• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*

    2014-07-18 11:56:04ZHOUHualan周華蘭WUYajing吳雅靜ZHANGWei張偉andWANGJun王軍
    關(guān)鍵詞:雅靜王軍張偉

    ZHOU Hualan (周華蘭), WU Yajing (吳雅靜), ZHANG Wei (張偉)and WANG Jun (王軍),**

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    2College of Sciences, Nanjing University of Technology, Nanjing 210009, China

    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*

    ZHOU Hualan (周華蘭)1, WU Yajing (吳雅靜)2, ZHANG Wei (張偉)1and WANG Jun (王軍)1,**

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    2College of Sciences, Nanjing University of Technology, Nanjing 210009, China

    Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SiO2/Al2O3molar ratio 21-25, KOH/SiO2molar ratio 0.33-0.43, H2O/SiO2molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160 °C, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.

    crystal growth, microporous materials, SUZ-4 zeolite, zeolite synthesis, organic template-free

    1 INTRODUCTION

    SUZ-4 zeolite patented by British Petroleum Company in 1992 [1] has a framework topology similar to ferrierite and ZSM-57 [1-5]. Its two-dimensional pore system consists of interconnected ten- and eight-membered ring channels which are elliptical in shape; the ten-membered rings have pore openings of 0.46×0.52 nm [2] and demonstrate as the good catalyst for many processes [6-9], including the conversion of n-hexane [6], elimination of nitrogen oxides [8], and transformation of methanol to dimethylether [9]. The synthesis of SUZ-4 zeolite, however, is still not so easy, which limits its practical application.

    The synthesis of SUZ-4 zeolite is mostly reported by using a rotating hydrothermal crystallization in the presence of the organic template tetraethylammonium cation (TEA) [5, 10, 11]. The other organic templates such as quinuclidine and N,N,N,N,N,N-hexaethylpentane-diammonium bromide (Et6-diquat-5) are also used for the synthesis of SUZ-4 zeolite [1, 3]. Normally, the organic templates direct the assembly pathways of zeolite precursors and ultimately fill the pore space of a zeolite [11-14]. It has been accepted for a long time that the templating species are essential in the synthesis of zeolites, especially in the case of high-silica zeolites [15]. The use of organic templates, however, has many negative subsequences such as the environmental pollution and high energy consumption for the removal of organic templates during high-temperature calcination. Therefore, organotemplate-free method for zeolite synthesis is much desirable, for example, the organotemplate-free synthesis of ZSM-5 zeolite [16-18].

    In the past decades, many efforts have been devoted to the organotemplate-free synthesis of zeolites in the presence of the additives of methyl ethyl ketone [19], methanol/ethanol [20], acetone [21], and crystal seeds [22]. It is known that the addition of crystalline seeds into the starting aluminosilicate gels can remarkably accelerate zeolite crystallization [22-25]. Moreover, the seeded hydrothermal route has been proved to be very effective in the synthesis of zeolites without organic templates involved. With the methods, zeolites of ECR-1 [26], Beta [27, 28], ZSM-34 [29], ZSM-12 [30], FER [31] and LEV [32] have been sythesized. But the synthesis of SUZ-4 zeolite without using any organic templates has not been reported up to date. Very recently, our group [33] reported the preliminary data for an organotemplate-free hydrothermal synthesis of SUZ-4 zeolite aided by SUZ-4 crystal seeds. In this study, we investigate in detail the influences of various conditions on the organotemplate-free synthesis of SUZ-4 zeolite, aiming to obtain the optimal synthesis window of the conditions.

    2 EXPERIMENTAL

    2.1 Materials

    Potassium hydroxide (Sinopharm Chemical Reagent Co., AR); aluminum powder (99%, Sinopharm Chemical Reagent Co.); colloidal silica [40% (by mass) SiO2, Zhejiang Yuda Chem. Co., LR]; tetraethylammonium hydroxide [TEAOH, 35% (by mass) in water, AR, Jiangsu Jintan Xinan Chemical Research Institute].

    2.2 Synthesis

    The SUZ-4 zeolite that is used as the seed was prepared using the organic template TEAOH according to the conventional rotation method [7], followedwith a calcination at 550 °C for 5 h.

    In a typical synthesis of SUZ-4 zeolite by the organotemplate-free hydrothermal approach, 2.6 g of KOH was dissolved in 20.0 g of deionized water, then 0.27 g of aluminum powder was added to the KOH solution under stirring to get the homogeneous solution A. Solution B was prepared by adding 15.8 g of colloidal silica into 15.6 g of deionized water under stirring. Then, solution B was added into solution A to make a gel mixture. Afterwards, 0.5 g of the seed (1% based on the total mass of the synthesis mixture) was added to the above gel, followed with an aging at room temperature for 24 h. The molar composition of the gel was 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O (SiO2/Al2O3: 21, KOH/SiO2: 0.38, H2O/SiO2: 23.8). The synthesis gel was finally transferred into a Teflon-lined autoclave and left static in the oven at 160 °C for 6 d under the autogenous pressure. The resultant was then filtrated, recovered, washed with deionized water and dried at 100 °C for 12 h. Thus obtained SUZ-4 zeolite was used as the reference material for calculating relative crystallinity of various samples synthesized under other conditions. The relative crystallinity was calculated by comparing the intensities of the ten featured X-ray diffraction (XRD) peaks for the SUZ-4 phase (2θ=7.9°, 12.0°, 15.3°, 19.0°, 19.6°, 22.75°, 23.5°, 25.0°, 25.8° and 28.7°). The investigation on synthesis conditions was performed by varying the reaction parameters as the following: SiO2/Al2O315-30, KOH/SiO20.29-0.57, H2O/SiO27.14-42.86, seed concentration 0-4% (by mass), aging time 0-24 h, crystallization temperature 140-200 °C, and crystallization time 0-12 d.

