• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytical Inactivation of Enterococcus faecalis from Water Using Functional Materials Based on Natural Zeolite and Titanium Dioxide*

    2014-07-18 11:56:07CorneliaBandasRatiuCorinaOrhaCorinaMiscaCarmenLazauPaulaSfirloagaandSorinOlariuNationalInstituteforResearchandDevelopmentinMicrotechnologiesBucharest077190Romania

    Cornelia Bandas (Ratiu), Corina Orha, Corina Misca, Carmen Lazau,**, Paula Sfirloagaand Sorin OlariuNational Institute for Research and Development in Microtechnologies, Bucharest 077190, Romania

    2National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, Timisoara 300254, Romania

    3Banat’s University of Agricultural Sciences and Veterinary Medicine of Timisoara, Faculty of Food Products Technology, Timisoara 300645, Romania

    4Medical and Pharmaceutical University “Victor Babes”, Timisoara 300041, Romania

    Photocatalytical Inactivation of Enterococcus faecalis from Water Using Functional Materials Based on Natural Zeolite and Titanium Dioxide*

    Cornelia Bandas (Ratiu)1,2, Corina Orha2, Corina Misca3, Carmen Lazau2,**, Paula Sfirloaga2and Sorin Olariu41National Institute for Research and Development in Microtechnologies, Bucharest 077190, Romania

    2National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, Timisoara 300254, Romania

    3Banat’s University of Agricultural Sciences and Veterinary Medicine of Timisoara, Faculty of Food Products Technology, Timisoara 300645, Romania

    4Medical and Pharmaceutical University “Victor Babes”, Timisoara 300041, Romania

    The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functional materials were investigated by X-ray diffraction (XRD), FT-IR (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/energy dispersive X-ray spectrometer) analyses. The XRD results indicated that the clinoptilolite structure has a good thermal stabilization after the fast-hydrothermal treatment. Also, the high specific surface area about 92.55 m2·g?1was noticed for Ag-TiO2-zeolite functional material. The presence of dopants was evidenced from EDX spectra. The enhanced bactericidal activity of Ag-TiO2-zeolite catalyst is proved through damaging of Enterococcus faecalis colonies under visible irradiation, at different material doses and irradiation times.

    titanium dioxide, composite, catalytic properties, Enterococcus faecalis

    1 INTRODUCTION

    Microorganisms are part of the organic matter in wastewater. Streptococcus faecalis, specifically, can affect human health and are commonly found in wastewater because they are present in fecal material. Previous health and epidemiological studies by the US Environmental Protection Agency (US EPA) have demonstrated that colony-forming unit (CFU) densities of the bacterial genus Enterococcus sp. from waters are directly correlated with gastroenteritis illness rates [1, 2]. Based on these data, guidance has been issued on the maximum concentrations of these organisms that correspond to acceptable health risks [3]. The removal or inactivation of pathogenic microorganisms (among them streptococcus faecalis) is the last step in the treatment of wastewater. In order to remove Enterococcus sp. from polluted water, the bactericide activity of TiO2nanocrystals has been investigated for a long time. Photocatalysts based on TiO2have been intensively investigated in order to achieve better photocatalytic efficiency for different applications.

    Recently, studies on the doping of transition metallic and non-metallic ions into TiO2and the immobilization of TiO2on supports have become attractive in the area of photocatalysis [4-7]. Different substrates have been used as catalyst support for photocatalytic inactivation of specific contaminants from water and wastewater, such as glass and stainless steel, alumina beds, activated carbon, synthetic zeolites [8-10]. Among these materials, zeolites have been chosen as support since they can delocalize band gap excited electrons of titanium dioxide (TiO2) and thereby minimize electron-hole recombination [11]. Supporting TiO2in zeolite matrix depends on several factors, such as location and migration of cations, strength of interactions between cations, and guest molecules dimensions of cavities and channels. The high photocatalytic activity of powder TiO2(mainly anatase) reveals its increasing applications towards inactivation of various water contaminants [12]. It has been suggested that fine TiO2particles should be anchored on supports (natural or synthetic zeolites) for ease of handling as well as for improving adsorption and photocatalytic efficiency [13-15]. They also serve as ion-exchangers and molecular sieves. Potential applications are expected in a number of technological fields, such as photochemistry, biology, optoelectronics, semiconducting devices and chemical sensors [16-18]. The functionalization of zeolite with TiO2can be carried out through three ways, namely solid-solid, solid-liquid and solid-gas reactions [19, 20]. Solid-state reactions between inorganic species have been studied. However, to the best of our knowledge, there are no investigations about solid-state reaction in hydrothermal conditions between TiO2nanocrystals and natural zeolite.

    In this paper, functional materials based on natural zeolite modified with undoped TiO2and Ag-doped TiO2were synthesized by solid-state reaction by a novel fast-hydrothermal method, which has the advantage of significantly reduced synthesis-cycle time from 6-8 h (classical hydrothermal) to 15-30 min(fast-hydrothermal) [21]. Undoped TiO2/Ag-doped TiO2nanocrystals were previously synthesized by this method [21]. X-ray diffraction, FT-IR (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/ energy dispersive X-ray spectrometer) analysis were used for the morpho-structural characterization of functional materials. The antibacterial performances of functional materials under visible irradiation were determined against Enterococcus faecalis, specific contaminant in river water.

