• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12*

    2021-09-28 02:17:22ZhenFeng馮振YiLi李依YaqiangMa馬亞強YipengAn安義鵬andXianqiDai戴憲起
    Chinese Physics B 2021年9期
    關鍵詞:馬亞

    Zhen Feng(馮振)Yi Li(李依)Yaqiang Ma(馬亞強)Yipeng An(安義鵬)and Xianqi Dai(戴憲起)

    1School of Physics,Henan Normal University,Xinxiang 453007,China

    2School of Materials Science and Engineering,Henan Institute of Technology,Xinxiang 453000,China

    Keywords:two-dimensional metal-organic frameworks,electronic structure,magnetic property,strain engineering

    1.Introduction

    Compared with bulk materials,two-dimensional(2D)materials exhibit many unique characters in mechanical,electrical,optical,and thermal properties.Therefore,many scientists make enormous effects to explore the new family of 2D nanomaterials,[1,2]which could display metallic,semiconducting,superconducting,insulating,thermoelectric,and ferroelectric properties.[3–6]However,most 2D materials exhibit a nonmagnetic ground state,suggesting that they are different to be utilized as spintronic devices and magnetic recording materials due to the prerequisite requirements of magnetism.

    Usually,the electronic and magnetic characters of pristine 2D monolayers could be tuned and introduced by absorbing and doping transition metal(TM)atoms.This approach has been successfully realized in series of 2D monolayers,including graphene,[7,8]graphyne,[9]arsenene,[10]h-BN,[11,12]and phosphorene.[13]Another side,some intrinsic magnetic 2D materials such as CrI3,[14]Cr2Ge2Te6,[15]MnBi2Te4,[16]and Fe3GeTe2[17–19]have been experimentally discovered and investigated,which have potential applications in high-density data storage and nano-spintronic devices.[20,21]For instance,the spin polarization of half-metallic(HM)ferromagnets could reach 100%,due to the single spin state characteristics,i.e.,one spin state is metallic conduction while the other state is semiconducting.The HM magnets are important in some cases,such as spin-filters and spin-polarized scanning tunneling microscope.Half semiconductors(HSC)are characterized by unique spin states that valence band maximum(VBM)and conduction band minimum(CBM)come from the same spin state.For bipolar magnetic semiconductors(BMS),VBM and CBM consist of opposite spin states,indicating that they could apply in spin injection and generation.[22,23]These promising applications drive more scientists to explore the 2D magnetic nanomaterials.

    The 2D metal-organic frameworks(MOF)are porous hybrid materials consisting of transition metal nodes and organic ligands,and a recent class of magnetic materials.[24–26]Transition metal atoms are periodically connected with the organic ligands in MOF materials,inducing charge redistribution and strong interaction between them.These are beneficial to the stability of the framework structures.Recently,a series of 2D MOF nanomaterials were experimentally synthesized.For instance,M3C12X12andM3C36H12X12systems(M=transition metal atoms,X=O,S,and NH).[21,27–31]Scientists are paying more and more attention to these interesting lattice structures,they are seeking more MOF candidates using similar chemical reactions and theoretical investigations.For example,Rabczuket al.found that Ag,Cu,Cr,and MnC12(NH)122D MOF monolayers exhibit half-metallic characters,suggesting that they are promising candidates for spintronics.[32]Sarkaret al.proposed several 3d transition metals based on the M3C12S12.They found that Cr3C12S12exhibits spin-liquid,whereas Co3C12S12,Fe3C12S12,and Mn3C12S12are ferromagnetic half-metals.[33,34]Zhaoet al.found that Mn3C12S12monolayer exhibits a half-metallic performance,and its Curie temperature is about 200 K by using the Ising model.The Mn3C12S12monolayer possesses a nonmagnetic ground state and a SOC band-gap reaching 2.4 meV,indicating that it may achieve the quantum anomalous Hall effect.[35]A similar atomic structure,Mn3C12N12H12monolayer was predicted by Sunet al.The calculated results showed that the p–d exchange interactions could more effectively mediate the magnetic couplings,which results in a high Curie temperature of 450 K.[36]Very recently,Fenget al.reported a magnetic 2D Fe-PTC MOF material,which was synthesized from the reaction of 1,2,3,4,5,6,7,8,9,10,11,12-perthiolated coronene(Fe-PTC)with ammoniacal solutions of iron acetate.[37]The variable temperature conductivity measurements revealed that the 2D Fe-PTC MOF pellets display a typical semiconducting character and a room-temperature high conductivity reaching 10 S·cm?1.Furthermore,it is ferromagnetic below 20 K.The ferromagnetic ordering behavior mainly comes from the indirect exchanges between the localized spins of Fe atoms rather than the neighboring Fe atoms.

    Being influenced by the above findings,we propose several 2D transition metal-organic frameworks(TM-NH MOF,TM=Sc–Zn)systems using density functional theory(DFT)computations.The geometric construction and stability of these TM-NH MOF structures are firstly investigated.Then,their electronic structures are studied and diagnosed.Lastly,the magnetic properties of TM-NH MOF and their strain effect are systematically discussed.These results could provide a series of 2D MOF materials as potential excellent candidates applied in nanoscale spin electric devices.

