 1-7 (2004).

    24 Lu, B., Yakushi, Y., Oumi, Y., Itabashi, K., Sano, T., “Control of crystal size of high-silica mordenite by quenching in the course of crystallization process”, Micropor. Mesopor. Mater., 95, 141-145 (2006).

    25 Dutta, P.K., Bronic, J., “Mechanism of zeolite formation: Seed-gel interaction”, Zeolites, 14, 250-255 (1994).

    26 Song, J.W., Dai, L., Ji, Y.Y., Xiao, F.S., “Organic template free synthesis of aluminosilicate zeolite ECR-1”, Chem. Mater., 18 (12), 2775-2777 (2006).

    27 Xie, B., Song, J., Ren, L.M., Ji, Y., Li, J., Xiao, F.S., “Organotemplate-free and fast route for synthesizing beta zeolite”, Chem. Mater., 20 (14), 4533-4535 (2008).

    28 Xie, B., Zhang, H.Y., Yang, C.G., Liu, S.Y., Ren, L.M., Zhang, L., Meng, X.J., Yilmaz, B., Muller, U., Xiao, F.S., “Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates”, Chem. Commun., 47, 3945-3947 (2011).

    29 Zhang, L., Yang, C.G., Meng, X.J., Xie, B., Wang, L., Ren, L.M., Ma, S.J., Xiao, F.S., “Organotemplate-free syntheses of ZSM-34 zeolite and Its heteroatom-substituted analogues with good catalytic performance”, Chem. Mater., 22 (10), 3099-3107 (2010).

    30 Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., Okubo, T., “Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis”, J. Phys. Chem. C, 115 (3), 744-750 (2011).

    31 Zhang, H.Y., Guo, Q., Ren, L.M., Yang, C.G., Zhu, L.F., Meng, X.J., Li, C., Xiao, F.S., “Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units”, J. Mater. Chem., 21, 9494-9497 (2011).

    32 Zhang, H.Y., Yang, C.G., Zhu, L.F., Meng, X.J., Yilmaz, B., Muller, U., Feyen, M., Xiao, F.S., “Organotemplate-free and seed-directed synthesis of levyne zeolite”, Micropor. Mesopor. Mater., 155, 1-7 (2012).

    33 Zhang, W., Wu, Y.J., Gu, J., Zhou, H.L., Wang, J., “Organotemplate-free route for synthesizing SUZ-4 zeolite under static hydrothermal condition”, Mater. Res. Bull., 46, 1451-1454 (2011).

    34 Worathanakula, P., Trisuwana, D., Phatrukb, A., Kongkachuichay, P.,“Effect of sol-gel synthesis parameters and Cu loading on the physicochemical properties of a new SUZ-4 zeolite”, Colloids Surf. A Physicochem. Eng. Aspects., 377, 187-194 (2011).

    35 Wu, Y.J., Ren, X.Q., Lu, Y.D., Wang, J., “Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the hydrothermal synthesis”, Micropor. Mesopor. Mater., 112, 138-146 (2008).

    36 Eapen, M.J., Reddy, K.S.N., Shiralkar, V.P., “Hydrothermal crystallization of zeolite beta using tetraethylammonium bromide”, Zeolites, 14, 295-302 (1994).

    37 Kim, Y.C., Jeong, J.Y., Hwang, J.Y., Kim, S.D., Kim, W.J., “Influencing factors on rapid crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure”, J Porous Mater., 16, 299-306 (2009).

    38 Kim, S.D., Noh, S.H., Seong, K.H., Kim, W.J., “Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring”, Micropor. Mesopor. Mater., 72, 185-192 (2004).

    39 Gu, J., Wu, Y.J., Wang, J., Lu, Y.D., Ren, X.Q., “In situ assembly of ZSM-5 nanocrystals into micro-sized single-crystal-like aggregates via acid-catalyzed hydrolysis of tetraethyl orthosilicate”, J. Mater. Sci., 44, 3777-3783 (2009).

