• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Group Contribution Method for the Correlation of Static Dielectric Constant of Ionic Liquids*

    2014-07-18 11:56:06ZHOUYing周穎LINZhen林真WUKejun吳可君XUGuohua徐國華andHEChaohong何潮洪
    關(guān)鍵詞:周穎徐國

    ZHOU Ying (周穎), LIN Zhen (林真), WU Kejun (吳可君), XU Guohua (徐國華) and HE Chaohong (何潮洪)**

    State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    A Group Contribution Method for the Correlation of Static Dielectric Constant of Ionic Liquids*

    ZHOU Ying (周穎), LIN Zhen (林真), WU Kejun (吳可君), XU Guohua (徐國華) and HE Chaohong (何潮洪)**

    State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro reactors and heat exchangers. A group contribution method based on 27 groups is developed for the correlation of static dielectric constant of ionic liquids in this paper. The ionic liquids considered include imidazolium, pyridinium, pyrrolidinium, alkylammonium, alkylsulfonium, morpholinium and piperidinium cations and various anions. The data collected cover the temperature ranges of 278.15-343.15 K and static dielectric constant ranges of 9.4-85.6. The results of the method show a satisfactory agreement with the literature data with an average absolute relative deviation of 7.41%, which is generally of the same order of the experimental data accuracy. The method proposed in this paper provides a simple but reliable approach for the prediction of static dielectric constant of ionic liquids at different temperatures.

    ionic liquid, static dielectric constant, group contribution method

    1 INTRODUCTION

    Ionic liquids are molten salts that are liquid at or near room temperature with specific organic cations and organic or inorganic anions [1]. They have received an increasing amount of interest due to their unique characteristics, i.e., negligible vapor pressure at normal temperature and pressure, wide liquidus ranges, tunable physicochemical properties and high solvating capacity for both organic and inorganic compounds. Ionic liquids have emerged as a promising class of solvents for a wide variety of applications including organic synthesis, extraction separation, biocatalysis, material preparation, electrochemistry as well as heat transfer and heat storage fluid, and so on [2-7]. Most efforts in ionic liquids have been focused on the investigation of their potential applications, the preparation of novel ionic liquids, and measurement of basic physical properties of ionic liquids, while the characterization of the structure-property relationship of ionic liquids that is equally important has been lagged behind. The experimental data available are mainly for melting point, density, viscosity, electrical conductivity and surface tension, while few efforts have been paid to the determination of polarity of ionic liquids, especially the static dielectric constant of ionic liquids.

    Static dielectric constant represents the polarity and solvating capability of liquids, and it is an important input parameter in many solvation simulation processes [8]. Moreover, it is crucial in the study of flow and convective heat transfer of fluids with ions in micro devices, because when fluids with ions flow in micro devices, such as micro pumps, micro reactors and micro heat exchangers, the electro-viscous effect exists, which will greatly influence the flow characteristics and heat transfer of fluids [9-11]. The flows of incompressible Newtonian liquids incorporating electro-viscous effect through a circular tube are governed by the Poisson equation relating the electrical potential to the charge distribution and the Navier-Stokes equation with an electrical body force term, as described by Eqs. (1) and. (2) in dimensionless form [11]:

    ε and ε0are the static dielectric constant of the fluid and vacuum permittivity, respectively. t, K, B, ρ, η, kb, e, z, R, T, n0, P, Re, V, U, n+and n?are the time, dimensionless electro-kinetic parameter, dimensionless physical property parameter, density, viscosity, the Boltzmann constant, elementary charge, valence of the ion, radius of the tube, temperature, bulk ionic number per unit volume, pressure, Reynolds number, velocity, electrical potential, the number of cations per unit volume and the number of anions per unit volume, respectively. The last term in the right side of Eq. (2) represents an electrical body force due to electro-viscouseffect. From the above equations, it is obvious that the static dielectric constant of fluid is a key parameter in the calculation of additional drag caused by this electro-viscous effect. Since ionic liquids are entirely composed of ions, the electro-viscous effect may exist when ionic liquid flows in micro channels, and the above three equations may still hold for the flow of ionic liquid in micro channels. Therefore, it is a must to get the static dielectric constant of ionic liquid to study the flow characteristics and convective heat transfer of ionic liquid in micro channels, which will be important for the design and optimization of the above mentioned micro chemical equipment. Despite of its significant importance in chemical industry, the static dielectric constant of many ionic liquids is not known to date. Conventional capacitance method fails for static dielectric constant measurement of ionic liquids due to the short-circuited sample cell by the electrical conductance of ionic liquids. The main method for ionic liquid static dielectric constant measurement is microwave dielectric relaxation spectroscopy (DRS) [12], which demands expensive device and sophisticated data processing. Furthermore, there are approximately 1018combinations of ions that could lead to useful ionic liquids [13], and it is impossible to measure the static dielectric constant of all ionic liquids experimentally. Development of simple and rapid methods for the estimation of the static dielectric constant of ionic liquids is important, which will be helpful for the design of task-specific ionic liquids and speed up their industrial applications.

    Several studies have been reported for the estimation of the static dielectric constant of ionic liquids. By combining volume-based thermodynamics (VBT) and quantum chemical calculations, Krossing et al. [14] have proposed a method for the estimation of static dielectric constant (ε) of ionic liquids. The prediction mainly depends on the Gibbs solvation energy and the molecular volume of the ions. This method requires the knowledge of quantum chemical calculations and it assumes that Gibbs solvation energy is independent of temperature, which is not true for most liquids, and reduces the accuracy of the method. Ludwig et al. [15] have attempted to predict ε by Fourier transform infrared spectroscopy (FTIR) based on the association of water molecules in ionic liquids and makes use of shifts in the stretching frequencies of water molecules. Ludwig’s method is limited to the ionic liquids that do not hydrolyze upon contact with water and also limited by the assumption that ionic liquid solutions are homogeneous fluid. Studies have indicated that many ionic liquids are nano-structured materials and will segregate into polar and nonpolar regions with the addition of water [16-18]. Singh et al. [19] predicted ε by means of the ratio of internal pressure and cohesive energy density. This method shows reasonable accuracy for ionic liquids with anions Cl?, [BF4]?, [PF6]?, [NTf2]?and [CF3SO3]?, while ionic liquids having anions alkylsulfate tend to have a large deviation up to 60%. Furthermore, some physical properties which are not easy to obtain, such as heat of vaporization, are required for the determination of static dielectric constant in Singh’s method, which restricts its applications.

    In this paper, a simple correlation method for the correlation of the static dielectric constant of ionic liquids with a group contribution method based on 27 groups is proposed. The method developed in this work overcomes the limitations of the previously existing methods and it has a better correlation accuracy and wider application ranges for the prediction of the static dielectric constant of ionic liquids.