    2.Methods

    The spin-polarized DFT calculations were performed with the Viennaab-initiosimulation package(VASP).[38,39]The generalized gradient approximation(GGA)with the Perdew–Burke–Ernzerhof(PBE)was selected to describe the exchange-correlation approximation.[40]The projected augmented wave(PAW)was adopted with the plane-wave cutoff energy of 500 eV.[41]The vacuum layer was larger than 20?A between the periodically repeated monolayers.The Hellmann–Feynman force on each atom was less than 0.01 eV·?A?1,and the total energy change was less than 1.0×10?5eV.A densek-point mesh with a grid density of 2π×0.01?A?1in the Monkhorst–Pack scheme was used.To treat the exchange–correlation energy of the localized d-orbital of TM atoms,the PBE+U(U=3 eV)calculations were employed by adding the Hubbard term to the Hamiltonian.[42,43]The VASPKIT code was used to manipulate the in/output VASP files.[44]Theab-initiomolecular dynamics(AIMD)was conducted with the Nose algorithm in theNVTensemble.[45]

    3.Results and discussion

    3.1.Geometry and stability

    The unit cell of the studied 2D metal-organic frameworks is built by three transition-metal atoms on graphene with four pyridine-nitrogen-like atoms passivated by H atoms(TM-NH MOF),as shown in Fig.1,leading to a chemical formula of TM3(C2NH)12in a primitive cell.As similar to other 2D MOF materials,TM-NH MOF monolayers are 2D porous carbonrich materials with one-atom-thickness.The nanosheets of graphene with three high-symmetric sp2-C atoms(C1,C2,C3)possess largeπ-bonds,which would enhance the stability of these TM-NH MOF monolayers.The optimized lattice constants of these TM-NH MOF(TM=Sc–Zn)monolayers were calculated by the variation of energies with different lattice constants(Fig.S1).The calculated lattice constants(la),bond lengths of TM–N(DTM?N),N–H(DN?H),N–C1(DN?C1),C1–C2(DC1?C2),and C2–C3(DC2?C3),and the diameters of the hole(Φ)are summarized in Table 1 and Table S1.The lattice constants of the TM-NH MOF monolayers display a decreased trend for Sc–Co(13.23?A→12.52?A)and an increased trend for Ni–Zn(12.52?A→12.95?A).The bond lengths of N–H(DN?H),N–C1(DN?C1),C1–C2(DC1?C2),and C2–C3(DC2?C3)keep the same for different TM-NH MOFs.The bond lengths of TM–N(DTM?N)and the diameters of the hole(Φ)exhibit the same change trend as that of the lattice constants,as transition-metals have different atomic radii.For example,the Sc-NH MOF monolayer possesses the largest lattice constants(13.23?A)corresponding to the largest atomic radius of Sc atom,consistent with the previous theoretical investigations for other 2D MOF materials.[46,47]

    Fig.1.Schematic atomic structures of 2D TM-NH MOF materials.The red dashed lines outline the unit cell.

    Table 1.The geometric parameters[lattice constants(la),bond lengths of TM-N(DTM?N),diameters of the hole(Φ)],the binding energy(Eb)per unit cell,and charge transfer of TM(QTM)and N atoms(QN)for different TM-NH MOF monolayers.For Bader charge analysis,+and?denote gaining and losing electrons,respectively.

    Fig.2.Top and side views of TM-NH MOF materials after the AIMD simulations at 500 K for 3 ps.

    3.2.Electronic property

    Both non-magnetic and magnetic configurations were investigated to identify the ground states of TM-NH MOF systems.The spin-polarized energy difference(ΔEspin)between the total energies of non-magnetic and magnetic states was computed byΔEspin=ENM?EM,whereENMandEMare the total energies for non-magnetic and magnetic states,respectively.The calculated spin-polarized energy differenceΔEspinis listed in Table 2.For Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOFs,theΔEspinvalues are positive,while for Sc-,Ni-,and Zn-NH MOFs,theΔEspinvalues are zero.These results confirm that Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOFs have magnetic ground states and Sc-,Ni-,and Zn-NH MOFs do not have ferromagnetic states.

    The electronic band structures of the TM-NH MOF monolayers were explored and plotted in Fig.3.These 2D TM-NH MOF nanomaterials could exhibit versatile electronic structures.The Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOFs possess spin splitting of band structures,producing magnetism.The Sc-,Ni-,and Zn-NH MOFs do not display spin polarization,according to the spin-polarized energy difference(ΔEspin)and being close to the hexaaminobenzederived 2D MOFs.[32]The Sc-,Ti-,V-,Cr-,and Mn-NH MOFs exhibit metallic characters,while Fe-,Co-,Ni-,Cu-,and Zn-NH MOFs are semiconductors(SM),and their band gaps are 0.56 eV,0.25 eV,0.41 eV,0.48 eV,and 0.61 eV,respectively(Table 2).The energy band structures of the Coand Cu-NH MOFs show a good bipolar magnetic semiconductor(BMS)feature,indicating they could be used for spin generation and injection.[23]

    Structural stability is a prerequisite requirement for any practical material.We first calculated the binding energy(Eb)per metal atom of these TM-NH MOF materials by the formulaEb=(Etot?Elinker?ETM)/3,whereEtot,Elinker,andETMrefer to the total energy of a unit cell,the energies of an isolated organic ligand(NH-graphene)and a TM atom,respectively.From Table 1,it is found that the binding energies(Eb)per metal atom range from?4.78 eV to?12.87 eV,which possess a similar magnitude for M3C12S12,[48,49]M3C12N12H12,[32,50]and M3C12O12.[46,47]These negative binding energies imply that these TM-NH MOF monolayers can be synthesized through appropriate chemical reactions.