    2 MATERIALS AND METHODS

    Romanian zeolitic mineral from Mirsid, used as support for doping TiO2, was supplied by CEMACON Company, Romania. This natural mineral was powdered and sieved with a Multilab sieve shaker. The grain size selected to carry out the experiments was between 0.8-1.2 mm with the mass composition of 62.20% SiO2, 11.65% Al2O3, 1.30% Fe2O3, 3.74% CaO, 0.67% MgO, 3.30% K2O, 0.72% Na2O, 0.28% TiO2.

    2.1 Synthesis of functional materials

    The functional materials syntheses are performed in two steps: firstly the undoped and Ag-doped TiO2nanocrystals were obtained by the fast-hydrothermal method [21], and secondly the functional materials based on natural zeolite in sodium form were modified with undoped TiO2and Ag-doped TiO2by solid-state reaction in fast-hydrothermal conditions. For obtaining of functional materials based on undoped and doped TiO2was used the pure anatase form of TiO2. Anatase TiO2exhibits higher photocatalytic activity than rutile TiO2due to its conduction band position which demonstrates stronger reducing power.

    The preparation of the chemically modified natural zeolite presumes two steps to reach acid form (H form) by using 2 mol·L?1HCl solution and then sodium form (Na form) with 2 mol·L?1NaNO3solution for a more efficient ion exchange. Consequently, Na forms of clinoptilolite are expected to remove other cations easily in ion-exchange applications. For the same reason, Na form is most frequently prepared for research in clinoptilolite [11]. Functional materials based on natural zeolite modified with undoped and Ag-doped TiO2(TiO2-zeolite, Ag-TiO2-zeolite) were successfully synthesized by solid-state reaction in fast-hydrothermal conditions, in aqueous solution. The fast-hydrothermal installation consists of a quartz autoclave, with a reasonably thick protective steel jacket submerged in thermo-stated silicon oil bath. Thus, the increasing synthesis temperature inside the autoclave is achieved in only 1-2 min. The premature nucleation is avoided, and all the crystallization takes place in isothermal conditions. Therefore, the transitory processes are almost totally avoided, and also important electrical energy savings are obtained. The method presumes mixing of natural zeolite in Na form with 50 ml distilled water and undoped TiO2or Ag-doped TiO2nanocrystals (2%, by mass) under continuous stirring for 4 h. The obtained solutions were introduced in a quartz autoclave with 50% fullness, for 30 min to 150 °C. After 30 min the autoclave was removed from the oil bath and submerged for 1 h in a water bath for fast cooling, then solution was filtered, the solid product was washed, and dried at 60 °C for 5 h.

    2.2 Characterization methods

    The crystallinity of the prepared samples was measured by X-ray diffraction using PANalytical X’PertPRO MPD Diffractometer with Cu tube. The bond vibration was analyzed by IR (infrared) spectrometry using a Jasco FT/IR-430 spectrometer. Specific surface area, pore volume and pore diameter of the samples were measured by nitrogen adsorption-desorption technique using a Nova 1200e (Quantachrome). The pore volume and pore diameter were estimated by the BJH (Barrett-Joyner-Halenda) method, and the surface area (SBET) was calculated by Brunauer-Emmett-Teller (BET) method. The light absorption properties of the functional materials were studied by UV-VIS diffuse reflectance spectroscopy (DRUV-VIS), performed under ambient conditions using Lambda 950 Perkin Elmer in the wavelength range of 250-600 nm. The blank board was used as the reference. The morphology of the functional materials was determined by Scanning Electron Microscopy (SEM) using an Inspect S PANalytical model and the energy dispersive X-ray analysis detector (EDX).

    2.3 Photocatalytic antibacterial method

    The preparation of the microbial suspensions of Enterococcus faecalis ATCC 29212 EpowerTM was previously reported [22]. Photocatalytic antibacterial method supposes detection of the bactericidal effect of TiO2-zeolite and Ag-TiO2-zeolite against Enterococcus faecalis colonies. Thus, 10 ml of bacterial suspension of Enterococcus faecalis ATCC 29212 was sampled, in which different doses of functional materials (0.05 g and 0.1 g) were added. The samples were illuminated with a 24 W VIS lamp emitting 390-600 nm light and the distance between the VIS lamp and plate was 20 cm. The illumination times were 60, 120 and 180 min. After irradiation, for assessment of antibacterial effect of functional materials and E. Coli bacteria viability, 1 ml from treated samples was sampled and inseminated in the culture medium pelletaesculin-triazo-compound (produced by Scharlau Chemie S.A., Spain). All the cultivated plates were incubated for 24 h at 44 °C and the cell colonies formed were counted manually. All the antibacterial experiments were realized in a microbiological fume hood and repeated three times for more accuracy.

    For evidencing the bactericidal effect of functional materials were followed in two aspects: the irradiation effect against the colonies growth and the effect of natural zeolite (clinoptilolite) against bacterial cultures. In addition, two blank samples were prepared. First blank sample contained only Enterococcus faecalis, without functional materials and the second contained Enterococcus faecalis and natural zeolite (clinoptilolite). In order to study the irradiation effect against the colonies growth, one blank sample was irradiated while the other was kept at dark. Assessment of colony forming units (CFU) growing was evidenced comparatively with the un-irradiated and irradiated blank samples.