    2 MODEL DEVELOPMENT

    Static dielectric constant is defined as the zero frequency limit of the complex permittivity in the absence of ionic conductivity, and it reflects the contributions from molecular polarization (ionic polarization and electronic polarization) and the orientation polarization caused by the permanent dipole moment of the molecule [20]. A general relationship between the static dielectric constant ε and the microscopic properties, such as molecular polarizability α, is given by B?ttcher theory [21]:

    NAis Avogadro’s number, μ is permanent dipole moment, M is the molecular mass and αsis the sum of all forms of molecular polarizability which represents the deformability of the molecule and ions in an external electrical field, and it is made up of electronic polarizability and ionic polarizability. Further, f (a) is the static reaction field factor that depends on the cavity radius, a, and it is expressed as f (a)=2(ε?1)/[a3(2ε+1)]. The first and second term in the parenthesis in the right side of Eq. (4) represent the contribution of molecular polarization and the orientation polarization caused by the permanent dipole moment of the molecule to static dielectric constant, respectively.

    Ionic liquids are highly structured and their microscopic behavior is dominated by strong, long-ranged inter-ion Coulomb interactions [22]. The study of Izgorodina’s group [20] has indicated that ionic polarization contributes significantly to the static dielectric constant of ionic liquids, and they also pointed out that the static dielectric constant of ionic liquids may not be mainly influenced by the size of the permanent dipole moment, indicating that the contribution of orientation polarization caused by the permanent dipole moment of the ions to static dielectric constant of ionic liquids may not be significant. Therefore, for ionic liquids, it might be reasonable for us to assume that the second term in the parenthesis in the right side of Eq. (4), which reflects the contribution of orientation polarization caused by the permanent dipole moment to static dielectric constant, can be neglected. Using the Onsager approximation [21], 4πNAρa(bǔ)3/(3M)=1, for the cavity radius and neglecting the contribution oforientation polarization, Eq. (4) can be simplified to Eq. (5), which has the same form as the Clausius-Mossotti equation [21]:

    In conventional organic liquids, electronic polarizability is the only form of molecular polarizability, while both electronic polarizability and ionic polarizability predominate in ionic compounds, such as sodium chloride. Ionic liquids are entirely composed of ions, and the molecular polarizability is made up of electronic polarizability and ionic polarizability. At high (optical) frequencies, the electronic polarization is the only polarization that survives [20], hence, it is the only contribution to the dielectric constant at these frequencies. At optical frequencies, Eq. (5) becomes the Lorentz-Lorentz equation, in which the dielectric constant ε is equal to the square of the molar refractivity (n2), and αsequals to electronic polarizability αe. At zero frequency, both electronic polarization and ionic polarization survive [20], therefore the Lorentz-Lorentz equation is not applicable for the calculation of the zero frequency static dielectric constant of ionic liquids due to the contribution of ionic polarization.

    Eq. (5) can be rewritten as Eq. (6):

    where A=4πNAα/3, a parameter that is related to the structure of the molecule and reflects the contributions of electronic polarization and ionic polarization to the static dielectric constant of ionic liquids. We tried to obtain the value of A by a group contribution method according to Eq. (7):

    The group division principle is identical to that of Valderrama’s [23, 24] article for the prediction of critical properties of ionic liquids. The values of the 27 groups used in this paper are summarized in Table 1. Different from the big group division method adopted by Gardas’s group [25, 26] for the prediction of thermophysical and transport properties of ionic liquids, both the cation and anion are divided into smaller groups in this paper, which enables our model to be applicable to more kinds of ionic liquids.

    The following ionic liquids were considered in this paper: imidazolium, pyridinium, pyrrolidinium, alkylammonium, alkylsulfonium, morpholinium and piperidinium cations with tetrafluoroborate ([BF4]?), hexafluorophosphate ([PF6]?), bis(trifluoromethanesulfonyl) amide ([NTf2]?), trifluoromethanesulfonate ([CF3SO3]?), ethylsulfate ([EtSO4]?), butylsulfate ([BuSO4]?), dimethyl phosphate ([Me2PO4]?), diethyl phosphate ([Et2PO4]?), dicyanamide ([DCA]?), nitrate ([NO3]?), formate ([HCOO]?), hydrogensulfate ([HSO4]?), acetate ([Ac]?), lactate ([Lac]?) as well as tetra(hexafluoroisopropoxy)aluminate ([Al(hfip)4]?) anions. 128 data points for 58 ionic liquids available in literature [8, 12, 27-37] covering temperature ranges of 278.15-343.15 K were used in the correlation. The optimum values for group contribution parameters Aiin Eq. (7) are obtained by minimizing the objective function f in Eq. (8).

    The relative deviation (rRD) and average absolute relative deviation (rAARD) are defined as:

    3 RESULTS AND DISCUSSION

    All the static dielectric constant data were taken from the published literature [8, 12, 27-37]. Most density data covered in this paper were taken from experimental values in the published literature [34, 38-63], while for the substances of which experimental density data were not available, the density data used were calculated according to the group contribution method of Ye’s group [64] and Krossing’s group [65].

    Huang’s study [36] has indicated that static dielectric constant is rather insensitive to the water content, and the experimental static dielectric constant data currently available is quite limited. The rejection of some experimental data is limited in the development of the proposed correlation method. Therefore, all experimental static dielectric constant data points available in literature is employed in this study. Taking all the available data points into Eqs. (6) and (7), the values of parameters Aiare obtained, as shown in Table 1. During the correlation, some data, for example the static dielectric constants of [C2mim]BF4[8, 35] and [C4mim]BF4[8, 31, 35] are excluded since the data given in these literature are later revised to new values [12, 27] by the authors with the adoption of the symmetrical Cole-Cole (C-C) model.

    The uncertainty in the experimental determination of the static dielectric constant of ionic liquid is typically of the order of 0.3-1.5 [8, 12, 27?34], which means the experimental accuracy of ε is about 5%. By the correlation of Eq. (6) using the objective function described in Eq. (8), an average absolute relative deviation of 7.41% is obtained as shown in Table A1 in Appendix, which is generally of the same order of the experimental data accuracy.