    10.1016/S1004-9541(14)60019-7

    2012-03-22, accepted 2012-10-10.

    * Supported by the National Natural Science Foundation of China (20976084, 21101094, 21136005).

    ** To whom correspondence should be addressed. E-mail:junwang@njut.edu.cn

    猜你喜歡
    雅靜王軍張偉
    《哈爾濱記憶 系列四》
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    我要好好來(lái)欣賞
    《郁郁高巖》
    可愛(ài)的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    妻子的“BQ哲學(xué)”
    分憂(2018年12期)2018-01-10 01:42:28
    數(shù)學(xué)潛能知識(shí)月月賽
    免费观看a级毛片全部| videossex国产| 亚洲精品自拍成人| 女性生殖器流出的白浆| videos熟女内射| 简卡轻食公司| 2021少妇久久久久久久久久久| 一级二级三级毛片免费看| 国产精品国产三级国产av玫瑰| 最黄视频免费看| 2022亚洲国产成人精品| 天堂中文最新版在线下载| 老司机影院毛片| 97超碰精品成人国产| 80岁老熟妇乱子伦牲交| 秋霞伦理黄片| 免费人成在线观看视频色| 极品少妇高潮喷水抽搐| 国产日韩欧美视频二区| 日韩亚洲欧美综合| 成人无遮挡网站| 高清不卡的av网站| 欧美日韩视频高清一区二区三区二| 男女国产视频网站| 成人漫画全彩无遮挡| 人人澡人人妻人| 青青草视频在线视频观看| 免费av中文字幕在线| 97在线视频观看| 国产精品三级大全| 国产片内射在线| 久久综合国产亚洲精品| 午夜免费鲁丝| 一级毛片我不卡| 亚洲国产色片| 国产黄色视频一区二区在线观看| 建设人人有责人人尽责人人享有的| 免费看av在线观看网站| 特大巨黑吊av在线直播| 99久久人妻综合| 又黄又爽又刺激的免费视频.| av在线老鸭窝| 久久精品熟女亚洲av麻豆精品| 日本欧美视频一区| 在线观看免费视频网站a站| 一级毛片aaaaaa免费看小| 日韩在线高清观看一区二区三区| 免费观看性生交大片5| 中文字幕最新亚洲高清| 2021少妇久久久久久久久久久| 婷婷色av中文字幕| 免费看不卡的av| 成人毛片60女人毛片免费| 国产国语露脸激情在线看| 自拍欧美九色日韩亚洲蝌蚪91| 成人漫画全彩无遮挡| 春色校园在线视频观看| 久久精品国产亚洲av天美| 午夜福利,免费看| 一级,二级,三级黄色视频| 777米奇影视久久| 亚洲高清免费不卡视频| 久热久热在线精品观看| 亚洲精华国产精华液的使用体验| 你懂的网址亚洲精品在线观看| 免费人妻精品一区二区三区视频| 3wmmmm亚洲av在线观看| 少妇人妻 视频| 成年女人在线观看亚洲视频| av在线老鸭窝| 久久久精品免费免费高清| 久久精品国产亚洲av涩爱| 日韩熟女老妇一区二区性免费视频| 熟女电影av网| 最新的欧美精品一区二区| 日韩精品有码人妻一区| 成人国产av品久久久| 午夜精品国产一区二区电影| 九九爱精品视频在线观看| 欧美精品高潮呻吟av久久| 一级毛片aaaaaa免费看小| 欧美激情 高清一区二区三区| 国产在线免费精品| 狠狠婷婷综合久久久久久88av| 99视频精品全部免费 在线| 欧美精品一区二区大全| 午夜日本视频在线| videosex国产| 又黄又爽又刺激的免费视频.