    3 RESULTS AND DISCUSSION

    3.1 Functional materials characterization

    Figure 1 described XRD patterns of functional materials based on natural zeolite, TiO2-zeolite and Ag-TiO2-zeolite. The structural and morphological characterization of undoped and Ag-doped TiO2obtained by the fast-hydrothermal method was previously reported [21]. The crystallite size of undoped and Ag-doped TiO2nanocrystals were calculated about 4 nm from XRD spectra and SEM images.

    For comparison, the XRD pattern of the natural zeolite in Na form (Na-zeolite) is also shown in Fig. 1. It is revealed that the natural zeolite used is mostly clinoptilolite (2θ=10°, 22.5°, 30°) [11]. The main peak positions of clinoptilolite are unchanged, indicating that the structure of natural zeolite has a good thermal stabilization, after the fast-hydrothermal treatment. In comparison with the XRD pattern of Na-zeolite, the specific peaks corresponding to anatase TiO2form were evidenced at 2θ=25.3°, 37°, 38.6° both for TiO2-zeolite and Ag-TiO2-zeolite.

    Figure 1 XRD patterns of functional materials◆ clinoptilolite; * anatase TiO2

    DRUV-VIS patterns are examined to determine the absorption edge quantification and absorption wavelength range correlated with band gap energy. Fig. 2 presents an intense absorption maximum at about 250 nm, which can be assigned to isolated titanium with tetrahedral coordination. For the TiO2-zeolite the absorption band intensity is higher in the UV domain, because the anatase form of undoped TiO2with the band gap energy about 3.2 eV adsorbs strongly in this domain [23]. In case of Ag-TiO2-zeolite the absorption edge is slightly shifted to the visible range.

    Figure 2 DRUV-VIS spectra of functional materials

    FT-IR results obtained for the functional materials in comparison with Na-zeolite are shown in Fig. 3. These results confirm the formation of functional materials as evidenced by distinct absorbance bands near 3540 and 3360 cm?1(OH stretching), 1630-1640 cm?1(Lewis sites), 1100 cm?1(asymmetric vibrations of SiOSi and SiOAl), 560 cm?1(TiO2in anatase and five-membered rings) [24]. The presence of doped TiO2into functional materials seems to affect the symmetric stretching modes of water coordinated to the magnesium at the edges of channels.

    Figure 3 FT-IR spectra of Na-zeolite, TiO2-zeolite and Ag-TiO2-zeolite for the wavelength range 500-4000 cm?1

    Table 1 listed the specific surface areas (SBET) and the pore volume (VP) of Na-zeolite, TiO2-zeolite and Ag-TiO2-zeolite functional materials. It can be found that Na-zeolite has smaller values than other functional materials. Ag-doped TiO2has the highest values, due to the contribution of the coating on zeolite surface.

    Table 1 Specific surface area and pore structure of Na-zeolite, TiO2-zeolite and Ag-TiO2-zeolite

    Figure 4 SEM morphology for Na-zeolite (a) and Ag-TiO2-zeolite (b); EDX spectra for elemental analysis of Na-zeolite (c) and Ag-TiO2-zeolite (d)

    The SEM images [Figs. 4 (a) and 4 (b)] present the lamellar texture of clinoptilolite, according to the literature data [25]. The TiO2particles are distributed randomized and form cluster agglomerates on the surface and in site of clinoptilolite channels. At 12000× magnification it is obvious that the TiO2nanocrystals (spherical) are non-uniformly distributed on the zeolite surface, forming porous surface. EDX microprobe provided a semiquantitative elemental analysis of the surface, indicating that Ti and Ag were present on the clinoptilolite surface. Also, the natural zeolite contains the major elements such as Na, Si, Al, Ca, K, Mg as can be seen from the EDX spectra [Figs. 4 (c) and 4 (d)].

    3.2 Antibacterial activity against Enterococcus faecalis species

    CFU value in the blank samples [plate with Enterococcus faecalis and plate with Enterococcus faecalis and natural zeolite (clinoptilolite) un-irradiated/ irradiated] was about 34 colonies. Thus, it was evidenced that only the irradiation did not produce death of the bacterial cells and there are no change of the CFU colonies against the un-irradiated blank samples. Also, the natural zeolite (clinoptilolite) did not present bactericidal effect against the Enterococcus faecalis colonies.

    In Figs. 5 (a) and 5 (b) are presented the bactericidal effect of the TiO2-zeolite against Enterococcus faecalis. Blank sample is based only on the Enterococcus faecalis colonies. It can be observed that for using dose of 0.05 g material the bactericidal efficiency was about 53% after irradiation time of 180 min, and CFU values was 18 colonies [Fig. 5 (b)]. By increasing the material dose to 0.1 g, it was observed that after 60 min the CFU colonies were decreased, and the bactericidal efficiency was about 76% after irradiation time of 180 min.

    Figure 5 Antibacterial activity of TiO2-zeolite against Enterococcus faecalis species (a); Petri plate of TiO2-zeolite (0.05 g) after 60 min of irradiation (b)

    Figure 6 Antibacterial activity of Ag-TiO2-zeolite against Enterococcus faecalis species (a); Petri plate of Ag-TiO2-zeolite (0.05 g) after 60 min of irradiation (b)

    Figures 6 (a) and 6 (b) presents the bactericidal effect of the Ag-TiO2-zeolite against the Enterococcus faecalis colonies. At a material dose of 0.05 g the bacteria viability decreases progressively with the irradiation time, such after 180 min are obtained sterile samples. By increasing the material dose at 0.1 g is sufficient a lower illumination time (120 min) for obtaining sterile plates, the bactericidal efficiency being 100% [Fig. 6 (b)].