    Table 1 Group contribution parameters Aiin Eq. (7)

    Figure 1 Linear relationship between experimental and correlated static dielectric constants with the method developed in this paper

    For 128 data points of 58 ionic liquids available in literature, the maximum relative deviation of 37.47% is observed for [C2mim][Al(hfip)4] at 343.15 K. Among these data points, 14.9% of the estimated static dielectric constants are within relative deviations of 10%-20%, 20.3% within 5%-10%, 53.9% within 0-5%, and only 10.9% of the estimated static dielectric constants have relative deviations larger than 20%. Moreover, about 74.2% of the data present relative deviations smaller than 10%. As most of the experimental static dielectric constants lie in the range of 9-20, Fig. 1 (a) displaying all the data points employed in this study and Fig. 1 (b) presenting the data points with experimental static dielectric constants less than 20 are used to make a comparison between the correlated static dielectric constants with the method developed by us and experimental values. As observed in Fig. 1 and Table A1 in Appendix, a satisfactory agreement is observed between the correlated values and the experimental static dielectric constant data for both aprotic and protic ionic liquids based on imidazolium, pyridinium, pyrrolidinium, alkylammonium, alkylsulfonium, morpholinium and piperidinium cations with various anions.

    It is noted that Ludwig’s group [15] has only predicted the static dielectric constant of two ionic liquids and the comparison between their results and our method is skipped. Krossing et al. [14] have correlated the static dielectric constant of 40 ionic liquids, and based on the Gibbs solvation energy and the molecular volume of the ions given as well as the regression parameters, the static dielectric constant of another 6 ionic liquids can be predicted. An average absolute relative deviation of 15.66% and maximum deviation higher than 60% were obtained for all the data points which include both of the correlation and predicted values. Moreover, 30% of the data points present deviations higher than 20% in Krossing et al.’s method. Based on a theoretical model, Singh et al. [19] have predicted the static dielectric constants of 17 aprotic ionic liquids at 298.15 K with the maximum deviation of 61.65% and the average absolute relative deviation observed is 22.23%, which is not satisfactory for engineering practicality. Compared to the above two methods, the method proposed in this paper has a bettercorrelation accuracy with an average absolute relative deviation of 7.41% and maximum deviation of 37.47%, which is satisfactory for engineering practicality. Therefore the method developed in this paper will be quite useful in chemical process design. The only physical property needed in this method is density, with the availability of density data, the static dielectric constant of ionic liquids can be calculated with ease. The density data of many ionic liquids are available. Ye et al. [64], Krossing et al. [65] and several other groups [66-68] have developed group contribution methods for the prediction of density of ionic liquids at different temperatures with excellent accuracy, which facilitates the prediction of static dielectric constant of ionic liquids by means of the method proposed in this paper. Moreover, the adoption of smaller group division makes this method have wider ranges for application since it is applicable to both aprotic and protic ionic liquids with Aρ/M being less or equal to 0.97 at different temperatures.

    4 CONCLUSIONS

    A group contribution method based on 27 groups was successfully applied for the correlation of the static dielectric constant of 58 aprotic and protic ionic liquids with an average absolute relative deviation of 7.41%, which is generally of the same order of the experimental data accuracy, and will be quite useful in chemical process design. The method shows a satisfactory agreement between the calculated and experimental static dielectric constants for imidazolium, pyrrolidinium, pyridinium, ammonium, morpholinium and piperidinium based ionic liquids with various anions. Since the only physical property needed in this method is density, with the availability of density data, the method proposed in this paper provides a simple but reliable approach to predict the static dielectric constant of ionic liquids with Aρ/M being less or equal to 0.97 at different temperatures.

    NOMENCLATURE

    Aicontribution value of group i, cm3·mol?1

    a cavity radius, m

    e elementary charge, C

    k total number of different groups in a molecule

    kbBoltzmann constant, J·K?1

    M molecular mass, g·mol?1

    NAAvogadro’s number, mol?1

    Npnumber of data points

    n0bulk ion concentration, m?3

    ninumber of ith group

    n+number of cations per unit volume, m?3

    n?number of anions per unit volume, m?3

    P pressure, Pa

    R radius of the tube, m

    Re Reynolds number

    T temperature, K

    U total electrical potential

    V velocity, m·s?1

    z valence of the ion

    α polarizability, cm3·mol?1

    αsthe sum of forms of polarizability, cm3·mol?1

    ε static dielectric constant of the fluid

    ε0vacuum permittivity, C·V?1·m?1

    η viscosity of the fluid, Pa·s

    μ permanent dipole moment, 3.33564×10?30C·m

    ρ density of the fluid, g·cm?3

    NOMENCLATURE

    cal calculated property

    exp experimental property

    REFERENCES

    1 Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D., “Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation”, Green Chem., 3 (4), 156-164 (2001).

    2 Valizadeh, H., Vaghefi, S., “One-pot Wittig and Knoevenagel reactions in ionic liquid as convenient methods for the synthesis of coumarin derivatives”, Synthetic Commun., 39 (9), 1666-1678 (2009).

    3 Wang, J.H., Cheng, D.H., Chen, X.W., Du, Z., Fang, Z.L., “Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification”, Anal. Chem., 79 (2), 620-625 (2007).

    4 Parvulescu, V.I., Hardacre, C., “Catalysis in ionic liquids”, Chem. Rev, 107 (6), 2615-2665 (2007).

    5 Ma, Z., Yu, J.H., Dai, S., “Preparation of inorganic materials using ionic liquids”, Adv. Mater, 22 (2), 261-285 (2010).

    6 Orsini, M., Chiarotto, I., Elinson, M.N., Sotgiu, G., Inesi, A., “Benzoin condensation in 1,3-dialkylimidazolium ionic liquids via electrochemical generation of N-heterocyclic carbene”, Electrochem. Commun., 11 (5), 1013-1017 (2009).

    7 Holbrey, J.D., “Heat capacities of common ionic liquids-potential applications as thermal fluids?”, Chim. Oggi., 25 (6), 24-26 (2007).

    8 Wakai, C., Oleinikova, A., Ott, M., Weingartner, H., “How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy”, J. Phys. Chem. B, 109 (36), 17028-17030 (2005).

    9 Li, D.Q., “Electro-viscous effects on pressure-driven liquid flow in microchannels”, Colloid Surf. A, 195 (1), 35-57 (2001).

    10 Ren, C.L., Li, D.Q., “Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels”, J. Colloid. Interf. Sci., 274 (1), 319-330 (2004).

    11 Bharti, R.P., Harvie, D.J.E., Davidson, M.R., “Steady flow of ionic liquid through a cylindrical microfluidic contraction-expansion pipe: Electroviscous effects and pressure drop”, Chem. Eng. Sci., 63 (14), 3593-3604 (2008).

    12 Huang, M.M., Jiang, Y.P., Sasisanker, P., Driver, G.W., Weingartner, H., “Static relative dielectric permittivities of iionic liquids at 25 degrees C”, J. Chem. Eng. Data, 56 (4), 1494-1499 (2011).

    13 Katritzky, A.R., Jain, R., Lomaka, A., Petrukhin, R., Karelson, M., Visser, A.E., Rogers, R.D., “Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program”, J. Chem. Inf. Comp. Sci., 42 (2), 225-231 (2002).