    2.3 Characterization

    XRD patterns were collected on a Bruker D8 ADVANCE powder diffractometer using Ni-filtrated Cu Kαradiation source at 40 kV and 20 mA, from 5° to 50° with a scan rate of 2°·min?1. The morphologies of the products were taken with a QUANTA 200 (FEI) scanning electron microscope (SEM). The Brunauer-Emmett-Teller (BET) surface area was obtained by recording the N2-sorption isotherm at the temperature of liquid nitrogen using a Micromeritics ASAP2010 analyzer. Thermal gravimetric analysis (TG) was conducted on a TA Instrument (Netzsch, TG/209/F3) operated under air atmosphere. Chemical compositions of the samples were obtained by a Jarrell-Ash 1100 inductively coupling plasma (ICP) spectrometer.

    3 RESULTS AND DISCUSSION

    3.1 Influence of the seed concentration

    Figure 1 XRD patterns for SUZ-4 samples synthesized at 21 SiO2: Al2O3: 7.9 KOH: 500 H2O, 160 °C, 6 d, with different mass concentrations of seeds (data in parentheses are comparative crystallinities)seed mass concentration: a—0; b—0.2%; c—0.5%; d—1%; e—2%; f—4% (4 d); g—4%

    The effect of seed concentration is shown in Fig. 1. It can be seen that only an amorphous product could be obtained in the unseeded system (Curve a) and low crystallinity zeolite appeared with a small amount of seed (Curve b). Curves d and e displayed a set of sharp and well resolved diffraction peaks assigned to the pure SUZ-4 phase [2], suggesting that the highly crystallized SUZ-4 zeolite can be obtained in the presence of 1%-2% (by mass) seed with a 6 d crystallization at 160 °C. When a larger mass amount of seed 4% (Curve f) was used, a highly crystallized SUZ-4 zeolite was got with a shorter hydrothermal time 4 d, whereas a 6 d hydrothermal treatment led to the detection of diffraction peaks at ca. 10° and 14° for mordenite (Curve g), a known competing zeolite phase in SUZ-4 synthesis [34].

    It has been proved that the added seed in an organotemplate-free aluminosilicate gel mixture favors crystallization started by the fast agglomeration of the small-sized particles at the seed-amorphous interface [35]. The results in Fig. 1 indicate that the seed is indispensable for organotemplate-free synthesis of SUZ-4 zeolite, and the well crystallized SUZ-4 zeolite can be obtained within the seed mass content range of 0.2%-2%.

    Figure 2 (a) shows the TG curves for selected samples. For the seed without the high-temperature calcination to remove the organic template TEAOH, the initial mass loss before 200 °C is attributed to the desorption of physically adsorbed water, and the large mass loss ranging from 200 °C to 550 °C is due to the decomposition of the charge compensating TEA+cations in the micropores of SUZ-4 zeolite [11]. In contrast, for the SUZ-4 sample synthesized by the present seed-assisted organotemplate-free hydrothermal approach, no detectable mass loss happened at 200-550 °C, confirming that the SUZ-4 product as synthesized does not bear any organic species. Fig. 2 (a) also verifies that the seed itself is actually organic template-free, which excludes the possibility that a slight of organic templates left in the seed play structure-directing roles in the present synthesis.

    Figure 2 (a) TG curves for SUZ-4 synthesized with 1% (by mass) seed shown in Fig. 1d, seed, and seed without the hightemperature calcination; (b) The nitrogen isotherm for SUZ-4 synthesized with 1% (by mass) seed shown in Fig. 1d a—SUZ-4 with seed in Fig. 1d; b—seed; c—seed without calcination

    Figure 3 SEM images for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH: 500 H2O, 160 °C, 6 d, with different mass concentrations of seeds: (a) 0.2%, (b) 0.5%, (c) 1%, and (d) 2%

    Figure 2 (b) gives the N2-sorption isotherm for the SUZ-4 sample obtained from the seed-assisted organotemplate-free hydrothermal method. A steep increase appeared in the relative pressure range 10?6

    The SEM images of SUZ-4 products obtained with various amounts of seeds are presented in Fig. 3. It is observed that the amount of seeds employed in the organotemplate-free hydrothermal synthesis affected the crystallization rate, as well as the crystal size. With 0.2% (by mass) seed, amorphous particles occurred surrounding the rod-like zeolite crystals [Fig. 3 (a)], which means that the aluminosilicate gels were not converted to SUZ-4 crystals completely due to a slow crystallization rate at such a low seed concentration. At higher seed mass concentrations of 0.5%, 1% and 2%, the obtained three SUZ-4 samples exhibited a well-defined rod-like morphology with average crystal sizes of 4.8 μm×0.77 μm, 4.4 μm×0.38 μm and 2.3 μm×0.29 μm, respectively. The decreased crystal size corresponds to the increased seed-amorphous interface areas available for crystal growth [23-25, 35].

    3.2 Influence of the SiO2/Al2O3ratio

    Usually, the SiO2/Al2O3molar ratio of 21 is used for the synthesis gel mixture in the previous organic template-aided synthesis of SUZ-4 zeolite, and it is still rather difficult to synthesize SUZ-4 zeolite with a higher SiO2/Al2O3molar ratio [11, 34]. The effect of SiO2/Al2O3ratio on the crystallization of SUZ-4 zeolitewithout organic templates was investigated in this work, with the XRD patterns for the obtained SUZ-4 samples shown in Fig. 4. It can be seen that pure SUZ-4 zeolites could be obtained from the synthesis gels with SiO2/Al2O3ratios of 21 and 25. Note that the crystallization of the sample with a SiO2/Al2O3ratio of 25 took a longer time of 10 d compared with 6 d for the ordinary SiO2/Al2O3ratio of 21. The corresponding SiO2/Al2O3ratios analyzed by ICP for the final solid products were 21.4 and 23.9, respectively. The surface areas for the two samples with SiO2/Al2O3ratios of 21 and 25 were measured to be 324 and 290 m2·g?1, respectively. The decrease of the surface area at the SiO2/Al2O3ratio of 25 may be due to the lower crystallinity, as shown by Curves b and c in Fig. 4.