    To further examine the thermal dynamics of these 2D MOF materials,canonical ensemble-based AIMD simulations were conducted under 500 K for 3000 fs.As shown in Figs.2 and S2,the variations of the total energy and temperature during the whole process display a little oscillation within a fixed value.The AIMD final geometric structures of these TM-NH MOFs show a slight buckling distortion and no bond-breaking,confirming their robust thermal structural stabilities.

    The structural stability confirms the effective connection between the TM nodes and NH-graphene organic ligands,which could be further validated by the charge transfer through Bader charge analyses.[51]The Bader charge results are listed in Table 1.The TM atoms lose electrons,while the neighboring N atoms get electrons.The losing electrons of the TM atoms decrease monotonously from Sc to Cu,which is tied to the electronegativity of TM.Generally,the lower electronegativity an element possesses,the more easily it loses electrons.The intense difference in electronegativity of TM and N elements induces strong charge transfer and interaction,which contributes to their robust ionic bonds(Fig.S3).

    Table 2.Band structure(BS)(M,HSM,BMS,SM denote metal,half-semiconductor,bipolar magnetic semiconductor,and semiconductor),total magnetic moment MT(μB)of TM-NH MOF,the magnetic moment of TM atomic basin MTM(μB)and N MN(μB)atom for TM-NH MOF systems and the integer values of TM atoms MTM?in(μB).ΔEspin(eV)is the energy difference between the total energies for non-magnetic and magnetic states.The spin polarization P(E(F/HOMO))at the Fermi level or the HOMO.

    Fig.3.Band structures of TM-NH MOF monolayers.The Fermi levels(EF)are set to 0 eV.

    To better understand the electrical features of TM-MH MOF nano-monolayers,the total density of states(TDOS)is depicted in Fig.4.The spin-asymmetry of TDOS around the Fermi energy is observable for Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOF monolayers,while the delicate symmetrical TDOS can be found for Sc-,Ni-,and Zn-NH MOF nanosheets,consistent with the band structures.

    3.3.Magnetic property

    The total magnetic moments(MT)of TM-NH MOF systems,magnetic moments of TM atomic basin(MTM)and N(MN)atom in TM-NH MOF systems are listed in Table 2.For Sc-,Ni-,and Zn-NH MOF systems,the total magnetic moment is zero.Ti-,V-,Cr-,and Mn-NH MOF single layers possess fractional magnetic moments that range from 3.13μBto 9.56μBdue to fractional transfer charges from the TM atoms to the N atoms.While Fe-,Co-,and Cu-NH MOF systems exhibit integer magnetic moments with the values of 6μB,3μB,and 3μB,respectively,which are similar to the cases for TM-germanene,[52]TM-BeO,[53]and TMgraphdiyne/graphyne.[9]The total magnetic moments(MT)primarily come from the TM atoms(MTM).The total magnetic moments are lower than the corresponding integer values of the TM atoms(MTM?in),which results from the strong interaction between the TM atoms and the NH-graphene.

    It could be concluded that the different TM atoms in MOF monolayers could effectively tune their magnetic and electronic characteristics.This modulation mainly results from the electron transfer between TM elements and the NHgraphene.From Table 2,obvious charge transfer takes place from TM atoms to NH-graphene ligands,which could not only strengthen the structure stability but also tune the magnetic and electronic properties effectively.

    To further study the magnetism of these TM-NH MOF sheets,their spin-charge densities are plotted in Fig.5.Sc-,Ni-,Zn-NH MOFs have no spin density distribution,suggesting their total magnetic momentsMTbeing 0μB.In Ti-,V-,Cr-,Mn-,Fe-,and Co-NH MOF materials,the magnetic moments are localized.The spin-up densities are mainly around the TM atoms,while some spin-down densities distribute near the nearest N atoms.In the Cu-NH MOF monolayer,there are some spin-up densities around the N atoms,and spin-up and spin-down densities around the Cu atom,according to the results of magnetic moments depicted in Table 2.

    Fig.4.Total density of states of TM-NH MOF monolayers.The Fermi levels(EF)are set to 0 eV.

    Fig.5.Spin density distribution for(a)–(j)Sc–Zn TM-NH MOF monolayers.The yellow and blue isosurfaces denote the spin-up and spin-down charge densities,respectively.The isosurface charge density is 0.005 e/?A3.

    Fig.6.PDOS of C1(denote in Fig.1),N,and TM in TM-NH MOF monolayers.The Fermi levels(EF)are set to 0 eV.