    14 Eiden, P., Bulut, S., Kochner, T., Friedrich, C., Schubert, T., Krossing, I., “In silico predictions of the temperature-dependent viscosities and electrical conductivities of functionalized and non-functionalized ionic liquids”, J. Phys. Chem. B, 115 (2), 300-309 (2011).

    15 Koddermann, T., Wertz, C., Heintz, A., Ludwig, R., “The association of water in ionic liquids: A reliable measure of polarity”, Angew. Chem. Int. Ed., 45 (22), 3697-3702 (2006).

    16 Dupont, J., de Souza, R.F., Suarez, P.A.Z., “Ionic liquid (molten salt) phase organometallic catalysis”, Chem. Rev., 102 (10), 3667-3691 (2002).

    17 Antonietti, M., Kuang, D.B., Smarsly, B., Yong, Z., “Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures”, Angew. Chem. Int. Ed., 43 (38), 4988-4992 (2004).

    18 Schroder, U., Wadhawan, J.D., Compton, R.G., Marken, F., Suarez, P.A.Z., Consorti, C.S., de Souza, R.F., Dupont, J., “Water-inducedaccelerated ion diffusion: Voltammetric studies in 1-methyl3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids”, New. J. Chem., 24 (12), 1009-1015 (2000).

    19 Singh, T., Kumar, A., “Static dielectric constant of room temperature ionic liquids: Internal pressure and cohesive energy density approach”, J. Phys. Chem. B, 112 (41), 12968-12972 (2008).

    20 Izgorodina, E.I., Forsyth, M., MacFarlane, D.R., “On the components of the dielectric constants of ionic liquids: Ionic polarization?”, Phys. Chem. Chem. Phys., 11 (14), 2452-2458 (2009).

    21 B?ttcher, C.J.F., Theory of Electric Polarization, Elsevier, Amsterdam (1973).

    22 Kobrak, M.N., Li, H., “Electrostatic interactions in ionic liquids: The dangers of dipole and dielectric descriptions”, Phys. Chem. Chem. Phys., 12 (8), 1922-1932 (2010).

    23 Valderrama, J.O., Sanga, W.W., Lazzus, J.A., “Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids”, Ind. Eng. Chem. Res., 47 (4), 1318-1330 (2008).

    24 Valderrama, J.O., Sanga, W.W., Lazzus, J.A., “Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids”, Ind. Eng. Chem. Res., 46 (4), 1338-1344 (2007).

    25 Gardas, R.L., Coutinho, J.A.P., “Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids”, AIChE J., 55 (5), 1274-1290 (2009).

    26 Gardas, R.L., Coutinho, J.A.P., “A group contribution method for viscosity estimation of ionic liquids”, Fluid Phase Equilib., 266 (1), 195-201 (2008).

    27 Nakamura, K., Shikata, T., “Systematic dielectric and NMR study of the ionic Liquid 1-alkyl-3-methyl imidazolium”, Chemphyschem, 11 (1), 285-294 (2010).

    28 Hunger, J., Stoppa, A., Schr dle, S., Hefter, G., Buchner, R., “Temperature dependence of the dielectric properties and dynamics of ionic liquids”, Chemphyschem., 10 (4), 723-733 (2009).

    29 Stoppa, A., Buchner, R., Hefter, G., “How ideal are binary mixtures of room-temperature ionic liquids?”, J. Mol. Liq., 153 (1), 46-51 (2010).

    30 Hunger, J., Stoppa, A., Buchner, R., Hefter, G., “From ionic liquid to electrolyte solution: Dynamics of 1-N-butyl-3-N-methylimidazolium tetrafluoroborate/dichloromethane mixtures”, J. Phys. Chem. B, 112 (41), 12913-12919 (2008).

    31 Weingartner, H., “The static dielectric constant of ionic liquids”, Z Phys. Chem., 220 (10-11), 1395-1405 (2006).

    32 Hunger, J., Stoppa, A., Buchner, R., Hefter, G., “Dipole correlations in the ionic liquid 1-N-ethyl-3-N-methylimidazolium ethylsulfate and its binary mixtures with dichloromethane”, J. Phys. Chem. B, 113 (28), 9527-9537 (2009).

    33 Daguenet, C., Dyson, P.J., Krossing, I., Oleinikova, A., Slattery, J., Wakai, C., Weingartner, H., “Dielectric response of imidazoliumbased room-temperature ionic liquids”, J. Phys. Chem. B, 110 (25), 12682-12688 (2006).

    34 Weingartner, H., Sasisanker, P., Daguenet, C., Dyson, P.J., Krossing, I., Slattery, J.M., Schubert, T., “The dielectric response of roomtemperature ionic liquids: Effect of cation variation”, J. Phys. Chem. B, 111 (18), 4775-4780 (2007).

    35 Stoppa, A., Hunger, J., Buchner, R., Hefter, G., Thoman, A., Helm, H., “Interactions and dynamics in ionic liquids”, J. Phys. Chem. B, 112 (16), 4854-4858 (2008).

    36 Huang, M.M., Weingartner, H., “Protic ionic liquids with unusually high dielectric permittivities”, Chemphyschem., 9 (15), 2172-2173 (2008).

    37 Aparicio, S., Alcalde, R., Atilhan, M., “Experimental and computational study on the properties of pure and water mixed 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid”, J. Phys. Chem. B, 114 (17), 5795-5809 (2010).

    38 Stoppa, A., Zech, O., Kunz, W., Buchner, R., “The conductivity of imidazolium-based ionic liquids from (?35 to 195) degrees C. A. variation of cation’s alkyl chain”, J. Chem. Eng. Data, 55 (5), 1768-1773 (2010).

    39 Schreiner, C., Zugmann, S., Hartl, R., Gores, H.J., “Fractional walden rule for ionic liquids: Examples from recent measurements and a critique of the so-called ideal KCl line for the walden plot”, J. Chem. Eng. Data, 55 (5), 1784-1788 (2010).

    40 Malham, I.B., Turmine, M., “Viscosities and refractive indices of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K”, J. Chem. Thermodyn., 40 (4), 718-723 (2008).

    41 Muhammad, A., Mutalib, M.I.A., Wilfred, C.D., Murugesan, T., Shafeeq, A., “Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions”, J. Chem. Thermodyn., 40 (9), 1433-1438 (2008).

    42 Soriano, A.N., Doma, B.T., Li, M.H., “Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids”, J. Chem. Thermodyn., 41 (3), 301-307 (2009).

    43 Fan, W., Zhou, Q., Sun, J., Zhang, S.J., “Density, excess molar volume, and viscosity for the methyl methacrylate+1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid binary system at atmospheric pressure”, J. Chem. Eng. Data, 54 (8), 2307-2311 (2009).