| 久久这里有精品视频免费| 欧美激情极品国产一区二区三区 | 午夜免费男女啪啪视频观看| 尾随美女入室| 99视频精品全部免费 在线| 午夜日本视频在线| 亚洲欧洲国产日韩| 精品午夜福利在线看| 成人漫画全彩无遮挡| 99久国产av精品国产电影| 亚洲国产欧美日韩在线播放| 纯流量卡能插随身wifi吗| 亚洲国产精品999| 国产成人精品无人区| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 秋霞在线观看毛片| 久久狼人影院| 美女脱内裤让男人舔精品视频| 插逼视频在线观看| 亚洲av欧美aⅴ国产| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久久久大奶| 黄片无遮挡物在线观看| 精品一区二区免费观看| 欧美精品国产亚洲| 最近中文字幕高清免费大全6| 婷婷色综合www| 国产精品99久久99久久久不卡 | 久久久精品区二区三区| 国产乱人偷精品视频| 99久久精品一区二区三区| 在线观看免费视频网站a站| 中国美白少妇内射xxxbb| 国产av精品麻豆| 成人毛片a级毛片在线播放| 亚洲精品久久久久久婷婷小说| 日韩不卡一区二区三区视频在线| 精品久久国产蜜桃| 成人18禁高潮啪啪吃奶动态图 | 婷婷色av中文字幕| 日韩视频在线欧美| 免费av不卡在线播放| 亚洲天堂av无毛| 九色成人免费人妻av| 亚洲,一卡二卡三卡| a级毛片黄视频| 在线亚洲精品国产二区图片欧美 | 色婷婷av一区二区三区视频| 亚洲内射少妇av| 性色avwww在线观看| 啦啦啦啦在线视频资源| 亚洲第一av免费看| 伊人久久精品亚洲午夜| 欧美三级亚洲精品| 久久久午夜欧美精品| 亚洲伊人久久精品综合| 精品午夜福利在线看| 视频中文字幕在线观看| 丝袜美足系列| 99热全是精品| 国产成人精品一,二区| 99re6热这里在线精品视频| 国产精品.久久久| 国产永久视频网站| 亚洲国产精品专区欧美| a级毛片免费高清观看在线播放| 久久国内精品自在自线图片| 飞空精品影院首页| 久久久久久久亚洲中文字幕| 国产不卡av网站在线观看| 日韩,欧美,国产一区二区三区| 日韩av不卡免费在线播放| 国产成人免费观看mmmm| 中国国产av一级| 国产精品久久久久久av不卡| 秋霞在线观看毛片| av黄色大香蕉| 国产伦理片在线播放av一区| 久久99一区二区三区| 精品一区二区免费观看| 欧美性感艳星| 成年人午夜在线观看视频| 国产精品久久久久久久久免| 国产午夜精品一二区理论片| 99国产综合亚洲精品| 亚洲熟女精品中文字幕| 一级a做视频免费观看| 久久国产亚洲av麻豆专区| 精品一区二区三区视频在线| 高清在线视频一区二区三区| 欧美激情 高清一区二区三区| 成年美女黄网站色视频大全免费 | 成人二区视频| 成年女人在线观看亚洲视频| 国产精品一区二区在线观看99| 最新的欧美精品一区二区| 97超视频在线观看视频| 国精品久久久久久国模美| a 毛片基地| 国产亚洲精品第一综合不卡 | 九草在线视频观看| 汤姆久久久久久久影院中文字幕| 中文精品一卡2卡3卡4更新| 卡戴珊不雅视频在线播放| 亚洲国产欧美日韩在线播放| 18禁动态无遮挡网站| 久久久欧美国产精品| 制服丝袜香蕉在线| 国产成人91sexporn| 国产黄片视频在线免费观看| 国产 精品1| 中文字幕制服av| 赤兔流量卡办理| 制服丝袜香蕉在线| 久久久久久伊人网av| 啦啦啦中文免费视频观看日本| 亚洲国产精品成人久久小说| 亚洲图色成人| 国产精品一区二区三区四区免费观看| 中文天堂在线官网| 一级毛片 在线播放| 久久精品久久精品一区二区三区| 色婷婷久久久亚洲欧美| 高清毛片免费看| 久久精品国产亚洲av涩爱| 日韩av不卡免费在线播放| 免费不卡的大黄色大毛片视频在线观看| 久久久久精品久久久久真实原创| 另类亚洲欧美激情| av女优亚洲男人天堂| 国产成人精品婷婷| 你懂的网址亚洲精品在线观看| 久久99热6这里只有精品| 韩国av在线不卡| av黄色大香蕉| 成人免费观看视频高清| 亚洲精品日韩在线中文字幕| 99久久中文字幕三级久久日本| 欧美日韩视频高清一区二区三区二| 欧美丝袜亚洲另类| 97在线人人人人妻| av专区在线播放| 天堂中文最新版在线下载| 国产精品秋霞免费鲁丝片| 日本爱情动作片www.