    We plot the characteristics of projected density of states(PDOS)of the TM,N,and C1atoms for all ten TM-NH MOF systems in Fig.6.For Sc-NH MOF monolayer(Fig.6(a)),the delicate symmetry of PDOS indicates its nonmagnetic ground state.The N-pz,C-pzstates significantly overlap with the Sc-E1(dyz,dxz)states at Fermi level(EF),which manifests that the Sc-NH MOF possesses metallic character.As shown in Fig.6(b),the hybridization between the E1(dyz,dxz)orbitals of Ti and pzorbitals of O/N atoms occurs at the Fermi level(EF),leading to a metallic character.The giant asymmetry in the E2(dxy,dx2?y2)and A(dz2)orbitals of Ti atoms results in Ti-NH MOF monolayer becoming original magnetic,agreeing well with the spin density distribution shown in Fig.5(b).According to the PDOS of V-,Cr-,Mn-NH MOFs in Figs.6(c)–6(e),they show similar distribution.The E1(dyz,dxz)orbitals of TM and pzorbitals of O/N atoms are split asymmetrically atEF,which induce the magnetic moments of 7.13μB,9.53μB,9.56μBfor V-,Cr-,and Mn-NH MOFs,respectively.

    The Fe-NH MOF is similar to Co-NH MOF(Figs.6(f)–6(g)).The pzand E1(dyz,dxz)orbitals are split asymmetrically near the Fermi level,while the px,py,E2(dxy,dx2?y2)and A(dz2)orbitals are split asymmetrically far away from the Fermi level,which manifests their spin magnetism.The origins of VBM and CBM of Fe-and Co-NH MOF systems are different.For the Fe-NH MOF monolayer,the VBM and CBM come from the degenerate spin up Fe-dyzand Fe-dxzorbitals.While for the Co-NH MOF single-layer,the VBM and CBM are originated from the degenerate spin-down Co-dyzand spinup Co-dxzorbitals,respectively.These show that the Fe-NH MOF monolayer is a half-semiconductor(HSM)and Co-NH MOF is a bipolar magnetic semiconductor(BMS).Fe-and Co-NH MOF systems display the same spin polarization of 100%(Table 2),implying that they are potential candidates for spinelectronic devices.

    The PDOSs of Ni-and Zn-NH MOF monolayers shown in Figs.6(h)and 6(j)clearly indicate that the spin-up and spin-down states are symmetric,indicating their nonmagnetic ground states.Their origins of VBM and CBM are different,which are Ni-E1(dyz,dxz)and N-pzfor Ni-NH MOF,while C-pzand N-pzfor Zn-NH MOF.Ni-and Zn-NH MOF monolayers are nonmagnetic semiconductors with band-gap energy of 0.41 eV and 0.61 eV,respectively.

    For the monolayer Cu-NH MOF,the spin-up and spindown PDOSs are asymmetrical,indicating the presence of magnetism.The N-pz,C-pz,and E1(dyz,dxz)orbitals split asymmetrically and significantly overlap near the Fermi level,leading to the spin-up densities of Cu and N atoms in Cu-NH MOF(Fig.6(i)).Cu-NH MOF is a bipolar magnetic semiconductor(BMS),the VBM and CBM come from the spin-up N-pzand spin-down N-pzorbitals,respectively.

    3.4.Strain effect

    The 2D MOF materials possess a large dynamical range of exerting elastic strain,which could encourage them in the application of flexible spintronic devices.[54–56]The biaxial strain is defined byε=Δc/c0,where the lattice constants of the pristine and strained supercells arec0andc=c0±Δc,respectively.Here,the+|ε|and–|ε|represent tensile strain and compressive strain,respectively.The strain range from?5%to+5%was considered according to their mechanical strength and the previous reports,and the corresponding variations of the total magnetic moment(MT)of TM-NH MOF structures were calculated and shown in Fig.7.The strain can not induce the magnetism of Sc-,Ni-,and Zn-NH MOF systems,they still stay in the nonmagnetic ground state(Table S2).The strain also does not affect the total magnetic moments of Feand Co-NH MOFs,they remain at 6μBand 3μB,respectively.Interestingly,Cr-NH MOF has an approximately linear correlation between the total magnetic moment and strain(?5%to+5%).For V-and Ti-NH MOF monolayers,there is a slight increase from compressive strain of?5% to tensile strain of+5%.The Cu-NH MOF sheet exhibits a total magnetic moment of 1μBunder the strain of?5% to?3%,and a total magnetic moment of 3μBunder the strain of?1% to+5%.Furthermore,the PDOS of E1(dyz,dxz),E2(dxy,dx2?y2)and A(dz2)of the TM atoms in TM-NH MOFs under the different strain were calculated and shown in Fig.S4.The PDOS display different overlap nearEFunder different strain,leading to the variation in the total magnetic moments.The results confirm that strain engineering is an effective strategy to tune the electric and magnetic characters of nanomaterials.

    Fig.7.Magnetic moments of TM-NH MOF monolayers under the strain from?5%to 5%.