    44 Pereiro, A.B., Rodriguez, A., “A study on the liquid-liquid equilibria of 1-alkyl-3-methylimidazolium hexafluorophosphate with ethanol and alkanes”, Fluid Phase Equilib., 270 (1-2), 23-29 (2008).

    45 Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Brennecke, J. F., “Thermophysical properties of imidazolium-based ionic liquids”, J. Chem. Eng. Data, 49 (4), 954-964 (2004).

    46 Vercher, E., Llopis, F.J., Gonzalez-Alfaro, V., Martinez-Andreu, A.,“Refractive indices and deviations in refractive indices for binary mixtures of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate with methanol, ethanol, 1-propanol, and 2-propanol at several temperatures”, J. Chem. Eng. Data, 55 (3), 1430-1433 (2010).

    47 García-Miaja, G., Troncoso, J., Romaní, L., “Excess properties for binary systems ionic liquid + ethanol: Experimental results and theoretical description using the ERAS model”, Fluid Phase Equilib., 274 (1-2), 59-67 (2008).

    48 Wang, J.Y., Zhao, F.Y., Liu, R.J., Hu, Y.Q., “Thermophysical properties of 1-methyl-3-methylimidazolium dimethyl phosphate and 1-ethyl-3-methylimidazolium diethylphosphate”, J. Chem. Thermodyn., 43 (1), 47-50 (2011).

    49 Costa, A.J.L., Esperanca, J.M.S.S., Marrucho, I.M., Rebelo, L.P.N.,“Densities and viscosities of 1-ethyl-3-methylimidazolium n-alkyl sulfates”, J. Chem. Eng. Data, 56 (8), 3433-3441 (2011).

    50 Esperana, J.M.S.S., Visak, Z.P., Plechkova, N.V., Seddon, K.R., Guedes, H.J.R., Rebelo, L.P.N., “Density, speed of sound, and derived thermodynamic properties of ionic liquids over an extended pressure range. 4.[C3mim][NTf2] and [C5mim][NTf2]”, J. Chem. Eng. Data, 51 (6), 2009-2015 (2006).

    51 Andreatta, A.E., Arce, A., Rodil, E., Soto, A., “Physico-chemical properties of binary and ternary mixtures of ethyl acetate plus ethanol + 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide at 298.15 K and atmospheric pressure”, J. Solution Chem., 39 (3), 371-383 (2010).

    52 Pereiro, A.B., Veiga, H.I.M., Esperanca, J.M.S.S., Rodriguez, A.,“Effect of temperature on the physical properties of two ionic liquids”, J. Chem. Thermodyn., 41 (12), 1419-1423 (2009).

    53 Widegren, J.A., Magee, J.W., “Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water”, J. Chem. Eng. Data, 52 (6), 2331-2338 (2007).

    54 Andreatta, A.E., Arce, A., Rodil, E., Soto, A., “Physical properties of binary and ternary mixtures of ethyl acetate, ethanol, and 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide at 298.15 K”, J. Chem. Eng. Data, 54 (3), 1022-1028 (2009).

    55 Heintz, A., Kulikov, D.V., Verevkin, S.P., “Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-liquid chromatography”, J. Chem. Eng. Data, 47 (4), 894-899 (2002).

    56 Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M., “How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties”, J. Phys. Chem. B, 110 (39), 19593-19600 (2006).

    57 Carvalho, P.J., Regueira, T., Santos, L.M.N.B.F., Fernandez, J., Coutinho, J.A.P., “Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1-butyl-3-methylimidazolium tricyanomethane at atmospheric pressure”, J. Chem. Eng. Data, 55 (2), 645-652 (2010).

    58 Sanchez, L.G., Espel, J.R., Onink, F., Meindersma, G.W., Haan, A.B.,“Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids”, J. Chem. Eng. Data, 54 (10), 2803-2812 (2009).

    59 Wong, C.L., Soriano, A.N., Li, M.H., “Diffusion coefficients and molar conductivities in aqueous solutions of 1-ethyl-3-methylimidazolium-based ionic liquids”, Fluid Phase Equilib., 271 (1-2), 43-52 (2008).

    60 Klomfar, J., Souckova, M., Patek, J., “Temperature dependence of the surface tension and density at 0.1 MPa for 1-ethyl- and 1-butyl-3-methylimidazolium dicyanamide”, J. Chem. Eng. Data, 56 (8), 3454-3462 (2011).

    61 Yuan, X.L., Zhang, S.J., Lu, X.M., “Hydroxyl ammonium ionic liquids: Synthesis, properties, and solubility of SO2”, J. Chem. Eng. Data, 52 (2), 596-599 (2007).

    62 Wang, J.Y., Jiang, H.C., Liu, Y.M., Hu, Y.Q., “Density and surface tension of pure 1-ethyl-3-methylimidazolium L-lactate ionic liquid and its binary mixtures with water”, J. Chem. Thermodyn., 43 (5), 800-804 (2011).

    63 Widegren, J.A., Magee, J.W., “Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water”, J. Chem. Eng. Data, 52 (6), 2331-2338 (2007).

    64 Ye, C.F., Shreeve, J.M., “Rapid and accurate estimation of densities of room-temperature ionic liquids and salts”, J. Phys. Chem. A, 111 (8), 1456-1461 (2007).

    65 Preiss, U.P.R.M., Slattery, J.M., Krossing I., “In silico prediction of molecular volumes, heat capacities, and temperature-dependent densities of ionic liquids”, J. Ind. Eng. Chem. Res., 48 (4), 2290-2296 (2009).

    66 Gardas, R.L., Coutinho, J.A.P., “Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures”, Fluid Phase Equilib., 263 (1), 26-32 (2008).

    67 Qiao, Y., Ma, Y.G., Huo, Y., Ma, P.S., Xia, S.Q., “A group contribution method to estimate the densities of ionic liquids”, J. Chem. Thermodyn., 42 (7), 852-855 (2010).

    68 Paduszyński, K., Domanska, U M., “A new group contribution method for prediction of density of pure ionic liquids over a wide range of temperature and pressure”, Ind. Eng. Chem. Res., 51 (1), 591-604 (2012).

    69 Bulut, S., Klose, P., Huang, M.M., Weingartner, H., Duson, P.J., Laurenczy, H., Friedrich, C., Menz, J., Kummerer, K., Krossing, I.,“Synthesis of room-temperature ionic liquids with the weakly coordinating [Al (ORF)4]?Anion [RF=C(H)A (CF3)2] and the determination of their principal physical properties”, Chem. Eur. J., 16 (44), 13139-13154 (2010).