    The Ag-TiO2-zeolite have the higher disinfection efficiency than that of TiO2-zeolite due to silver species acting as photogenerated electrons trapping sites prevent the electron-hole pairs recombine rapidly after photo-excitation leading to enhancement of bactericidal effect. Based on the DRUV-VIS spectra it can be observed that the absorption edge of Ag-TiO2-zeolite slightly shifted to the visible range in comparison with TiO2-zeolite. Also, the higher specific surface area of the Ag-TiO2-zeolite (92.55 m2·g?1) should improve its bactericidal activity. This mechanism produces more hydroxyl radicals for disinfection. Moreover, silver itself is a well antibacterial agent.

    Based on the literature data, the mechanisms of Ag-doped TiO2are the interaction of respiratory enzymes damaged by silver or silver oxide and cell membrane damaged by reactive oxygen species (ROS) when cells contact to materials surfaces [26].

    4 CONCLUSIONS

    Functional materials based on natural zeolite (clinoptilolite) and undoped and Ag-doped TiO2nanocrystals were successfully obtained by solid state reaction in fast-hydrothermal conditions. Structural and morphological characterizations of TiO2-zeolite and Ag-TiO2-zeolite materials confirm that natural zeolite has a good thermal stabilization after the fast-hydrothermal treatment, TiO2particles being distributed randomized with cluster agglomerate groups on the surface and in site of clinoptilolite channels. Based on assessment of the antibacterial activity against Enterococcus faecalis it was observed that bactericidal performance is dependent on materials dose and irradiation time. The lowest value of bactericidal performance about 50% was obtained for TiO2-zeolite, and the highest efficiency, sterile plates, was obtained for Ag-TiO2-zeolite after 180 min of irradiation.

    REFERENCES

    1 Cabelli, V., Dufour, A.P., McCabe, L.J., Levin, M.A., “Swimming-associated gastroenteritis and water quality”, Am. J. Epidemiol., 115, 606-616 (1982).

    2 Dufour, A.P., “Health effects criteria for fresh recreational waters”, Office of Research and Development, US Environmental ProtectionAgency, EPA-600/1-84-004, Washington DC (1984).

    3 Dufour, A.P., Ballantine, P., “Ambient water quality criteria for bacteria. Bacteriological ambient water quality criteria for marine and freshwater recreational waters”, Office of Water Regulations and Standards, Criteria and Standards Division, US Environmental Protection Agency, EPA 440/5-84-002, Washington DC (1986).

    4 Malato, S., Fernández-Ibá?ez, P., Maldonado, M.I., Blanco, J., Gernjak, W., “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends”, Cataly. Today, 147, 1-59 (2009).

    5 Cao, Y.A., Yang, W.S., Zhang, W.F., Liu, G.Z., Yue, P.L., “Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition”, New. J. Chem., 28, 218-222 (2004).

    6 Shon, H.K., Phuntsho, S., Vigneswaran, S., “Effect of photocatalysis on the membrane hybrid system for wastewater treatment”, Desalination, 225, 235-248 (2008).

    7 Karunakaran, C., Abiramasundari, G., Gomathisankar, P., Manikandan, G., Anandi, V., “Preparation and characterization of ZnO-TiO2nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light”, Mater. Res. Bull., 46, 1586-1592 (2011).

    8 Li, F., Sun, S., Jiang, Y., Xia, M., Sun, M., Xue, B., “Photodegradation of an azo dye using immobilized nanoparticles of TiO2supported by natural porous mineral”, J. Hazard. Mater., 152, 1037-1044 (2008).

    9 Yang, Q., Liao, Y., Mao, L., “Kinetics of photocatalytic degradation of gaseous organic compounds on modified TiO2/AC composite photocatalyst”, Chin. J. Chem. Eng., 20, 572-576 (2012).

    10 Panpa, W., Sujaridworakun, P., Jinawath, S., “Photocatalytic activity of TiO2/ZSM-5 composites in the presence ofion”, Appl. Catal. B Environ., 80, 271-276 (2008).

    11 Lazau, C., Ratiu, C., Orha, C., Pode, R., Manea, F., “Photocatalytic activity of undoped and Ag-doped TiO2-supported zeolite for humic acid degradation and mineralization”, Mater. Res. Bull., 46, 1916-1921 (2011).

    12 Fujishima, A., Rao, T.N., Tryk, A.D., “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C Photochem. Rev., 1, 1-21 (2000).

    13 Torimoto, T., Okawa, Y., Takeda, N., Yoneyama, H., “Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane”, J. Photochem. Photobiol. A Chem., 103, 153-157 (1997).

    14 Shankar, M.V., Anandan, S., Venkatachalam, N., Arabindoo, B., Murugesan, V., “Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2”, Chemosphere, 63, 1014-102 (2006).

    15 Yoon, S.J., Lee, Y.H., Cho, W.J., Koh, I.O., Yoon, M., “Synthesis of TiO2-entrapped EFAL-removed Y-zeolites: Novel photocatalyst for decomposition of 2-methylisoborneol”, Catal. Commun., 8, 1851-1856 (2007).

    16 Sato, T., Koizumi, Y., Taya, M., “Photocatalytic deactivation of airborne microbial cells on TiO2-loaded plate”, Biochem. Eng. J., 14, 149-152 (2003).