    4.Conclusion

    In summary,a series of 2D MOF materials TM3(C2NH)12are investigated by DFT calculations.The binding energies and AIMD indicate that these ten TM-NH MOF(TM=Sc–Zn)monolayers possess excellent structural stability,which results from the charge transfer and strong interaction between TM and NH-graphene.The optimized lattice constants of the TM-NH MOF monolayer are 12.52?A–13.23?A,which is dependent on the atomic radii of the transition-metal atoms.These TM-NH MOF monolayers exhibit different magnetic and electronic characters.Sc-,Ti-,V-,Cr,and Mn-NH MOFs are metallic,while Ni-and Zn-NH MOFs exhibit semiconductors(SM)with band gaps of 0.41 eV and 0.61 eV,respectively.Co-and Cu-NH MOF nanomaterials are good bipolar magnetic semiconductors(BMS).Fe-NH MOF monolayer is a half-semiconductor(HSM).The central transition metal atom could effectively modulate the magnetic property of TMNH MOFs,especially the different spin polarized d-orbitals of the TM atoms.The effect of elastic strain on the magnetic and electronic characters is studied under strain(from?5%to+5%).The results testify that charge redistribution of TM-3d states is responsible for the magnetic transformation under different elastic strains.This work proposes a new class of 2D MOF materials,and could shed light on the development of 2D magnetic materials.

    Acknowledgment

    The authors thank the high performance computing center of Henan Normal University,and national super computing center in Zhengzhou.