    APPENDIX

    Table A1 that contains the correlated and experimental static dielectric constants of 58 ionic liquids at different temperatures, the correlation value of A and molecular mass for each ionic liquid, density data employed in this study and the correlation results comparison with Krossing’s method and Singh’s method.

    Table A1 Comparison of correlated and experimental static dielectric constants①

    Table A1 (Continued)

    Table A1 (Continued)

    Table A1 (Continued)

    10.1016/S1004-9541(14)60009-4

    2012-08-16, accepted 2012-11-06.

    * Supported by the National Natural Science Foundation of China (21176206) and the Project of Zhejiang Key Scientific and Technological Innovation Team (2010R50017).

    ** To whom correspondence should be addressed. E-mail: chhezju@zju.edu.cn

    猜你喜歡
    周穎徐國
    日常行為干預(yù)模式在糖尿病患者護(hù)理中的應(yīng)用研究
    最健康的烹飪方式——蒸
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    追本溯源提升素養(yǎng)
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    校園里的石榴樹
    隱忍父愛20年,親情只出現(xiàn)在女兒人生的冬天
    老熟妇仑乱视频hdxx| 欧美 日韩 精品 国产| 亚洲国产成人一精品久久久| 9热在线视频观看99| 一级毛片精品| 天天添夜夜摸| 精品亚洲成a人片在线观看| 国产成+人综合+亚洲专区| 日日爽夜夜爽网站| 亚洲欧洲精品一区二区精品久久久| 亚洲精品乱久久久久久| 丰满迷人的少妇在线观看| 亚洲va日本ⅴa欧美va伊人久久| 飞空精品影院首页| 亚洲精品国产精品久久久不卡| cao死你这个sao货| 桃花免费在线播放| 一本久久精品| 嫩草影视91久久| 午夜福利,免费看| av网站免费在线观看视频| 精品久久久久久电影网| 黄色毛片三级朝国网站| 另类精品久久| 欧美老熟妇乱子伦牲交| 十八禁人妻一区二区| 日本撒尿小便嘘嘘汇集6| 精品第一国产精品| 国产成人欧美| 国产精品.久久久| 亚洲天堂av无毛| 久久影院123| 欧美精品亚洲一区二区| 国产av一区二区精品久久| 免费女性裸体啪啪无遮挡网站| 三级毛片av免费| 脱女人内裤的视频| 午夜视频精品福利| 日韩欧美三级三区| 成人黄色视频免费在线看| 国产人伦9x9x在线观看| 成人特级黄色片久久久久久久 | 久久精品熟女亚洲av麻豆精品| 国产一区二区三区在线臀色熟女 | 人成视频在线观看免费观看| 欧美中文综合在线视频| 欧美国产精品va在线观看不卡| 美女视频免费永久观看网站| 日韩视频一区二区在线观看| 可以免费在线观看a视频的电影网站| 国产成人精品久久二区二区免费| 日韩欧美国产一区二区入口| 91av网站免费观看| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 老熟女久久久| 人人妻人人澡人人爽人人夜夜| 后天国语完整版免费观看| 国产日韩一区二区三区精品不卡| 精品一区二区三区视频在线观看免费 | 欧美亚洲日本最大视频资源| 国产不卡av网站在线观看| 亚洲一码二码三码区别大吗| 亚洲国产欧美在线一区| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品免费视频一区二区三区| 亚洲国产精品一区二区三区在线| e午夜精品久久久久久久| 人人妻人人添人人爽欧美一区卜| 麻豆成人av在线观看| 日韩成人在线观看一区二区三区| 黄色视频,在线免费观看| 91成年电影在线观看| 亚洲五月婷婷丁香| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 国产视频一区二区在线看| 丁香欧美五月| 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| 久久 成人 亚洲| 久久久久久免费高清国产稀缺| 自线自在国产av| kizo精华| 亚洲精品在线观看二区| 露出奶头的视频| 欧美激情极品国产一区二区三区| 宅男免费午夜| 亚洲精品粉嫩美女一区| 国产精品免费一区二区三区在线 | 一级毛片女人18水好多| 多毛熟女@视频| 精品国产国语对白av| 大型黄色视频在线免费观看| 日本欧美视频一区| 国产精品九九99| 99国产精品一区二区蜜桃av | 成人国产av品久久久| av线在线观看网站| 国产精品久久久人人做人人爽| 国产免费福利视频在线观看| 国产国语露脸激情在线看| 自拍欧美九色日韩亚洲蝌蚪91| 少妇的丰满在线观看| 法律面前人人平等表现在哪些方面| 如日韩欧美国产精品一区二区三区| 男女免费视频国产| 菩萨蛮人人尽说江南好唐韦庄| 日韩人妻精品一区2区三区| 午夜福利视频在线观看免费| 国产无遮挡羞羞视频在线观看| 黑人巨大精品欧美一区二区mp4| 97人妻天天添夜夜摸| 亚洲av日韩精品久久久久久密| 夜夜骑夜夜射夜夜干| 777久久人妻少妇嫩草av网站| 亚洲中文字幕日韩| 一本大道久久a久久精品| 一二三四在线观看免费中文在| 欧美成人免费av一区二区三区 | 制服人妻中文乱码| 黄色a级毛片大全视频| 天堂8中文在线网| 黄色怎么调成土黄色| 曰老女人黄片| 日本黄色日本黄色录像| 亚洲五月婷婷丁香| 啦啦啦视频在线资源免费观看| 黄网站色视频无遮挡免费观看| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 久久久久久久久免费视频了| 97在线人人人人妻| 肉色欧美久久久久久久蜜桃| aaaaa片日本免费| 成人永久免费在线观看视频 | 国产单亲对白刺激| a级毛片黄视频| 国产又爽黄色视频| 免费女性裸体啪啪无遮挡网站| 亚洲综合色网址| 热99国产精品久久久久久7| 国产不卡一卡二| 久久精品国产亚洲av高清一级| 国产97色在线日韩免费| 国产亚洲午夜精品一区二区久久| 精品一区二区三区av网在线观看 | avwww免费| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区黑人| 亚洲一卡2卡3卡4卡5卡精品中文| 色尼玛亚洲综合影院| 亚洲精品久久午夜乱码| 国产精品国产高清国产av | 老司机福利观看| www.