    17 Rincon, A.G., Pulgarin, C., Adler, N., Peringer, P., “Interaction between E. coli inactivation and DBP-precursors-dihydroxybenzene isomers-in the photocatalytic process of drinking-water disinfection with TiO2”, J. Photochem. Photobiol. A, 39, 233-241 (2011).

    18 Madrid, P.A., Morales, R.S., Cordoba-Fierro, L., Nevarez-Moorillo, G.V., Miki-Yoshida, M., Orrantia-Borunda, E., Solis, F.J., “TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2thin films”, J. Photochem. Photobiol. B Biol., 70, 45-50 (2003).

    19 Durgakumaria, V., Subrahmanyama, M., Subba Raoa, K.V., Ratnamalaa, A., Noorjahana, M., Tanakab, K., “An easy and efficient use of TiO2supported HZSM-5 and TiO2+HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol”, Appl. Catal. A Gen., 234, 155-165 (2002).

    20 Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., Hermann, J.M., “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania”, Appl. Catal. B Environ., 39, 75-90 (2002).

    21 Lazau, C., Sfirloaga, P., Orha, C., Ratiu, C., Grozescu, I., “Development of a novel fast-hydrothermal method for synthesis of Ag-doped TiO2nanocrystals”, Mater. Lett., 65, 337-339 (2011).

    22 Dabici, A., Sfirloaga, P., Lazau, C., Bandas (Ratiu), C., Misca, C., Vaszilcsin, N., “Effect of natural zeolite functionalized with TiO2for enterococcus faecalis removal from water”, Digest J. Nanomater. Biostructures, 6, 1325-1332 (2011).

    23 Natori, H., Kobayashi, K., Takahashi, M., “Preparation and photocatalytic property of phosphorus-doped TiO2particles”, J. Oleo Sci., 58, 389-394 (2009).

    24 Wu, L.P., Li, X.J., Yuan, Z.H., Chen, Y., “The fabrication of TiO2-supported zeolite with core/shell heterostructure for ethanol dehydration to ethylene”, Catal. Commun., 11, 67-70 (2009).

    25 Li, F., Jiang, Y., Yu, L., Yang, Z., Ho, T., Sun, S., “Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2”, Appl. Surf. Sci., 252, 1410-1416 (2005).

    26 Ubonchonlakate, K., Sikong, L., Saito, F., “Photocatalytic disinfection of P. aeruginosa bacterial Ag-doped TiO2film”, Procedia Eng., 32, 656-662 (2012).

    10.1016/S1004-9541(14)60031-8

    2012-10-04, accepted 2013-06-28.

    * Supported by the Sectoral Operational Programme Human Resources Development (SOP HRD) Financed from the European Social Fund and by the Romanian Government under the Contract Number POSDRU/89/1.5/S/63700.