    猜你喜歡
    馬亞
    影 子
    馬亞飛 書法作品
    新疆藝術(2023年6期)2023-12-20 13:37:48
    乙醇和乙酸常見考點例忻
    買一束鮮花送自己
    Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon*
    基于ADRC的四旋翼飛行器抗干擾控制研究
    軟件(2020年3期)2020-04-20 00:54:46
    Electronic properties of size-dependent MoTe2/WTe2 heterostructure*
    有機化學專項訓練(二)
    對比學習“分子”和“原子”
    2015年高考化學模擬試題
    亚洲综合精品二区| 国产毛片在线视频| 久久97久久精品| 中文字幕最新亚洲高清| 午夜激情久久久久久久| 免费播放大片免费观看视频在线观看| videosex国产| 久久av网站| 久久久精品免费免费高清| 飞空精品影院首页| 国产精品免费视频内射| 久久青草综合色| 国产精品秋霞免费鲁丝片| 搡女人真爽免费视频火全软件| 高清黄色对白视频在线免费看| tube8黄色片| 99久久综合免费| 最近中文字幕高清免费大全6| 最近中文字幕高清免费大全6| 久久久久国产一级毛片高清牌| 久久国产精品大桥未久av| 国产乱人偷精品视频| 亚洲av综合色区一区| 国产精品免费大片| 青青草视频在线视频观看| 纵有疾风起免费观看全集完整版| 国产 一区精品| 少妇被粗大的猛进出69影院| 亚洲成人一二三区av| 97精品久久久久久久久久精品| 精品久久久精品久久久| 亚洲欧美清纯卡通| 777久久人妻少妇嫩草av网站| 热re99久久国产66热| 咕卡用的链子| 春色校园在线视频观看| 一区二区三区乱码不卡18| 国产1区2区3区精品| 王馨瑶露胸无遮挡在线观看| 丰满少妇做爰视频| 一本大道久久a久久精品| 亚洲av免费高清在线观看| 国产精品99久久99久久久不卡 | 日本色播在线视频| 69精品国产乱码久久久| 亚洲国产av新网站| 国产人伦9x9x在线观看 | 精品国产乱码久久久久久小说| 日本vs欧美在线观看视频| 国产精品 欧美亚洲| 久久青草综合色| 午夜日韩欧美国产| 少妇人妻久久综合中文| √禁漫天堂资源中文www| 热re99久久国产66热| 久久国内精品自在自线图片| 亚洲精品成人av观看孕妇| 少妇人妻精品综合一区二区| 国产精品久久久久成人av| 一二三四中文在线观看免费高清| 中国国产av一级| 男女边吃奶边做爰视频| 亚洲av福利一区| 国产成人91sexporn| 国产精品无大码| 美女大奶头黄色视频| 久久精品亚洲av国产电影网| 天天操日日干夜夜撸| 黄片小视频在线播放| 久久精品国产亚洲av涩爱| 国产av码专区亚洲av| 最近中文字幕2019免费版| kizo精华| 日韩视频在线欧美| 国产深夜福利视频在线观看| 久久久久精品性色| 性色avwww在线观看| 国产免费视频播放在线视频| 久久久久人妻精品一区果冻| 亚洲综合色网址| 人人妻人人澡人人看| 久久精品亚洲av国产电影网| 91午夜精品亚洲一区二区三区| 肉色欧美久久久久久久蜜桃| 夫妻性生交免费视频一级片| 岛国毛片在线播放| 美女高潮到喷水免费观看| 国产黄色免费在线视频| 欧美日韩一级在线毛片| 成人国产av品久久久| 亚洲av综合色区一区| 国产高清国产精品国产三级| 极品人妻少妇av视频| 可以免费在线观看a视频的电影网站 | 欧美国产精品一级二级三级| 老女人水多毛片| 青春草亚洲视频在线观看| 国产精品秋霞免费鲁丝片| av免费在线看不卡| 寂寞人妻少妇视频99o| 午夜精品国产一区二区电影| 久久ye,这里只有精品| 亚洲伊人久久精品综合| 精品国产一区二区久久| 最近最新中文字幕免费大全7| 七月丁香在线播放| 欧美精品国产亚洲| 2018国产大陆天天弄谢| 多毛熟女@视频| 成人影院久久| 校园人妻丝袜中文字幕| 99久国产av精品国产电影| 久久人人爽人人片av| 在线观看免费高清a一片| 久久午夜综合久久蜜桃| 亚洲美女黄色视频免费看| 熟女电影av网| 91精品三级在线观看| 精品人妻一区二区三区麻豆| 不卡av一区二区三区| 秋霞在线观看毛片| 在线观看美女被高潮喷水网站| 久久韩国三级中文字幕| 最近手机中文字幕大全| 中文乱码字字幕精品一区二区三区| 在线免费观看不下载黄p国产| 亚洲av综合色区一区| 老女人水多毛片| kizo精华| 久久精品人人爽人人爽视色| 国产欧美亚洲国产| 熟女av电影| 久久精品熟女亚洲av麻豆精品| 国产又爽黄色视频| 午夜福利,免费看| 成年女人在线观看亚洲视频| 美女大奶头黄色视频| 一区福利在线观看| 久久久a久久爽久久v久久| 日日啪夜夜爽| 欧美av亚洲av综合av国产av | 好男人视频免费观看在线| 久久精品国产综合久久久| 好男人视频免费观看在线| 大片免费播放器 马上看| 在线观看国产h片| 欧美另类一区| 精品第一国产精品| av一本久久久久| 9色porny在线观看| av天堂久久9| 久久久久人妻精品一区果冻| 亚洲情色 制服丝袜| 欧美日韩视频高清一区二区三区二| 国产精品女同一区二区软件| 久久久久久久久免费视频了| 欧美中文综合在线视频| www.熟女人妻精品国产| 成人漫画全彩无遮挡| 国产成人av激情在线播放| 黄色怎么调成土黄色| 国产免费视频播放在线视频| 99九九在线精品视频| 王馨瑶露胸无遮挡在线观看| 午夜91福利影院| 不卡av一区二区三区| av国产久精品久网站免费入址| 在线观看美女被高潮喷水网站| av在线播放精品| 免费日韩欧美在线观看| 亚洲精品中文字幕在线视频| 久久国产精品男人的天堂亚洲| 捣出白浆h1v1| 欧美日韩一区二区视频在线观看视频在线| 精品福利永久在线观看| 亚洲人成77777在线视频| 亚洲,欧美精品.