精华液| 女人爽到高潮嗷嗷叫在线视频| a级毛片黄视频| 色在线成人网| 国产精品免费一区二区三区在线 | 久久精品熟女亚洲av麻豆精品| 男女无遮挡免费网站观看| 每晚都被弄得嗷嗷叫到高潮| av视频免费观看在线观看| 深夜精品福利| 亚洲av日韩在线播放| 欧美黄色淫秽网站| 看免费av毛片| 国产精品1区2区在线观看. | a级毛片在线看网站| 桃花免费在线播放| 午夜日韩欧美国产| 999久久久精品免费观看国产| 国产在线观看jvid| 俄罗斯特黄特色一大片| 丝袜人妻中文字幕| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图| 欧美日韩精品网址| 午夜免费成人在线视频| 国产精品.久久久| 中文字幕人妻熟女乱码| 人人澡人人妻人| 成年人午夜在线观看视频| 亚洲专区中文字幕在线| 久久久精品免费免费高清| 男女免费视频国产| 国产极品粉嫩免费观看在线| 91大片在线观看| 亚洲中文字幕日韩| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线观看99| 国产成人影院久久av| av一本久久久久| 丝袜美足系列| 在线观看免费视频日本深夜| 日本五十路高清| 成在线人永久免费视频| 久久天躁狠狠躁夜夜2o2o| 黄片大片在线免费观看| 亚洲人成电影免费在线| 日韩中文字幕视频在线看片| 亚洲国产欧美网| 日韩制服丝袜自拍偷拍| 99精国产麻豆久久婷婷| 久久这里只有精品19| 热99国产精品久久久久久7| 国产av一区二区精品久久| 亚洲精华国产精华精| 一级毛片精品| 亚洲少妇的诱惑av| 免费女性裸体啪啪无遮挡网站| av一本久久久久| 丝袜在线中文字幕| av超薄肉色丝袜交足视频| 久久午夜综合久久蜜桃| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 欧美精品av麻豆av| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 精品高清国产在线一区| 欧美黄色片欧美黄色片| 超色免费av| 国产成人精品久久二区二区免费| 999久久久精品免费观看国产| 久久精品aⅴ一区二区三区四区| 国产在线免费精品| 交换朋友夫妻互换小说| 制服诱惑二区| 777米奇影视久久| 一级毛片女人18水好多| 亚洲精品一卡2卡三卡4卡5卡| av片东京热男人的天堂| 国产97色在线日韩免费| 国产精品 欧美亚洲| 精品少妇内射三级| 成人特级黄色片久久久久久久 | 别揉我奶头~嗯~啊~动态视频| 女人被躁到高潮嗷嗷叫费观| av线在线观看网站| 久久国产精品男人的天堂亚洲| 美女高潮喷水抽搐中文字幕| videosex国产| 久久久久国内视频| 日韩中文字幕视频在线看片| 成年版毛片免费区| 一级a爱视频在线免费观看| 丰满饥渴人妻一区二区三| 精品人妻在线不人妻| 最近最新免费中文字幕在线| 欧美精品一区二区免费开放| 熟女少妇亚洲综合色aaa.| 欧美久久黑人一区二区| 免费在线观看视频国产中文字幕亚洲| 岛国在线观看网站| 纯流量卡能插随身wifi吗| 999久久久精品免费观看国产| av欧美777| 亚洲人成电影观看| 在线观看舔阴道视频| 日韩欧美三级三区| 欧美黄色淫秽网站| 激情在线观看视频在线高清 | 美女高潮到喷水免费观看| 国产激情久久老熟女| 黄色 视频免费看| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 午夜福利乱码中文字幕| 久久久国产一区二区| 中文亚洲av片在线观看爽 | 久久久久国内视频| 91九色精品人成在线观看| 男女无遮挡免费网站观看| 黄色片一级片一级黄色片| 久久久久网色| 精品乱码久久久久久99久播| 午夜成年电影在线免费观看| 日本五十路高清| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 久热这里只有精品99| 在线观看免费午夜福利视频| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 久久久久国产一级毛片高清牌| 精品一区二区三区视频在线观看免费 | 亚洲国产欧美一区二区综合| 国产在视频线精品| 久久久水蜜桃国产精品网| www.熟女人妻精品国产| 女人高潮潮喷娇喘18禁视频| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 捣出白浆h1v1| 国产熟女午夜一区二区三区| 一区二区三区精品91| 国产精品久久久久久人妻精品电影 | 美女高潮到喷水免费观看| 俄罗斯特黄特色一大片| 成年人黄色毛片网站| 亚洲成人手机| 亚洲熟女毛片儿| 一个人免费看片子| 国产一区二区三区综合在线观看| 欧美日韩成人在线一区二区| 国产激情久久老熟女| 亚洲av成人一区二区三| 韩国精品一区二区三区| 亚洲久久久国产精品| 成年版毛片免费区| 黄网站色视频无遮挡免费观看| 精品亚洲成a人片在线观看| 人成视频在线观看免费观看| 老司机午夜福利在线观看视频 | 国产区一区二久久| 一级毛片精品| 亚洲精品在线美女| 亚洲国产看品久久| 久久精品人人爽人人爽视色| 国产国语露脸激情在线看| 亚洲欧美一区二区三区久久| 99国产极品粉嫩在线观看| 精品国产一区二区三区久久久樱花| 国产成人一区二区三区免费视频网站| 老司机午夜福利在线观看视频 | 丰满少妇做爰视频| 一区二区日韩欧美中文字幕| av超薄肉色丝袜交足视频| 亚洲精品国产色婷婷电影| 黄色成人免费大全| 国产精品香港三级国产av潘金莲| 亚洲av国产av综合av卡| 两个人看的免费小视频| 精品久久久精品久久久| 建设人人有责人人尽责人人享有的| 精品亚洲成a人片在线观看| 亚洲av日韩精品久久久久久密| a在线观看视频网站| 高清在线国产一区| 国产亚洲一区二区精品| 国产日韩欧美亚洲二区| 黄频高清免费视频| 最近最新中文字幕大全电影3 | 精品一区二区三卡| 黄频高清免费视频| 欧美久久黑人一区二区| 每晚都被弄得嗷嗷叫到高潮| 一个人免费在线观看的高清视频| 熟女少妇亚洲综合色aaa.| 一边摸一边做爽爽视频免费| a级片在线免费高清观看视频| 如日韩欧美国产精品一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 婷婷成人精品国产| 在线天堂中文资源库| 一级片'在线观看视频| 欧美精品亚洲一区二区| 91成人精品电影| 1024视频免费在线观看| 一级毛片女人18水好多| av天堂在线播放| 亚洲av第一区精品v没综合| 免费久久久久久久精品成人欧美视频| a级毛片黄视频| 国产在线视频一区二区| 亚洲成人手机| 狠狠精品人妻久久久久久综合| 日韩三级视频一区二区三区| 成人三级做爰电影| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 亚洲熟女精品中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲熟女毛片儿| 国产精品影院久久| 午夜福利免费观看在线| 波多野结衣一区麻豆| 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 欧美在线一区亚洲| 国产aⅴ精品一区二区三区波| 