    Figure 4 XRD patterns for SUZ-4 samples synthesized at Al2O3︰7.9 KOH: 500 H2O, 160 °C, 1% (by mass) seed, with different SiO2/Al2O3molar ratios and crystallization times (the data in parentheses are comparative crystallinities)a—SiO2/Al2O3: 15, 6 d; b—SiO2/Al2O3: 21, 6 d;c—SiO2/Al2O3: 25, 10 d; d—SiO2/Al2O3: 30, 10 d

    When the SiO2/Al2O3ratio was as low as 15, the XRD Pattern a in Fig. 4 showed a much lowered crystallinity of SUZ-4 phase, together with the diffraction peak at ca. 5.6° that is assignable to an impurity phase of perlialite. On the other hand, at the much higher SiO2/Al2O3ratio of 30, the 10 d crystallization seemed cause a comparatively high crystallinity of SUZ-4 zeolite, but with the concomitance of mordenite impurity [34].

    The SEM images for SUZ-4 products with different SiO2/Al2O3ratios are illustrated in Fig. 5. The samples with SiO2/Al2O3ratios of 21 and 25 exhibited rod-like crystalline morphologies, whereas the rods were thicker with the higher silica amount. For the two samples with the much low SiO2/Al2O3ratio of 15 and the high ratio of 30, impurities could be observed besides the rod-like SUZ-4 crystals, in agreement with the XRD results in Fig. 4.

    3.3 Influence of the aging time

    Before hydrothermal crystallization a synthesis mixture needs generally an aging treatment. Fig. 6 (a) presents the XRD patterns for the samples obtained with different aging times, and the corresponding crystallization curve is plotted in Fig. 6 (b). Though the peaks for SUZ-4 zeolite were detectable without aging, its crystallinity is at a very low level. A longer aging time is favorable to the formation of zeolite nuclei on the seed surface, accelerating the crystallization and enhancing the crystallinity [33]. It is drawn from Fig. 6 that 24 h is the optimal aging time to create a fully crystallized SUZ-4 zeolite.

    Figure 5 SEM images for SUZ-4 samples synthesized at Al2O3︰7.9 KOH: 500 H2O, 160 °C, 6 d, 1% (by mass) seed, with different SiO2/Al2O3molar ratios and crystallization times: (a) SiO2/Al2O3: 15, 6 d, (b) SiO2/Al2O3: 21, 6 d; (c) SiO2/Al2O3: 25, 10 d; and (d) SiO2/Al2O3: 30, 10 d

    Figure 6 (a) XRD patterns and (b) crystallization curve for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH︰500 H2O, 160 °C, 6 d, 1% (by mass) seed, with different aging times

    Figure 7 Crystallization curve for the samples obtained at various crystallization time with the synthesis gel composition 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O, 160 °C and 1% (by mass) seed (Insertions are the XRD patterns)

    3.4 Influence of the crystallization time

    Figure 7 plots the crystallization curve for the samples obtained at various crystallization time with the synthesis gel composition 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O, based on the inserted XRD patterns. It can be seen that crystallinity of the obtained SUZ-4 zeolites increased gradually with the prolongation of crystallization time, and when the time was beyond 4 d the crystallinity reached a level above 90%. The highest crystallinity was obtained at 6 d.

    3.5 Influence of the crystallization temperature

    The crystallization temperature was changed from 140 to 200 °C to measure its influence on the synthesis, with the XRD results shown in Fig. 8. At a low temperature of 140 °C, amorphous products were observed without any diffraction peaks if employing the standard 6 d crystallization time (XRD pattern not shown). Only with a much longer crystallization time of 12 d, SUZ-4 zeolite could be generated (Curve a). It is known that the increase of temperature can enhance the solubility of silicate species, leading to the rapid growth of zeolite crystals [34]. Therefore, 160 °C could cause the formation of well crystallized SUZ-4 zeolite (Curve b). However, at the high temperatures of 180 °C and 200 °C, SUZ-4 zeolites were produced even with a much shorter crystallization time of 2 d, but with the concomitance of mordenite impurity (Curves c and d) [34]. Consequently, 160 °C is selected as the most favorable crystallization temperature for the synthesis of SUZ-4 zeolite.

    3.6 Influence of the KOH/SiO2ratio

    Figure 8 XRD patterns for SUZ-4 samples synthesized with 21 SiO2︰Al2O3︰7.9 KOH︰500 H2O, 1% (by mass) seed, at different crystallization temperatures (the data in parentheses are comparative crystallinities)a—140 °C, 12 d; b—160 °C, 6 d; c—180 °C, 2 d; d—200 °C, 2 d

    Figure 9 XRD patterns for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰500 H2O, 160 °C, 6 d, 1% (by mass)seed, with different KOH/SiO2molar ratios (the data in parentheses are comparative crystallinities) a—0.29; b—0.33; c—0.38; d—NaOH/SiO2: 0.38; e—0.43; f—0.48; g—0.57

    The alkalinity of starting gels is an important parameter to influence the crystallization of zeolite, thus KOH/SiO2molar ratios were varied from 0.29 to 0.57 to evaluate the influence of gel’s alkalinities. The XRD patterns in Fig. 9 indicate that SUZ-4 zeolite was obtained when the KOH/SiO2ratio was in the range 0.33-0.43. At a low alkalinity (KOH/SiO2: 0.29), a poorly crystallized SUZ-4 phase was observed because the low concentration of hydroxyl ions could not depolymerize the silica source to provide sufficient solubilized aluminosilicate species to form nuclei [36]. On the contrary, a high alkalinity (KOH/SiO2: 0.48) made the crystallinity lowered remarkably, probably due to the dissolution of the already formed zeolite nuclei in the presence of excess hydroxyl ions [36]. KOH/SiO2up to 0.57 caused the formation of pure perlialite crystals (Curve g). Moreover, NaOH was also attempted as the alkaline source in comparison with KOH. It can be seen in Curve d that mordenite was the only crystallite produced, which is in agreement with the previous result that K+is a necessity for creating the SUZ-4 phase [11]. Accordingly, the optimal KOH/SiO2ratio of 0.33-0.43 is crucial for creating the pure phase of SUZ-4 zeolite.