| 亚洲男人天堂网一区| 久久久久精品人妻al黑| 亚洲第一区二区三区不卡| 精品国产乱码久久久久久男人| 免费大片黄手机在线观看| 国产成人精品久久久久久| 亚洲国产精品一区二区三区在线| 久久99一区二区三区| 午夜日本视频在线| 亚洲伊人久久精品综合| 成人漫画全彩无遮挡| av国产久精品久网站免费入址| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| 人妻系列 视频| 国产一级毛片在线| 在线 av 中文字幕| 一本久久精品| 又黄又粗又硬又大视频| 中文字幕av电影在线播放| 成人漫画全彩无遮挡| 咕卡用的链子| 香蕉精品网在线| 亚洲欧美色中文字幕在线| 国产欧美亚洲国产| 国产成人精品无人区| 波多野结衣一区麻豆| 夫妻午夜视频| 日本欧美国产在线视频| 在线观看一区二区三区激情| 亚洲,欧美,日韩| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 免费观看无遮挡的男女| 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| 国产成人精品在线电影| 亚洲av中文av极速乱| 久久久久久伊人网av| 免费观看性生交大片5| 色婷婷久久久亚洲欧美| 另类精品久久| 999久久久国产精品视频| 亚洲少妇的诱惑av| 欧美+亚洲+日韩+国产| 国产精品影院久久| 午夜a级毛片| 在线免费观看的www视频| 亚洲狠狠婷婷综合久久图片| 一级,二级,三级黄色视频| 久久九九热精品免费| aaaaa片日本免费| 黄色丝袜av网址大全| 免费观看精品视频网站| 国产精品久久久久成人av| 久久香蕉精品热| 日韩欧美国产一区二区入口| 日本 av在线| 色综合站精品国产| 国产av又大| 国产精品亚洲av一区麻豆| 级片在线观看| 看免费av毛片| www日本在线高清视频| 欧美日韩黄片免| 18禁国产床啪视频网站| 岛国在线观看网站| 欧美亚洲日本最大视频资源| 国产精品久久久av美女十八| 亚洲成av片中文字幕在线观看| 中文字幕人妻丝袜制服| 成年人黄色毛片网站| 法律面前人人平等表现在哪些方面| 看片在线看免费视频| 女同久久另类99精品国产91| 女人高潮潮喷娇喘18禁视频| 美女高潮喷水抽搐中文字幕| 免费女性裸体啪啪无遮挡网站| 后天国语完整版免费观看| 精品日产1卡2卡| 亚洲专区字幕在线| 涩涩av久久男人的天堂| 岛国视频午夜一区免费看| 桃红色精品国产亚洲av| 国产高清国产精品国产三级| 日韩国内少妇激情av| 不卡一级毛片| 亚洲专区中文字幕在线| 亚洲国产精品999在线| 久久久久久大精品| 欧美人与性动交α欧美精品济南到| 正在播放国产对白刺激| 精品福利观看| 亚洲成人免费av在线播放| 亚洲av电影在线进入| 亚洲人成伊人成综合网2020| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 男女下面进入的视频免费午夜 | 欧美精品一区二区免费开放| www.熟女人妻精品国产| 777久久人妻少妇嫩草av网站| 国产又色又爽无遮挡免费看| 在线观看免费视频网站a站| 久久中文字幕人妻熟女| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精华国产精华精| 久久九九热精品免费| 无人区码免费观看不卡| 天堂影院成人在线观看| xxxhd国产人妻xxx| 999久久久精品免费观看国产| 欧美av亚洲av综合av国产av| 亚洲精品美女久久久久99蜜臀| 高清毛片免费观看视频网站 | 一边摸一边抽搐一进一出视频| 亚洲第一av免费看| 亚洲七黄色美女视频| 国产区一区二久久| 好看av亚洲va欧美ⅴa在| 欧美亚洲日本最大视频资源| 在线天堂中文资源库| 男人操女人黄网站| 黄色丝袜av网址大全| 侵犯人妻中文字幕一二三四区| 国产又色又爽无遮挡免费看| 国产有黄有色有爽视频| 一区在线观看完整版| 久久久国产一区二区| 亚洲国产中文字幕在线视频| 国产成人免费无遮挡视频| 精品国产超薄肉色丝袜足j| 日本 av在线| 性色av乱码一区二区三区2| 99久久精品国产亚洲精品| 欧美乱色亚洲激情| 巨乳人妻的诱惑在线观看| 亚洲一区二区三区欧美精品| 成人三级做爰电影| 亚洲专区字幕在线| 国产男靠女视频免费网站| 色综合站精品国产| 欧美人与性动交α欧美精品济南到| 成人亚洲精品av一区二区 | 久久亚洲精品不卡| 亚洲性夜色夜夜综合| 日韩有码中文字幕| 黄色a级毛片大全视频| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| 亚洲欧美一区二区三区黑人| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 18禁观看日本| 亚洲av成人av| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| 久久午夜亚洲精品久久| 国产人伦9x9x在线观看| 黄色成人免费大全| 婷婷六月久久综合丁香| 在线看a的网站| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一区二区三区四区五区乱码| 国产在线精品亚洲第一网站| 国产无遮挡羞羞视频在线观看| www.999成人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 美女福利国产在线| 日韩成人在线观看一区二区三区| 一边摸一边抽搐一进一小说| 黄色毛片三级朝国网站| 亚洲第一av免费看| 后天国语完整版免费观看| 9色porny在线观看| 亚洲 国产 在线| 99精国产麻豆久久婷婷| 国产av一区在线观看免费| 手机成人av网站| 美女高潮喷水抽搐中文字幕| 国产成人一区二区三区免费视频网站| 99国产精品一区二区三区| 久久天堂一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 精品久久久精品久久久| 久久精品影院6| 欧美中文日本在线观看视频| 久久国产精品影院| 日韩三级视频一区二区三区| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲| 黄片播放在线免费| 日本欧美视频一区| 在线看a的网站| 美女福利国产在线| 美女高潮喷水抽搐中文字幕| 亚洲成a人片在线一区二区| 久久国产精品影院| 久久精品国产清高在天天线| 男人的好看免费观看在线视频 | 如日韩欧美国产精品一区二区三区| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 无遮挡黄片免费观看| 国产有黄有色有爽视频| 首页视频小说图片口味搜索| 99久久99久久久精品蜜桃| 在线视频色国产色| 亚洲精品中文字幕一二三四区| 国产成人欧美在线观看| 中文字幕精品免费在线观看视频| 亚洲成人免费av在线播放| 日本a在线网址| 免费av中文字幕在线| 一边摸一边做爽爽视频免费| 深夜精品福利| 国产精品美女特级片免费视频播放器 | 欧美日韩av久久| 另类亚洲欧美激情| 中文欧美无线码| 免费观看精品视频网站| 久久久久久人人人人人| 免费高清在线观看日韩| 性少妇av在线| 欧美性长视频在线观看| 久久亚洲精品不卡| 午夜免费激情av| 精品国内亚洲2022精品成人| 91字幕亚洲| 91av网站免费观看| 夫妻午夜视频| 中文亚洲av片在线观看爽| 