丁香六月天网| 欧美精品一区二区大全| 精品第一国产精品| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 中文字幕最新亚洲高清| 大型黄色视频在线免费观看| 大型av网站在线播放| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 99国产综合亚洲精品| 久久热在线av| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美在线一区二区| 在线播放国产精品三级| 蜜桃国产av成人99| 国产在线免费精品| 色尼玛亚洲综合影院| 老汉色∧v一级毛片| 亚洲视频免费观看视频| 老司机午夜福利在线观看视频 | 成人av一区二区三区在线看| 亚洲人成77777在线视频| 国产片内射在线| 欧美日韩亚洲高清精品| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 男女之事视频高清在线观看| 日日爽夜夜爽网站| 日韩视频在线欧美| 成年人黄色毛片网站| 国产精品一区二区精品视频观看| a级片在线免费高清观看视频| 久久久国产成人免费| 9热在线视频观看99| 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 少妇猛男粗大的猛烈进出视频| 国产成人系列免费观看| 免费看十八禁软件| 国产成+人综合+亚洲专区| 宅男免费午夜| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 老司机影院毛片| 国产亚洲欧美精品永久| 韩国精品一区二区三区| 中国美女看黄片| www.熟女人妻精品国产| 午夜福利视频在线观看免费| 汤姆久久久久久久影院中文字幕| 免费一级毛片在线播放高清视频 | 嫩草影视91久久| 高潮久久久久久久久久久不卡| 啦啦啦中文免费视频观看日本| 少妇精品久久久久久久| 色精品久久人妻99蜜桃| 免费在线观看视频国产中文字幕亚洲| 80岁老熟妇乱子伦牲交| av福利片在线| 少妇猛男粗大的猛烈进出视频| 亚洲精品中文字幕在线视频| 电影成人av| 看免费av毛片| 国产在线观看jvid| 久久这里只有精品19| 一二三四在线观看免费中文在| 国产一区二区激情短视频| 国产在线精品亚洲第一网站| av天堂在线播放| 国产成人影院久久av| 黑人欧美特级aaaaaa片| 精品一区二区三卡| 国产欧美日韩综合在线一区二区| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 青青草视频在线视频观看| 丝袜喷水一区| 欧美精品人与动牲交sv欧美| 成人永久免费在线观看视频 | 免费在线观看黄色视频的| 一区二区三区激情视频| 黄色视频,在线免费观看| 国产高清国产精品国产三级| 免费在线观看影片大全网站| 高清黄色对白视频在线免费看| 免费在线观看日本一区| 国产又爽黄色视频| 国产在线免费精品| 欧美日韩亚洲国产一区二区在线观看 | 久久狼人影院| 日韩大码丰满熟妇| 亚洲色图综合在线观看| 老熟女久久久| 男女边摸边吃奶| 亚洲av成人一区二区三| 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| 美女视频免费永久观看网站| 不卡一级毛片| 嫁个100分男人电影在线观看| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 国产精品久久久久成人av| 极品教师在线免费播放| 黑人操中国人逼视频| 日韩视频一区二区在线观看| 少妇猛男粗大的猛烈进出视频| 久久久水蜜桃国产精品网| 免费久久久久久久精品成人欧美视频| 91字幕亚洲| 久久香蕉激情| 欧美激情久久久久久爽电影 | 久久亚洲精品不卡| 亚洲伊人久久精品综合| 男人舔女人的私密视频| 纵有疾风起免费观看全集完整版| 色综合婷婷激情| 99在线人妻在线中文字幕 | 久久久久久久久久久久大奶| 一级毛片女人18水好多| 深夜精品福利| 美女扒开内裤让男人捅视频| 色在线成人网| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 91国产中文字幕| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 人人妻人人澡人人爽人人夜夜| 黄色丝袜av网址大全| 男女无遮挡免费网站观看| 777米奇影视久久| 少妇粗大呻吟视频| 高清毛片免费观看视频网站 | 国产一区二区三区视频了| 欧美在线一区亚洲| 夜夜骑夜夜射夜夜干| 香蕉丝袜av| 黄色怎么调成土黄色| 1024香蕉在线观看| 成人影院久久| 丁香六月天网| 操出白浆在线播放| 亚洲全国av大片| 黄片大片在线免费观看| 在线 av 中文字幕| 久久99一区二区三区| 午夜91福利影院| 日韩熟女老妇一区二区性免费视频| 免费在线观看日本一区| 国产免费av片在线观看野外av| 大码成人一级视频| 国产又色又爽无遮挡免费看| 精品久久久久久电影网| 手机成人av网站| 日韩人妻精品一区2区三区| 超碰成人久久| 一夜夜www| 欧美日韩国产mv在线观看视频| www.999成人在线观看| 国产精品香港三级国产av潘金莲| 亚洲精品在线观看二区| 日韩制服丝袜自拍偷拍| 日韩熟女老妇一区二区性免费视频| 热re99久久国产66热| 美女高潮喷水抽搐中文字幕| 精品国内亚洲2022精品成人 | 精品午夜福利视频在线观看一区 | 五月天丁香电影| 日韩视频一区二区在线观看| 免费人妻精品一区二区三区视频| 在线观看免费高清a一片| 亚洲专区中文字幕在线| 免费人妻精品一区二区三区视频| 国产成+人综合+亚洲专区| 日本精品一区二区三区蜜桃| 亚洲精品国产色婷婷电影| 欧美精品啪啪一区二区三区| 亚洲精品一二三| cao死你这个sao货| 王馨瑶露胸无遮挡在线观看| 国产亚洲欧美在线一区二区| 成人18禁高潮啪啪吃奶动态图| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 97在线人人人人妻| 免费人妻精品一区二区三区视频| 亚洲自偷自拍图片 自拍| 久久99一区二区三区| 欧美久久黑人一区二区| 欧美老熟妇乱子伦牲交| 视频在线观看一区二区三区| 亚洲一区中文字幕在线| 无限看片的www在线观看| 亚洲av日韩在线播放| 99国产精品一区二区三区| 午夜福利视频在线观看免费| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月 | 男人操女人黄网站| 又黄又粗又硬又大视频| 国产一区二区三区在线臀色熟女 | 啦啦啦 在线观看视频| 亚洲九九香蕉| 国产av又大| 侵犯人妻中文字幕一二三四区| 青草久久国产| 国产精品电影一区二区三区 | 精品国产亚洲在线| 一级片免费观看大全| 亚洲精华国产精华精| 精品久久久精品久久久| 欧美激情极品国产一区二区三区| 51午夜福利影视在线观看| 丁香六月欧美| av有码第一页| 国产片内射在线| 捣出白浆h1v1| 一级毛片精品| 国产精品.久久久| 欧美人与性动交α欧美软件| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 亚洲av成人不卡在线观看播放网| 亚洲欧美一区二区三区黑人|