在线观看| 妹子高潮喷水视频| 国产精品人妻久久久久久| 亚洲精品视频女| 在线观看三级黄色| 亚洲综合精品二区| 久久久久久人妻| 国产成人freesex在线| 人成视频在线观看免费观看| 又粗又硬又长又爽又黄的视频| 最近手机中文字幕大全| 在线亚洲精品国产二区图片欧美 | 99九九线精品视频在线观看视频| 韩国高清视频一区二区三区| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 黑人猛操日本美女一级片| 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 午夜日本视频在线| 青春草亚洲视频在线观看| 老司机亚洲免费影院| 乱人伦中国视频| 久久女婷五月综合色啪小说| 国产熟女午夜一区二区三区 | 麻豆成人av视频| 亚洲激情五月婷婷啪啪| 国产亚洲午夜精品一区二区久久| 18禁在线无遮挡免费观看视频| 特大巨黑吊av在线直播| 亚洲在久久综合| 国产精品无大码| 色视频在线一区二区三区| 亚洲国产欧美日韩在线播放| 国产欧美亚洲国产| 欧美日韩精品成人综合77777| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 岛国毛片在线播放| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 在线亚洲精品国产二区图片欧美 | 中文字幕最新亚洲高清| 久久精品夜色国产| 美女中出高潮动态图| 精品熟女少妇av免费看| 成人国语在线视频| 最近手机中文字幕大全| 国产高清三级在线| 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 欧美日韩国产mv在线观看视频| 十八禁高潮呻吟视频| 欧美xxⅹ黑人| 国产亚洲午夜精品一区二区久久| 免费黄色在线免费观看| 亚洲无线观看免费| 国产极品天堂在线| 中文字幕最新亚洲高清| 一级黄片播放器| kizo精华| 久久99蜜桃精品久久| 丰满迷人的少妇在线观看| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 亚洲美女黄色视频免费看| 天堂8中文在线网| 韩国高清视频一区二区三区| 国产毛片在线视频| 国产极品天堂在线| 观看美女的网站| 妹子高潮喷水视频| 国产成人freesex在线| 黄片无遮挡物在线观看| 99九九线精品视频在线观看视频| 青春草国产在线视频| 精品少妇黑人巨大在线播放| av免费观看日本| 毛片一级片免费看久久久久| 黑人巨大精品欧美一区二区蜜桃 | 爱豆传媒免费全集在线观看| 高清av免费在线| 国产片特级美女逼逼视频| 考比视频在线观看| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 精品99又大又爽又粗少妇毛片| 伊人久久精品亚洲午夜| 日本av免费视频播放| 久久97久久精品| 高清毛片免费看| av有码第一页| 国产一区二区在线观看日韩| 热re99久久国产66热| 欧美成人午夜免费资源| videosex国产| 26uuu在线亚洲综合色| 午夜91福利影院| 精品久久久噜噜| freevideosex欧美| 天美传媒精品一区二区| 成年av动漫网址| 黑丝袜美女国产一区| 我的女老师完整版在线观看| 曰老女人黄片| 国产成人一区二区在线| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 亚洲av在线观看美女高潮| 99视频精品全部免费 在线| 久久久久久久久大av| 春色校园在线视频观看| 中文字幕久久专区| 成人手机av| 91精品伊人久久大香线蕉| 国产一区有黄有色的免费视频| 美女大奶头黄色视频| 天美传媒精品一区二区| 国产在线一区二区三区精| 制服丝袜香蕉在线| 欧美另类一区| 