    3.7 Influence of the H2O/SiO2ratio

    The water content of a synthesis system is also known as a key condition for the hydrothermal synthesis of zeolite. Fig. 10 shows the XRD patterns for the samples synthesized with various H2O/SiO2ratios of 7.14-42.86. The pure and well crystallized SUZ-4 zeolite could be obtained even from the very concentrated gel with the low H2O/SiO2ratio of 7.14. A broad window of H2O/SiO2ratios 7.14-38.1 was observed for the synthesis of SUZ-4 zeolite. However, at the much lower H2O/SiO2ratios of less than 7.14, the viscosity of the aluminosilicate gel is too large for substrates to diffuse freely to form SUZ-4 crystalline [37, 38]. Also, the much diluted gel mixture (H2O/SiO2: 42.86) could not give pure SUZ-4 zeolite, which is ascribed to the very slow nucleation rate arising for the longer distance between nutrients in this diluted solution [39].

    Figure 10 XRD patterns for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH, 160 °C, 6 d, 1% (by mass) seed, with different H2O/SiO2ratios (the data in parentheses are comparative crystallinities) a—7.14; b—14.28; c—23.81; d—38.10; e—42.86

    4 CONCLUSIONS

    Pure and highly crystallized SUZ-4 zeolite can be synthesized by the organotemplate-free static hydrothermal route in the presence of the seed under following conditions: SiO2/Al2O3: 21-25 mol·mol?1, KOH/SiO2: 0.33-0.43 mol·mol?1, H2O/SiO2: 7.14-38.1 mol·mol?1, seed mass concentration=0.2%-2%, aging time = 24 h, crystallization temperature=160 °C, and crystallization time=6-10 d. The optimal condition (SiO2/Al2O321, KOH/SiO20.38, H2O/SiO223.8, seed mass concentration 1%, aging 24 h, 160 °C and 6 d) results in the SUZ-4 product with BET surface area 324 m2·g?1, micropore volume 0.13 cm3·g?1, mesopore diameter 2.26 nm and the size of rod-like crystals around 4.4 μm×0.38 μm.

    REFERENCES

    1 Barri, S.A.I., “Crystalline (metallo) silicates and germanates-SUZ-4”, US Pat. 5118483 (1992).

    2 Lawton, S.L., Bennett, J.M., Schlenker, J.L., Rubin, M.K., “Synthesis and proposed framework topology of zeolite SUZ-4”, J. Chem. Soc. Chem. Commun., (11), 894-896 (1993).

    3 Paik, W.C., Shin, C.H., Hong, S.B., “Synthesis of zeolites P1 and SUZ-4 through a synergy of organic N,N,N,N′,N′,N′-hexaethylpentanediammonium and inorganic cations”, Chem. Commun., (17), 1609-1610 (2000).

    4 Paik, W.C., Shin, C.H., Lee, J.M., Ahn, B.J., Hong, S.B., “A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media”, J. Phys. Chem. B, 105 (41), 9994-10000 (2001).

    5 Strohmaier, K.G., Afeworki, M., Dorset, D.L., “The crystal structures of polymorphic SUZ-4”, Z. Kristallogr., 221, 689-698 (2006).

    6 Lukyanov, D.B., Zholobenko, V.L., Dwyer, J., Barri, S.A. I., Smith, W.J., “On the structural, acidic and catalytic properties of zeolite SUZ-4”, J. Phys. Chem., 103 (1), 197-202 (1999).

    7 Asensi, M.A., Camblor, M.A., Martinez, A., “Zeolite SUZ-4: Reproducible synthesis, physicochemical characterization and catalytic evaluation for the skeletal isomerization of n-butenes”, Micropor. Mesopor. Mater., 28, 427-436 (1999).

    8 Subbiah, A., Cho, B.K., Blint, R.J., Gujar, A.C., Price, G.L., Yie, J.E.,“NOxreduction over metal-ion exchanged novel zeolite under lean conditions: Activity and hydrothermal stability”, Appl Catal B Envir., 42, 155-178 (2003).

    9 Jiang, S., Hwang, Y.K., Jhung, S.H., Chang, J.S., Hwang, J.S., “Zeolite SUZ-4 as selective dehydration catalyst for methanol conversion to dimethyl ether”, Chem Lett., 33 (8), 1048-1049 (2004).

    10 Gujar, A.C., Moye, A.A., Coghill, P.A., Teeters, D.C., Roberts, K.P., Price, G.L., “Raman investigation of the SUZ-4 zeolite”, Micropor. Mesopor. Mater., 78, 131-137 (2005).

    11 Gujar, A.C., Price, G.L., “Synthesis of SUZ-4 in the K+/TEA+system”, Micropor. Mesopor. Mater., 54, 201-205 (2002).

    12 Barrer, R.M., Denny, P.J., “Hydrothermal chemistry of the silicates. Part IV. Nitrogenous aluminosilicates”, J. Chem. Soc., 971-982 (1961).

    13 Davis, M.E., Lobo, R.F., “Zeolite and molecular sieve synthesis”, Chem. Mater., 4, 756-768 (1992).

    14 Lawton, S.L., Rohrbaugh, W.J., “The framework topology of ZSM-18, a novel zeolite containing rings of three (Si,Al)-O species”, Science., 247, 1319-1322 (1990).

    15 Fyfe, C.A., Darton, R.J., Mowatt, H., Lin, Z.S., “Efficient, low-cost, minimal reagent syntheses of high silica zeolites using extremely dense gels below 100 °C”, Micropor. Mesopor. Mater., 144, 57-66 (2011).

    16 Li, H.X., Xiang, S.H., Wu, D.M., Liu, Y.T., Zhang, X.S., Liu, S.S.,“Study on the synthesis of zeolite ZSM-5”, Chem. J. Chin. Univ., 2 (4), 517-519 (1981).

    17 Wang, F.S., Cheng, W.C., Zhang, S., “Synthesis of inorgano-ammonium high silica zeolites of ZSM series”, Chin. J. Catal., 2 (4), 282-287 (1981).

    18 Shiralkar, V.P., Clearfield, A., “Synthesis of the molecular sieve ZSM-5 without the aid of templates”, Zeolites, 9, 363-370 (1989).