    ** To whom correspondence should be addressed. E-mail: carmen.lazau@gmail.com

    男女之事视频高清在线观看| 极品教师在线免费播放| av在线播放免费不卡| 在线观看一区二区三区| 日韩欧美免费精品| 亚洲成a人片在线一区二区| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| avwww免费| 国产亚洲精品久久久久5区| 日本wwww免费看| 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 久久天堂一区二区三区四区| 在线观看免费日韩欧美大片| av网站在线播放免费| 国产成+人综合+亚洲专区| 丝袜在线中文字幕| 美女高潮到喷水免费观看| 18美女黄网站色大片免费观看| 一级片'在线观看视频| 老司机深夜福利视频在线观看| 亚洲av成人不卡在线观看播放网| 亚洲狠狠婷婷综合久久图片| 日本vs欧美在线观看视频| 脱女人内裤的视频| 国产一区二区三区视频了| 亚洲激情在线av| 国产精品 国内视频| 色综合欧美亚洲国产小说| av电影中文网址| 久久久久亚洲av毛片大全| 国产三级黄色录像| 国产国语露脸激情在线看| 国产99久久九九免费精品| 亚洲精品在线美女| 长腿黑丝高跟| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 91成年电影在线观看| 在线观看免费午夜福利视频| 99精品在免费线老司机午夜| 91字幕亚洲| 国产一区二区激情短视频| 一级作爱视频免费观看| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| 五月开心婷婷网| 免费在线观看黄色视频的| 欧美最黄视频在线播放免费 | 91成年电影在线观看| 18禁黄网站禁片午夜丰满| 中文字幕av电影在线播放| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| 中出人妻视频一区二区| 成人永久免费在线观看视频| 免费在线观看影片大全网站| 国产成人免费无遮挡视频| 久久99一区二区三区| 男女下面插进去视频免费观看| 欧美乱妇无乱码| 欧美丝袜亚洲另类 | 午夜福利欧美成人| 人人妻人人爽人人添夜夜欢视频| av在线天堂中文字幕 | 国产在线精品亚洲第一网站| 在线观看免费视频日本深夜| 欧美日本中文国产一区发布| 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 久久中文字幕人妻熟女| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 国产主播在线观看一区二区| 欧美黄色淫秽网站| 久久久久国产精品人妻aⅴ院| ponron亚洲| 日韩欧美国产一区二区入口| 亚洲精品久久午夜乱码| 国产成人免费无遮挡视频| 妹子高潮喷水视频| 午夜福利,免费看| 免费看十八禁软件| 日本vs欧美在线观看视频| 亚洲精品久久午夜乱码| 色哟哟哟哟哟哟| 久久中文看片网| 亚洲国产精品一区二区三区在线| 国产97色在线日韩免费| av天堂久久9| 久久久久国产精品人妻aⅴ院| 99久久人妻综合| 久久天堂一区二区三区四区| 国产成人精品无人区| 97超级碰碰碰精品色视频在线观看| 两个人看的免费小视频| 国产精品1区2区在线观看.| 精品人妻1区二区| 十八禁网站免费在线| av网站免费在线观看视频| 国产精品美女特级片免费视频播放器 | 啦啦啦在线免费观看视频4| 国产免费av片在线观看野外av| 日韩精品免费视频一区二区三区| 国产三级黄色录像| 男人的好看免费观看在线视频 | 麻豆一二三区av精品| 不卡av一区二区三区| 午夜两性在线视频| 涩涩av久久男人的天堂| 十八禁网站免费在线| 91国产中文字幕| 久久伊人香网站| 国产精品乱码一区二三区的特点 | 久久精品亚洲熟妇少妇任你| 久热爱精品视频在线9| 女同久久另类99精品国产91| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| 久久99一区二区三区| bbb黄色大片| 欧美久久黑人一区二区| 美女国产高潮福利片在线看| 99久久久亚洲精品蜜臀av| 国产野战对白在线观看| 免费在线观看完整版高清| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区91| 女人被狂操c到高潮| 看片在线看免费视频| 国产高清视频在线播放一区| 欧美激情 高清一区二区三区| 琪琪午夜伦伦电影理论片6080| 香蕉丝袜av| 中文欧美无线码| 精品久久蜜臀av无| 午夜91福利影院| 亚洲精品成人av观看孕妇| 色在线成人网| 亚洲精品粉嫩美女一区| 桃红色精品国产亚洲av| 欧美成人免费av一区二区三区| 国产99久久九九免费精品| 国产99白浆流出| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 99久久99久久久精品蜜桃| 99re在线观看精品视频| 国产精品偷伦视频观看了| 国产1区2区3区精品| 村上凉子中文字幕在线| 高清毛片免费观看视频网站 | 一a级毛片在线观看| 午夜精品在线福利| 在线十欧美十亚洲十日本专区| av视频免费观看在线观看| 国产精品成人在线| 国产免费男女视频| 一二三四社区在线视频社区8| 精品久久久久久电影网| 中文亚洲av片在线观看爽| 亚洲中文av在线| 少妇的丰满在线观看| 女同久久另类99精品国产91| 国产亚洲精品久久久久5区| 亚洲精品国产色婷婷电影| 18禁观看日本| 中国美女看黄片| 窝窝影院91人妻| 国产在线观看jvid| 在线观看免费午夜福利视频| 久久久久国产精品人妻aⅴ院| 黄片小视频在线播放| 午夜老司机福利片| 一区二区三区激情视频| 久久精品影院6| 成人手机av| 精品卡一卡二卡四卡免费| 丝袜在线中文字幕| 叶爱在线成人免费视频播放| 国产精品一区二区在线不卡| 久久国产乱子伦精品免费另类| 视频在线观看一区二区三区| 欧美乱色亚洲激情| 亚洲av成人av| 国产精品久久电影中文字幕| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 国产精品免费视频内射| 欧美激情高清一区二区三区| 9色porny在线观看| 搡老岳熟女国产| 久久午夜亚洲精品久久| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久精品91蜜桃| 国产精品自产拍在线观看55亚洲| 