88av欧美| 无人区码免费观看不卡| 欧美国产精品va在线观看不卡| 午夜a级毛片| 欧美人与性动交α欧美精品济南到| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 母亲3免费完整高清在线观看| 国产高清国产精品国产三级| 国产高清视频在线播放一区| 亚洲精品国产精品久久久不卡| 97超级碰碰碰精品色视频在线观看| 日韩精品中文字幕看吧| 天堂√8在线中文| 国产区一区二久久| 亚洲三区欧美一区| 淫秽高清视频在线观看| www国产在线视频色| 在线观看66精品国产| 19禁男女啪啪无遮挡网站| 极品人妻少妇av视频| av免费在线观看网站| 啦啦啦 在线观看视频| 在线观看免费午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 在线免费观看的www视频| 国产激情久久老熟女| 国产精品久久久av美女十八| 三级毛片av免费| 亚洲国产精品合色在线| 久久精品影院6| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 午夜a级毛片| 久9热在线精品视频| 窝窝影院91人妻| 国产一区在线观看成人免费| 国产精品偷伦视频观看了| 日日夜夜操网爽| 新久久久久国产一级毛片| 18美女黄网站色大片免费观看| 我的亚洲天堂| 天天影视国产精品| 两性夫妻黄色片| 一本综合久久免费| 精品国产美女av久久久久小说| 男人操女人黄网站| 日韩国内少妇激情av| 亚洲久久久国产精品| 久久久国产成人精品二区 | 大陆偷拍与自拍| 精品久久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 18禁美女被吸乳视频| av国产精品久久久久影院| 村上凉子中文字幕在线| 又大又爽又粗| 香蕉久久夜色| 久久中文看片网| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av在线| 啪啪无遮挡十八禁网站| 黄色毛片三级朝国网站| 日本 av在线| 无人区码免费观看不卡| 九色亚洲精品在线播放| 日本黄色日本黄色录像| 亚洲欧美精品综合久久99| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美| 91成人精品电影| 国产精品偷伦视频观看了| 香蕉久久夜色| 99精品欧美一区二区三区四区| 欧美中文日本在线观看视频| 激情视频va一区二区三区| 国产亚洲精品久久久久5区| 国产日韩一区二区三区精品不卡| 国产野战对白在线观看| 久久午夜亚洲精品久久| 欧美国产精品va在线观看不卡| 久久久久久大精品| 国产aⅴ精品一区二区三区波| 欧美av亚洲av综合av国产av| 大香蕉久久成人网| 国产成+人综合+亚洲专区| 成年人免费黄色播放视频| 日本三级黄在线观看| 在线观看一区二区三区激情| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 久久久精品欧美日韩精品| 免费在线观看日本一区| 在线永久观看黄色视频| 性欧美人与动物交配| ponron亚洲| 丝袜人妻中文字幕| 国产精品乱码一区二三区的特点 | 免费av毛片视频| 精品欧美一区二区三区在线| www.自偷自拍.com| 黄片大片在线免费观看| 亚洲av成人一区二区三| av在线播放免费不卡| x7x7x7水蜜桃| 少妇粗大呻吟视频| 国产精品 国内视频| 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 精品第一国产精品| 欧美黑人精品巨大| 成年女人毛片免费观看观看9| 三上悠亚av全集在线观看| 亚洲五月婷婷丁香| 成年版毛片免费区| 成人免费观看视频高清| 黄色怎么调成土黄色| 另类亚洲欧美激情| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线| 一级,二级,三级黄色视频| 日韩免费高清中文字幕av| 国产精品自产拍在线观看55亚洲| 国产精品电影一区二区三区| 两个人免费观看高清视频| 少妇的丰满在线观看| 日韩免费av在线播放| 久久九九热精品免费| 欧美精品亚洲一区二区| 嫩草影院精品99| 日日夜夜操网爽| 在线免费观看的www视频| 久久伊人香网站| 精品国产一区二区三区四区第35| 亚洲免费av在线视频| 波多野结衣高清无吗| 国产成人av教育| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 久久精品aⅴ一区二区三区四区| 可以免费在线观看a视频的电影网站| 国产亚洲精品第一综合不卡| 亚洲人成伊人成综合网2020| www.自偷自拍.com| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲高清精品| 成人黄色视频免费在线看| 午夜两性在线视频| 麻豆av在线久日| 侵犯人妻中文字幕一二三四区| 免费搜索国产男女视频| 国产精品国产高清国产av| 久久99一区二区三区| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 成人永久免费在线观看视频| 国产av精品麻豆| 搡老熟女国产l中国老女人| 99精国产麻豆久久婷婷| netflix在线观看网站| 嫩草影院精品99| 黑人操中国人逼视频| 亚洲人成77777在线视频| 国产成人免费无遮挡视频| 久热这里只有精品99| 自拍欧美九色日韩亚洲蝌蚪91| 欧美一区二区精品小视频在线| 69av精品久久久久久| 脱女人内裤的视频| 天堂√8在线中文| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| 亚洲男人的天堂狠狠| 国产欧美日韩一区二区三| 国产av一区在线观看免费| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 村上凉子中文字幕在线| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 久99久视频精品免费| 大型黄色视频在线免费观看| 国产成人一区二区三区免费视频网站| 天天躁夜夜躁狠狠躁躁| 女警被强在线播放| 亚洲精品在线观看二区| av片东京热男人的天堂| 巨乳人妻的诱惑在线观看| 高清av免费在线| 国产高清激情床上av| 亚洲欧洲精品一区二区精品久久久| 久久精品国产清高在天天线| 丰满迷人的少妇在线观看| 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| 欧美日本中文国产一区发布|