性色av一级| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验| 亚洲精品,欧美精品| 99九九在线精品视频| 熟妇人妻不卡中文字幕| 波野结衣二区三区在线| 99热国产这里只有精品6| 日日摸夜夜添夜夜爱| 91成人精品电影| 亚洲精品亚洲一区二区| av在线播放精品| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| 老女人水多毛片| 一区二区三区精品91| 亚洲成人手机| 国产色婷婷99| 蜜臀久久99精品久久宅男| 人人妻人人添人人爽欧美一区卜| 日日啪夜夜爽| 中文天堂在线官网| 91在线精品国自产拍蜜月| 中文字幕人妻熟人妻熟丝袜美| a级毛片在线看网站| 日本av手机在线免费观看| 97在线人人人人妻| 国产成人精品无人区| a级毛片免费高清观看在线播放| 狠狠精品人妻久久久久久综合| 大话2 男鬼变身卡| 人人澡人人妻人| 狠狠精品人妻久久久久久综合| 在线看a的网站| 在线观看国产h片| 中文字幕免费在线视频6| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| 晚上一个人看的免费电影| 看十八女毛片水多多多| 国产精品免费大片| 如何舔出高潮| 高清黄色对白视频在线免费看| xxxhd国产人妻xxx| 日日啪夜夜爽| 久久久午夜欧美精品| 18禁在线无遮挡免费观看视频| 日韩欧美一区视频在线观看| 亚洲美女黄色视频免费看| 国产精品久久久久久av不卡| 久久久久久久亚洲中文字幕| 免费人妻精品一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久久性| av.在线天堂| 在线观看国产h片| 飞空精品影院首页| 久久人妻熟女aⅴ| 亚州av有码| 亚洲精品日本国产第一区| 九草在线视频观看| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 日韩一区二区视频免费看| 最黄视频免费看| 女性被躁到高潮视频| 九草在线视频观看| 国国产精品蜜臀av免费| 乱人伦中国视频| 只有这里有精品99| 亚洲精品日本国产第一区| 久久久久久久久久成人| 中文精品一卡2卡3卡4更新| 18禁动态无遮挡网站| 母亲3免费完整高清在线观看 | av线在线观看网站| 久久久久久久久久久久大奶| 久久国产亚洲av麻豆专区| 亚洲丝袜综合中文字幕| 日本vs欧美在线观看视频| 国产精品一二三区在线看| 满18在线观看网站| 毛片一级片免费看久久久久| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区| 精品国产一区二区三区久久久樱花| 青春草亚洲视频在线观看| 在线观看人妻少妇| av播播在线观看一区| 精品国产国语对白av| 国产亚洲精品久久久com| 国产男人的电影天堂91| 成年av动漫网址| 视频在线观看一区二区三区| av电影中文网址| 看十八女毛片水多多多| 99九九线精品视频在线观看视频| 午夜影院在线不卡| 最黄视频免费看| 亚洲av综合色区一区| 国产永久视频网站| 丰满少妇做爰视频| 在线精品无人区一区二区三| 亚洲av福利一区| 亚洲精品中文字幕在线视频| 中文天堂在线官网| 春色校园在线视频观看| 人妻制服诱惑在线中文字幕| 亚洲精品国产色婷婷电影| 欧美精品高潮呻吟av久久| 亚洲伊人久久精品综合| 99热这里只有精品一区| 免费人妻精品一区二区三区视频| a级毛片黄视频| 99国产综合亚洲精品| 免费观看性生交大片5| 80岁老熟妇乱子伦牲交| 日韩三级伦理在线观看| 99久久人妻综合| 69精品国产乱码久久久| 久久精品久久久久久久性| 日韩av不卡免费在线播放| 高清欧美精品videossex| 女性生殖器流出的白浆| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 大片电影免费在线观看免费| 国产精品麻豆人妻色哟哟久久| 成人黄色视频免费在线看| 狂野欧美激情性bbbbbb| 我的老师免费观看完整版| 国模一区二区三区四区视频| 国产精品.