    19 Narita, E., Sato, K., Okabe, T., “A convenient method for crystallization of zeilite ZSM-5 by using seed crystals in acetone/water mixture system”, Chem. Lett., 13 (7), 1055-1058 (1984).

    20 Plank, C.J., Rosinski, E.J., Rubin, M.K., “Method for producing zeolites”, US Pat. 4175114 (1979).

    21 Narita, E., Yatabe, N., Okabe, T., “Synthesis and crystal growth of zeolite ZSM-5 from sodium aluminosilicate systems free of organic templates”, Ind. Eng. Chem. Prod. Res. Dev., 24 (4), 507-512 (1985).

    22 Edelman, R.D., Kudalkar, D.V., Ong, T., Warzywoda, J., Thompson, R.W., “Crystallization phenomena in seeded zeolite syntheses”, Zeolites, 9, 496-502 (1989).

    23 Lu, B., Tsuda, T., Oumi, Y., Itabashi, K., Sano, T., “Direct synthesis of high-silica mordenite using seed crystals”, Micropor. Mesopor. Mater., 76, 1-7 (2004).

    24 Lu, B., Yakushi, Y., Oumi, Y., Itabashi, K., Sano, T., “Control of crystal size of high-silica mordenite by quenching in the course of crystallization process”, Micropor. Mesopor. Mater., 95, 141-145 (2006).

    25 Dutta, P.K., Bronic, J., “Mechanism of zeolite formation: Seed-gel interaction”, Zeolites, 14, 250-255 (1994).

    26 Song, J.W., Dai, L., Ji, Y.Y., Xiao, F.S., “Organic template free synthesis of aluminosilicate zeolite ECR-1”, Chem. Mater., 18 (12), 2775-2777 (2006).

    27 Xie, B., Song, J., Ren, L.M., Ji, Y., Li, J., Xiao, F.S., “Organotemplate-free and fast route for synthesizing beta zeolite”, Chem. Mater., 20 (14), 4533-4535 (2008).

    28 Xie, B., Zhang, H.Y., Yang, C.G., Liu, S.Y., Ren, L.M., Zhang, L., Meng, X.J., Yilmaz, B., Muller, U., Xiao, F.S., “Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates”, Chem. Commun., 47, 3945-3947 (2011).

    29 Zhang, L., Yang, C.G., Meng, X.J., Xie, B., Wang, L., Ren, L.M., Ma, S.J., Xiao, F.S., “Organotemplate-free syntheses of ZSM-34 zeolite and Its heteroatom-substituted analogues with good catalytic performance”, Chem. Mater., 22 (10), 3099-3107 (2010).

    30 Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., Okubo, T., “Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis”, J. Phys. Chem. C, 115 (3), 744-750 (2011).

    31 Zhang, H.Y., Guo, Q., Ren, L.M., Yang, C.G., Zhu, L.F., Meng, X.J., Li, C., Xiao, F.S., “Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units”, J. Mater. Chem., 21, 9494-9497 (2011).

    32 Zhang, H.Y., Yang, C.G., Zhu, L.F., Meng, X.J., Yilmaz, B., Muller, U., Feyen, M., Xiao, F.S., “Organotemplate-free and seed-directed synthesis of levyne zeolite”, Micropor. Mesopor. Mater., 155, 1-7 (2012).

    33 Zhang, W., Wu, Y.J., Gu, J., Zhou, H.L., Wang, J., “Organotemplate-free route for synthesizing SUZ-4 zeolite under static hydrothermal condition”, Mater. Res. Bull., 46, 1451-1454 (2011).

    34 Worathanakula, P., Trisuwana, D., Phatrukb, A., Kongkachuichay, P.,“Effect of sol-gel synthesis parameters and Cu loading on the physicochemical properties of a new SUZ-4 zeolite”, Colloids Surf. A Physicochem. Eng. Aspects., 377, 187-194 (2011).

    35 Wu, Y.J., Ren, X.Q., Lu, Y.D., Wang, J., “Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the hydrothermal synthesis”, Micropor. Mesopor. Mater., 112, 138-146 (2008).

    36 Eapen, M.J., Reddy, K.S.N., Shiralkar, V.P., “Hydrothermal crystallization of zeolite beta using tetraethylammonium bromide”, Zeolites, 14, 295-302 (1994).

    37 Kim, Y.C., Jeong, J.Y., Hwang, J.Y., Kim, S.D., Kim, W.J., “Influencing factors on rapid crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure”, J Porous Mater., 16, 299-306 (2009).

    38 Kim, S.D., Noh, S.H., Seong, K.H., Kim, W.J., “Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring”, Micropor. Mesopor. Mater., 72, 185-192 (2004).

    39 Gu, J., Wu, Y.J., Wang, J., Lu, Y.D., Ren, X.Q., “In situ assembly of ZSM-5 nanocrystals into micro-sized single-crystal-like aggregates via acid-catalyzed hydrolysis of tetraethyl orthosilicate”, J. Mater. Sci., 44, 3777-3783 (2009).

    10.1016/S1004-9541(14)60019-7

    2012-03-22, accepted 2012-10-10.

    * Supported by the National Natural Science Foundation of China (20976084, 21101094, 21136005).