高清av免费在线| 成人特级黄色片久久久久久久| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 国产在线观看jvid| 中文字幕人妻熟女乱码| 亚洲精品成人av观看孕妇| 免费高清在线观看日韩| 91大片在线观看| 日本五十路高清| 在线观看午夜福利视频| 午夜91福利影院| 1024香蕉在线观看| av网站在线播放免费| 纯流量卡能插随身wifi吗| 99国产精品一区二区蜜桃av| 黑人操中国人逼视频| 1024香蕉在线观看| av网站在线播放免费| 老司机靠b影院| 亚洲av熟女| 国产99久久九九免费精品| 精品一区二区三卡| 99久久精品国产亚洲精品| 中文亚洲av片在线观看爽| 香蕉丝袜av| 我的亚洲天堂| 他把我摸到了高潮在线观看| 国产97色在线日韩免费| 久久人人97超碰香蕉20202| 亚洲精华国产精华精| 中文字幕高清在线视频| 精品国产美女av久久久久小说| 老司机午夜十八禁免费视频| 不卡一级毛片| 1024视频免费在线观看| 亚洲av片天天在线观看| 日韩三级视频一区二区三区| 成人亚洲精品av一区二区 | 97超级碰碰碰精品色视频在线观看| 在线观看66精品国产| 黑丝袜美女国产一区| 丰满人妻熟妇乱又伦精品不卡| 三上悠亚av全集在线观看| 久久久久久久久久久久大奶| 国产精品乱码一区二三区的特点 | 国产极品粉嫩免费观看在线| 激情视频va一区二区三区| 日本a在线网址| 国产精品电影一区二区三区| 99精品欧美一区二区三区四区| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 女警被强在线播放| 老司机靠b影院| 中亚洲国语对白在线视频| 久久精品国产综合久久久| 亚洲av美国av| 男女高潮啪啪啪动态图| 搡老岳熟女国产| 国产成人av教育| 女同久久另类99精品国产91| 国产精品久久久久久人妻精品电影| 国产亚洲精品综合一区在线观看 | 亚洲在线自拍视频| 精品一区二区三卡| 最新在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 免费在线观看黄色视频的| 一级黄色大片毛片| 国产精品 国内视频| 日韩免费高清中文字幕av| 黄色视频不卡| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月| x7x7x7水蜜桃| 日韩精品青青久久久久久| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女 | 操美女的视频在线观看| 波多野结衣高清无吗| 午夜免费激情av| 欧美激情久久久久久爽电影 | 色婷婷av一区二区三区视频| 欧美一区二区精品小视频在线| 国产成人影院久久av| 一本大道久久a久久精品| 久久久久久久午夜电影 | 91成年电影在线观看| 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| 搡老乐熟女国产| 国产精品香港三级国产av潘金莲| 91麻豆av在线| 亚洲国产精品999在线| 国产国语露脸激情在线看| 热re99久久精品国产66热6| 一个人观看的视频www高清免费观看 | 极品人妻少妇av视频| 亚洲成人免费电影在线观看| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 午夜亚洲福利在线播放| 午夜福利影视在线免费观看| 丝袜美腿诱惑在线| 欧美日韩国产mv在线观看视频| 国产精品九九99| 9色porny在线观看| 美女高潮喷水抽搐中文字幕| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 国产aⅴ精品一区二区三区波| 精品一品国产午夜福利视频| www.精华液| 国产真人三级小视频在线观看| aaaaa片日本免费| 99久久久亚洲精品蜜臀av| 国产精品成人在线| 不卡一级毛片| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频 | 国产国语露脸激情在线看| 亚洲色图综合在线观看| 日韩成人在线观看一区二区三区| 精品国产美女av久久久久小说| 操美女的视频在线观看| 亚洲专区国产一区二区| 免费在线观看完整版高清| 老司机午夜福利在线观看视频| 欧美国产精品va在线观看不卡| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 久久精品亚洲精品国产色婷小说| 午夜福利,免费看| 可以免费在线观看a视频的电影网站| 久久久久久免费高清国产稀缺| 少妇裸体淫交视频免费看高清 | 亚洲精品国产色婷婷电影| 天堂俺去俺来也www色官网| www.999成人在线观看| 婷婷丁香在线五月| 变态另类成人亚洲欧美熟女 | 精品一区二区三区四区五区乱码| 99久久人妻综合| 热99re8久久精品国产| 欧美一区二区精品小视频在线| 99在线视频只有这里精品首页| 999精品在线视频| 久久性视频一级片| 妹子高潮喷水视频| 欧美成狂野欧美在线观看| 久久精品91蜜桃| 母亲3免费完整高清在线观看| 不卡av一区二区三区| 国产亚洲精品久久久久5区| 一本综合久久免费| 最近最新中文字幕大全免费视频| 757午夜福利合集在线观看| 亚洲精品中文字幕一二三四区| 午夜福利影视在线免费观看| 一夜夜www| 高清欧美精品videossex| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| 欧美日韩国产mv在线观看视频| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 黑丝袜美女国产一区| 91九色精品人成在线观看| 叶爱在线成人免费视频播放| www日本在线高清视频| 一夜夜www| 99国产精品一区二区三区| 午夜亚洲福利在线播放| 手机成人av网站| 一级片免费观看大全| 精品福利观看| 在线观看午夜福利视频| 亚洲人成网站在线播放欧美日韩| 亚洲五月婷婷丁香| 欧美一区二区精品小视频在线| 免费在线观看黄色视频的| 嫩草影视91久久| 国产麻豆69| 亚洲av成人不卡在线观看播放网| 女人被狂操c到高潮| 搡老岳熟女国产| 高清av免费在线| 午夜福利一区二区在线看| 高清在线国产一区| 免费在线观看完整版高清| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久午夜电影 | 亚洲五月天丁香| 少妇 在线观看| 午夜免费激情av| 999久久久精品免费观看国产| 欧美乱妇无乱码| 国产高清视频在线播放一区| aaaaa片日本免费| 