久久久| 亚洲精品av麻豆狂野| 高清视频免费观看一区二区| 视频在线观看一区二区三区| 我要看黄色一级片免费的| www.av在线官网国产| 中国国产av一级| av视频免费观看在线观看| 国产一区亚洲一区在线观看| 亚洲少妇的诱惑av| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| av播播在线观看一区| 一边摸一边做爽爽视频免费| 久久热精品热| 免费日韩欧美在线观看| 国产av码专区亚洲av| 一区二区三区免费毛片| 久久久久久久久久成人| 亚洲av电影在线观看一区二区三区| 久久婷婷青草| 一级片'在线观看视频| 丝袜喷水一区| 桃花免费在线播放| 日本黄色片子视频| 亚洲国产精品一区二区三区在线| 高清欧美精品videossex| 国产av码专区亚洲av| 一级毛片我不卡| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 日韩成人伦理影院| 国产高清国产精品国产三级| av视频免费观看在线观看| 多毛熟女@视频| 久久这里有精品视频免费| 亚洲国产欧美在线一区| 美女中出高潮动态图| 国产男女内射视频| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 十八禁高潮呻吟视频| 日本wwww免费看| 亚洲精品乱码久久久v下载方式| 又大又黄又爽视频免费| 18禁观看日本| 久久精品国产自在天天线| 九九爱精品视频在线观看| 日本色播在线视频| 中文字幕制服av| 免费播放大片免费观看视频在线观看| 国产欧美日韩一区二区三区在线 | 精品人妻熟女av久视频| 国产永久视频网站| 亚洲欧美一区二区三区国产| 男女啪啪激烈高潮av片| 久久久久精品性色| 国产永久视频网站| 97精品久久久久久久久久精品| 亚洲一区二区三区欧美精品| 亚洲精品成人av观看孕妇| 超色免费av| 建设人人有责人人尽责人人享有的| 国产精品 国内视频| 99热6这里只有精品| av网站免费在线观看视频| 熟女人妻精品中文字幕| 日韩人妻高清精品专区| 亚洲精品第二区| 国产一区二区三区av在线| 18禁观看日本| 国产伦精品一区二区三区视频9| 精品人妻一区二区三区麻豆| 亚洲国产精品专区欧美| 亚洲av成人精品一区久久| 高清av免费在线| 国产又色又爽无遮挡免| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频| 高清不卡的av网站| 亚洲成色77777| 美女cb高潮喷水在线观看| 欧美三级亚洲精品| 中文乱码字字幕精品一区二区三区| 在线看a的网站| 国产精品99久久99久久久不卡 | 日韩制服骚丝袜av| 日日啪夜夜爽| 爱豆传媒免费全集在线观看| 国产成人精品一,二区| 中文精品一卡2卡3卡4更新| 国产av一区二区精品久久| 99九九线精品视频在线观看视频| 99re6热这里在线精品视频| 啦啦啦中文免费视频观看日本| 国产成人freesex在线| 国产成人a∨麻豆精品| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 中文天堂在线官网| 久久精品国产亚洲网站| av播播在线观看一区| 欧美成人精品欧美一级黄| 草草在线视频免费看| 国产日韩欧美亚洲二区| 久久人人爽人人爽人人片va| 少妇被粗大的猛进出69影院 | 3wmmmm亚洲av在线观看| 国产乱人偷精品视频| 国产成人免费观看mmmm| 精品久久久噜噜| 伦理电影免费视频| 国产成人freesex在线| 亚洲婷婷狠狠爱综合网| 寂寞人妻少妇视频99o| 狂野欧美白嫩少妇大欣赏| 免费人妻精品一区二区三区视频| 女的被弄到高潮叫床怎么办| 九九久久精品国产亚洲av麻豆| 91成人精品电影| 一边亲一边摸免费视频| 亚洲精品一二三|