    ** To whom correspondence should be addressed. E-mail:junwang@njut.edu.cn

    猜你喜歡
    雅靜王軍張偉
    《哈爾濱記憶 系列四》
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    我要好好來(lái)欣賞
    《郁郁高巖》
    可愛(ài)的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    妻子的“BQ哲學(xué)”
    分憂(2018年12期)2018-01-10 01:42:28
    數(shù)學(xué)潛能知識(shí)月月賽
    国产一区二区三区综合在线观看 | 国产成人午夜福利电影在线观看| 国产免费视频播放在线视频| 国产午夜精品久久久久久一区二区三区| 九草在线视频观看| 国产 一区 欧美 日韩| 在线亚洲精品国产二区图片欧美 | 毛片女人毛片| 国产片特级美女逼逼视频| 日本一二三区视频观看| 视频中文字幕在线观看| 美女xxoo啪啪120秒动态图| 91在线精品国自产拍蜜月| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图综合在线观看| 亚洲精品久久午夜乱码| 又粗又硬又长又爽又黄的视频| 麻豆国产97在线/欧美| 欧美精品国产亚洲| 国产视频首页在线观看| 午夜激情久久久久久久| 亚洲av福利一区| 免费不卡的大黄色大毛片视频在线观看| 国产黄色免费在线视频| 亚洲在久久综合| 日韩成人伦理影院| 亚洲丝袜综合中文字幕| 亚洲精品乱码久久久v下载方式| 一级黄片播放器| 亚洲av.av天堂| 精品久久久久久电影网| 街头女战士在线观看网站| 国产成人精品久久久久久| 国产爽快片一区二区三区| 18禁动态无遮挡网站| av国产久精品久网站免费入址| 嫩草影院精品99| 亚洲av电影在线观看一区二区三区 | 一级爰片在线观看| 久久女婷五月综合色啪小说 | 日韩av在线免费看完整版不卡| 午夜精品一区二区三区免费看| 午夜免费男女啪啪视频观看| 人人妻人人澡人人爽人人夜夜| 国产av码专区亚洲av| 亚洲一区二区三区欧美精品 | 国产视频首页在线观看| 色哟哟·www| 国模一区二区三区四区视频| 国产老妇伦熟女老妇高清| 亚洲av免费高清在线观看| 国产中年淑女户外野战色| 国产精品99久久99久久久不卡 | av又黄又爽大尺度在线免费看| 日本欧美国产在线视频| 爱豆传媒免费全集在线观看| 亚洲内射少妇av| 狂野欧美激情性xxxx在线观看| 色吧在线观看| 国产黄频视频在线观看| 亚洲不卡免费看| 美女高潮的动态| 久久久精品欧美日韩精品| 欧美xxⅹ黑人| 性色av一级| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| 18+在线观看网站| 日本av手机在线免费观看| 成人高潮视频无遮挡免费网站| 建设人人有责人人尽责人人享有的 | 免费观看av网站的网址| 国产美女午夜福利| 亚洲成人久久爱视频| 好男人在线观看高清免费视频| 一区二区三区乱码不卡18| 久久6这里有精品| 偷拍熟女少妇极品色| 国产精品女同一区二区软件| 日产精品乱码卡一卡2卡三| 国产精品福利在线免费观看| 亚洲精品亚洲一区二区| 日韩一本色道免费dvd| 午夜福利在线在线| 只有这里有精品99| 成人毛片60女人毛片免费| av.在线天堂| 亚洲av欧美aⅴ国产| 成人毛片a级毛片在线播放| av网站免费在线观看视频| 国产爱豆传媒在线观看| 亚洲精品亚洲一区二区| 久久99精品国语久久久| 精品人妻偷拍中文字幕| 国产一区二区三区av在线| 久久久午夜欧美精品| 亚洲av国产av综合av卡| 亚洲精品成人久久久久久| 汤姆久久久久久久影院中文字幕| 久久99蜜桃精品久久| 91aial.com中文字幕在线观看| 国产真实伦视频高清在线观看| 久久99精品国语久久久| 看非洲黑人一级黄片| 七月丁香在线播放| 又大又黄又爽视频免费| 婷婷色综合大香蕉| 亚洲自拍偷在线| 亚洲av免费在线观看| 精品一区在线观看国产| 精品一区在线观看国产| 69av精品久久久久久| 一级毛片我不卡| 亚洲欧美日韩另类电影网站 | 菩萨蛮人人尽说江南好唐韦庄| 免费电影在线观看免费观看| 色吧在线观看| 又粗又硬又长又爽又黄的视频| 久久久精品欧美日韩精品| 久久久久久久精品精品| 免费观看性生交大片5| 国产成人a∨麻豆精品| 一本久久精品| 一本一本综合久久| 国产亚洲一区二区精品| 欧美3d第一页| 国产91av在线免费观看| 日日啪夜夜爽| 天堂网av新在线| 免费看不卡的av| 久久久久久久久久成人| 国产精品一区二区在线观看99| 91久久精品电影网| 亚洲精品日韩在线中文字幕| 黄片wwwwww| 丰满人妻一区二区三区视频av| 美女国产视频在线观看| 97超视频在线观看视频| 丰满乱子伦码专区| 超碰av人人做人人爽久久| 国产免费一区二区三区四区乱码| 男插女下体视频免费在线播放| 亚洲精品国产av成人精品| 久久久久性生活片| 久久精品国产亚洲av天美| 午夜精品一区二区三区免费看| 91狼人影院| 99re6热这里在线精品视频| 网址你懂的国产日韩在线| 午夜福利网站1000一区二区三区| 大话2 男鬼变身卡| 亚洲一区二区三区欧美精品 | 国产精品伦人一区二区| 午夜福利在线观看免费完整高清在| 黄色一级大片看看| www.av在线官网国产| www.av在线官网国产| 亚洲电影在线观看av| 欧美精品人与动牲交sv欧美| 哪个播放器可以免费观看大片| 亚洲av.av天堂| 日韩av免费高清视频| 久久久久久久午夜电影| 色播亚洲综合网| 18禁裸乳无遮挡免费网站照片| 国产成人免费无遮挡视频| 国产精品嫩草影院av在线观看| 成人鲁丝片一二三区免费| 成人美女网站在线观看视频| 国产日韩欧美在线精品| 午夜免费男女啪啪视频观看| 久久久久久久久久久免费av| 交换朋友夫妻互换小说| 免费看a级黄色片| 久久国产乱子免费精品| 自拍偷自拍亚洲精品老妇| 日本免费在线观看一区| 国产毛片a区久久久久| 搞女人的毛片| 成年女人看的毛片在线观看| 国产真实伦视频高清在线观看| 各种免费的搞黄视频| 国产精品三级大全| 亚洲精品影视一区二区三区av| 亚洲欧美日韩另类电影网站 | 最后的刺客免费高清国语| 国产美女午夜福利| 丝袜喷水一区| 十八禁网站网址无遮挡 | 欧美xxxx性猛交bbbb| 中文字幕亚洲精品专区| 亚洲欧美成人精品一区二区| .