波多野结衣av一区二区av| 中出人妻视频一区二区| 男女做爰动态图高潮gif福利片 | 国产亚洲精品一区二区www| 国产亚洲精品久久久久5区| 久久久久国产精品人妻aⅴ院| 电影成人av| 在线观看66精品国产| 桃红色精品国产亚洲av| 午夜精品国产一区二区电影| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 午夜久久久在线观看| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 女性生殖器流出的白浆| 咕卡用的链子| 交换朋友夫妻互换小说| 一级a爱视频在线免费观看| 午夜免费激情av| 悠悠久久av| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| 精品欧美一区二区三区在线| 精品国产美女av久久久久小说| 精品久久久久久久久久免费视频 | 91老司机精品| 亚洲精品粉嫩美女一区| 一本大道久久a久久精品| cao死你这个sao货| 热re99久久精品国产66热6| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 精品福利永久在线观看| 777久久人妻少妇嫩草av网站| 嫁个100分男人电影在线观看| 丝袜在线中文字幕| 桃色一区二区三区在线观看| 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 色综合站精品国产| 热99国产精品久久久久久7| av超薄肉色丝袜交足视频| 成人特级黄色片久久久久久久| 中文字幕人妻熟女乱码| 欧美av亚洲av综合av国产av| 久久久久精品国产欧美久久久| 99精品欧美一区二区三区四区| 在线观看免费高清a一片| 香蕉丝袜av| 777久久人妻少妇嫩草av网站| 大香蕉久久成人网| 人人妻,人人澡人人爽秒播| 国产成人欧美在线观看| 久久精品国产清高在天天线| 国产1区2区3区精品| 国产伦人伦偷精品视频| 国产精品99久久99久久久不卡| 久久午夜亚洲精品久久| 男女午夜视频在线观看| 高清在线国产一区| 五月开心婷婷网| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 欧美一区二区精品小视频在线| 夜夜夜夜夜久久久久| avwww免费| 淫妇啪啪啪对白视频| 淫秽高清视频在线观看| 欧美日韩精品网址| 欧美日韩视频精品一区| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产一区二区精华液| 国产xxxxx性猛交| 首页视频小说图片口味搜索| 又黄又粗又硬又大视频| 91精品国产国语对白视频| 不卡av一区二区三区| 母亲3免费完整高清在线观看| 老汉色∧v一级毛片| 两人在一起打扑克的视频| 日韩欧美一区视频在线观看| 日日摸夜夜添夜夜添小说| 日本免费a在线| 亚洲欧美日韩另类电影网站| 三级毛片av免费| 一a级毛片在线观看| 国产精品一区二区免费欧美| 午夜福利免费观看在线| av免费在线观看网站| 欧美日韩视频精品一区| 国产成人系列免费观看| 久久国产精品人妻蜜桃| 久久中文字幕人妻熟女| 午夜两性在线视频| 日本vs欧美在线观看视频| 午夜福利一区二区在线看| 久久人妻av系列| 中文字幕人妻丝袜一区二区| 黄色怎么调成土黄色| 国产成人精品久久二区二区免费| 免费少妇av软件| 精品熟女少妇八av免费久了| 久久国产精品影院| 99国产精品一区二区蜜桃av| 好看av亚洲va欧美ⅴa在| 亚洲人成77777在线视频| 在线观看免费高清a一片| 91成年电影在线观看| 久久久久久久久中文| 亚洲狠狠婷婷综合久久图片| 久久精品国产综合久久久| 99精国产麻豆久久婷婷| 搡老熟女国产l中国老女人| 大陆偷拍与自拍| 搡老熟女国产l中国老女人| 天天添夜夜摸| 国产免费男女视频| 狠狠狠狠99中文字幕| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 色老头精品视频在线观看| 日韩av在线大香蕉| 水蜜桃什么品种好| 一边摸一边抽搐一进一小说| 成人特级黄色片久久久久久久| 国产色视频综合| 亚洲一区二区三区色噜噜 | 极品人妻少妇av视频| 色在线成人网| 久久人人爽av亚洲精品天堂| 久久人妻福利社区极品人妻图片| 亚洲五月色婷婷综合| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 久久久久国内视频| 国产精品久久久久成人av| 日韩欧美三级三区| 成年女人毛片免费观看观看9| 不卡一级毛片| x7x7x7水蜜桃| 男女下面进入的视频免费午夜 | 搡老岳熟女国产| 级片在线观看| 午夜福利,免费看| 人人妻人人添人人爽欧美一区卜| 国产精品爽爽va在线观看网站 | 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看| 黄片小视频在线播放| av国产精品久久久久影院| 色综合站精品国产| 咕卡用的链子| 日韩欧美免费精品| 老司机亚洲免费影院| 亚洲国产精品一区二区三区在线| 中文亚洲av片在线观看爽| 国产国语露脸激情在线看| 韩国精品一区二区三区| 老司机午夜十八禁免费视频| avwww免费| 欧美大码av| 午夜福利免费观看在线| a级毛片黄视频| 中文欧美无线码| 亚洲精品一区av在线观看| www国产在线视频色| 精品电影一区二区在线| 精品午夜福利视频在线观看一区| 亚洲第一av免费看| 久久影院123| 色综合站精品国产| 日韩国内少妇激情av| 99riav亚洲国产免费| 久久久久久人人人人人| 日本撒尿小便嘘嘘汇集6| 亚洲第一av免费看| 国产高清国产精品国产三级| 久久久久久大精品| 欧美国产精品va在线观看不卡| 亚洲人成电影观看| 国产精品影院久久| 色尼玛亚洲综合影院| 国产三级黄色录像| 亚洲午夜精品一区,二区,三区| 成人黄色视频免费在线看| 亚洲成人精品中文字幕电影 | 亚洲 欧美 日韩 在线 免费| 色婷婷av一区二区三区视频| 日韩 欧美 亚洲 中文字幕| 亚洲情色 制服丝袜| 午夜福利在线免费观看网站| 日韩精品中文字幕看吧| 制服诱惑二区| 韩国精品一区二区三区| 多毛熟女@视频| 亚洲中文av在线| 欧美不卡视频在线免费观看 | 亚洲色图综合在线观看| 狠狠狠狠99中文字幕| 麻豆久久精品国产亚洲av | 亚洲精品久久成人aⅴ小说| 窝窝影院91人妻| 亚洲黑人精品在线| 欧美日韩亚洲高清精品| 久久久国产一区二区| 欧美日本中文国产一区发布| 亚洲国产精品合色在线| 一级作爱视频免费观看| 搡老岳熟女国产|