国产精品久久| 日日啪夜夜撸| 97在线视频观看| 欧美性猛交╳xxx乱大交人| 国产成人免费无遮挡视频| av女优亚洲男人天堂| 亚洲不卡免费看| 午夜免费男女啪啪视频观看| 全区人妻精品视频| 国产精品无大码| 色哟哟·www| 一区二区三区四区激情视频| 最近手机中文字幕大全| 男人狂女人下面高潮的视频| 在线观看一区二区三区激情| 亚洲色图av天堂| 国产精品偷伦视频观看了| 国产精品成人在线| 男人舔奶头视频| 中国三级夫妇交换| 大片免费播放器 马上看| 极品教师在线视频| 中文资源天堂在线| 成人毛片a级毛片在线播放| 日日撸夜夜添| 国精品久久久久久国模美| 三级国产精品片| 中文在线观看免费www的网站| h日本视频在线播放| 视频区图区小说| 一级毛片久久久久久久久女| 水蜜桃什么品种好| 欧美一级a爱片免费观看看| 高清午夜精品一区二区三区| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 久久精品久久久久久久性| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 2018国产大陆天天弄谢| 久久久久久久精品精品| 婷婷色av中文字幕| 国产探花在线观看一区二区| 九九在线视频观看精品| 日韩伦理黄色片| 亚洲欧美日韩卡通动漫| 免费观看的影片在线观看| 欧美成人午夜免费资源| 成人亚洲精品一区在线观看 | 欧美老熟妇乱子伦牲交| 亚洲精品aⅴ在线观看| 国产精品国产三级国产av玫瑰| 日韩成人av中文字幕在线观看| 51国产日韩欧美| 大又大粗又爽又黄少妇毛片口| 免费观看在线日韩| 亚洲av.av天堂| 一级毛片我不卡| av黄色大香蕉| 亚洲经典国产精华液单| 少妇丰满av| 毛片一级片免费看久久久久| 少妇人妻 视频| xxx大片免费视频| 久久久久精品性色| 免费黄频网站在线观看国产| 午夜福利在线观看免费完整高清在| 久久99热这里只有精品18| 王馨瑶露胸无遮挡在线观看| 直男gayav资源| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 亚洲综合色惰| 国产男女内射视频| 精品久久久久久久末码| 91精品国产九色| 欧美高清成人免费视频www| 亚洲精品日韩av片在线观看| 国产视频首页在线观看| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 伦精品一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲av福利一区| 丝袜脚勾引网站| 蜜桃久久精品国产亚洲av| 白带黄色成豆腐渣| 黄色配什么色好看| 午夜日本视频在线| 国产男女内射视频| 日本欧美国产在线视频| 亚洲天堂国产精品一区在线| www.av在线官网国产| 久久精品久久久久久噜噜老黄| 啦啦啦中文免费视频观看日本| 嘟嘟电影网在线观看| 一个人看视频在线观看www免费| av播播在线观看一区| 亚洲av电影在线观看一区二区三区 | av国产久精品久网站免费入址| 内地一区二区视频在线| 99久久人妻综合| 黄色一级大片看看| 99久久精品热视频| 免费观看无遮挡的男女| 欧美成人午夜免费资源| 亚洲色图av天堂| 亚洲av男天堂| 一级毛片我不卡| 新久久久久国产一级毛片| 欧美日韩综合久久久久久| 久久久久久久久大av| 国产亚洲精品久久久com| 日本一本二区三区精品| 永久网站在线| 国产精品人妻久久久影院| 大香蕉97超碰在线| 美女被艹到高潮喷水动态| 日韩人妻高清精品专区| 欧美性猛交╳xxx乱大交人| 久久精品久久久久久久性| 国产毛片a区久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久精品电影小说 | 久久精品夜色国产| 亚洲国产精品999| 91aial.com中文字幕在线观看| 国产成人a∨麻豆精品| 免费黄频网站在线观看国产| 我的老师免费观看完整版| 亚洲av电影在线观看一区二区三区 | 亚洲国产精品999| 街头女战士在线观看网站| 一级a做视频免费观看| 日韩亚洲欧美综合| 亚洲在线观看片| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 最近最新中文字幕免费大全7| 亚洲四区av| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 欧美激情在线99| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 美女主播在线视频| av在线播放精品| 亚洲精品一区蜜桃| 亚洲电影在线观看av| 日韩av免费高清视频| 免费黄色在线免费观看| 亚洲性久久影院| 成人黄色视频免费在线看| 18禁在线无遮挡免费观看视频| 亚洲在线观看片| 亚洲真实伦在线观看| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 日本免费在线观看一区| 男女边吃奶边做爰视频| 少妇 在线观看| 国产精品一区二区三区四区免费观看| 免费av毛片视频| 日韩亚洲欧美综合| 免费av观看视频| 精品国产乱码久久久久久小说| 一级毛片我不卡| 免费看不卡的av| 欧美日韩精品成人综合77777| 一本久久精品| 小蜜桃在线观看免费完整版高清| 国产精品成人在线| 卡戴珊不雅视频在线播放| 涩涩av久久男人的天堂| 国产免费一级a男人的天堂| av在线天堂中文字幕| 直男gayav资源| 国产女主播在线喷水免费视频网站| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 熟女电影av网| 欧美国产精品一级二级三级 | 美女国产视频在线观看| 国产美女午夜福利| 亚洲最大成人中文| 亚洲精品日韩在线中文字幕| 久久久精品94久久精品| 婷婷色av中文字幕| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 欧美高清性xxxxhd video| 天天躁夜夜躁狠狠久久av| 日韩成人伦理影院| av国产免费在线观看| 成年人午夜在线观看视频| 在线精品无人区一区二区三 | 日本-黄色视频高清免费观看| 又粗又硬又长又爽又黄的视频| 免费看日本二区| 成年版毛片免费区| 九色成人免费人妻av| 三级国产精品片| 亚洲成色77777| 亚洲伊人久久精品综合| 老司机影院成人| 亚洲精品一二三| 国产精品偷伦视频观看了| 69人妻影院| 中文字幕久久专区| 国产黄色免费在线视频| 久久韩国三级中文字幕| 80岁老熟妇乱子伦牲交| 精品一区二区免费观看| 久久精品国产亚洲网站| av天堂中文字幕网| 有码 亚洲区| 亚洲不卡免费看| 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 国产淫语在线视频| 免费观看a级毛片全部| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 大码成人一级视频| 亚洲精品456在线播放app| 高清午夜精品一区二区三区| 99九九线精品视频在线观看视频| 丝瓜视频免费看黄片| 亚洲av中文av极速乱| 久久午夜福利片| 亚洲精品一二三| 我的女老师完整版在线观看| 热re99久久精品国产66热6| 亚洲国产高清在线一区二区三| 亚洲av一区综合| 亚洲成人一二三区av| 一个人看视频在线观看www免费| 亚洲av男天堂| 国产精品久久久久久精品古装| 精品熟女少妇av免费看| av又黄又爽大尺度在线免费看| 美女cb高潮喷水在线观看| 一级爰片在线观看| 精品国产一区二区三区久久久樱花 | 国产精品麻豆人妻色哟哟久久| 2021天堂中文幕一二区在线观| 美女cb高潮喷水在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产精品久久久久久精品电影小说 | 女人被狂操c到高潮| 免费观看性生交大片5| 国产视频首页在线观看| 高清在线视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 免费观看无遮挡的男女| 日韩一区二区视频免费看| 亚洲国产av新网站| 久久久久性生活片| 欧美三级亚洲精品| av国产精品久久久久影院| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线| 国产黄色视频一区二区在线观看| 国产有黄有色有爽视频| 欧美另类一区| 中文字幕人妻熟人妻熟丝袜美| 久久久午夜欧美精品| 禁无遮挡网站| 岛国毛片在线播放| 国产精品爽爽va在线观看网站| 国产亚洲av片在线观看秒播厂| 国产精品无大码| 久久久久网色| 女人久久www免费人成看片| 激情 狠狠 欧美| 成年女人在线观看亚洲视频 | 中文字幕免费在线视频6| 男女边摸边吃奶| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 精品国产乱码久久久久久小说| 秋霞在线观看毛片| 三级国产精品欧美在线观看| 久久久久九九精品影院| 亚洲色图av天堂| 一级二级三级毛片免费看| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 免费黄色在线免费观看| av.在线天堂| 欧美成人a在线观看| 国产成人freesex在线| 国产视频首页在线观看| 最近最新中文字幕大全电影3| 精品国产三级普通话版| 亚洲精品456在线播放app| 日韩人妻高清精品专区| 一区二区三区乱码不卡18| 大香蕉久久网| 综合色av麻豆| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 女人被狂操c到高潮| 国产精品一区二区性色av| 一二三四中文在线观看免费高清| 久热这里只有精品99| 最近最新中文字幕免费大全7| 亚洲人成网站在线播| 亚洲欧美精品专区久久| 少妇人妻精品综合一区二区| 天堂中文最新版在线下载 | 麻豆乱淫一区二区| 国产熟女欧美一区二区| 一二三四中文在线观看免费高清| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 联通29元200g的流量卡| www.色视频.com| 久久精品夜色国产| 亚洲av日韩在线播放| 国模一区二区三区四区视频| 国产毛片a区久久久久| 嫩草影院精品99| 国产在线男女| 又粗又硬又长又爽又黄的视频| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 久热久热在线精品观看| 亚洲真实伦在线观看| 少妇人妻精品综合一区二区| 国产高潮美女av| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 久久久久九九精品影院| 三级男女做爰猛烈吃奶摸视频| 一个人观看的视频www高清免费观看| 国产一区二区三区综合在线观看 | 熟女电影av网| 欧美日韩国产mv在线观看视频 | 大香蕉久久网| 深爱激情五月婷婷| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| av专区在线播放| 久久久国产一区二区| 亚洲在线观看片| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级国产av玫瑰| 伊人久久国产一区二区| 国产 一区精品| 中文字幕亚洲精品专区| 中文欧美无线码| 免费看av在线观看网站| 国产精品无大码| 中文字幕制服av| 一区二区av电影网| 丝瓜视频免费看黄片| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃| 亚洲精品视频女| 在线 av 中文字幕| 亚洲在久久综合| 亚洲精品国产成人久久av| 精品久久久久久久人妻蜜臀av| 五月玫瑰六月丁香| 夜夜爽夜夜爽视频| 国产国拍精品亚洲av在线观看| 联通29元200g的流量卡| 2018国产大陆天天弄谢| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 97超碰精品成人国产| 亚洲av一区综合| 免费大片黄手机在线观看| 观看美女的网站| 九草在线视频观看| 国产精品久久久久久av不卡| 熟女电影av网| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 五月天丁香电影| 男女边摸边吃奶| 麻豆精品久久久久久蜜桃| 亚洲欧美精品专区久久| 亚洲国产成人一精品久久久| 又大又黄又爽视频免费| 精品亚洲乱码少妇综合久久| 国产精品秋霞免费鲁丝片| 又爽又黄a免费视频| 免费不卡的大黄色大毛片视频在线观看| 老女人水多毛片| 大片电影免费在线观看免费| 小蜜桃在线观看免费完整版高清| 嫩草影院精品99| 免费看光身美女| 嫩草影院入口| 最近中文字幕2019免费版| 好男人在线观看高清免费视频| 22中文网久久字幕| 欧美丝袜亚洲另类| 国内少妇人妻偷人精品xxx网站| 久久久久性生活片| 亚洲欧美日韩无卡精品| 欧美成人午夜免费资源| 亚洲精品色激情综合| 一级毛片aaaaaa免费看小| 欧美少妇被猛烈插入视频| 久久亚洲国产成人精品v| 亚洲欧美日韩卡通动漫| 美女脱内裤让男人舔精品视频| 成年人午夜在线观看视频| 亚洲精品亚洲一区二区| 久久久久久久大尺度免费视频| 日日撸夜夜添| av专区在线播放| 激情五月婷婷亚洲|