• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12*

    2021-09-28 02:17:22ZhenFeng馮振YiLi李依YaqiangMa馬亞強YipengAn安義鵬andXianqiDai戴憲起
    Chinese Physics B 2021年9期
    關鍵詞:馬亞

    Zhen Feng(馮振)Yi Li(李依)Yaqiang Ma(馬亞強)Yipeng An(安義鵬)and Xianqi Dai(戴憲起)

    1School of Physics,Henan Normal University,Xinxiang 453007,China

    2School of Materials Science and Engineering,Henan Institute of Technology,Xinxiang 453000,China

    Keywords:two-dimensional metal-organic frameworks,electronic structure,magnetic property,strain engineering

    1.Introduction

    Compared with bulk materials,two-dimensional(2D)materials exhibit many unique characters in mechanical,electrical,optical,and thermal properties.Therefore,many scientists make enormous effects to explore the new family of 2D nanomaterials,[1,2]which could display metallic,semiconducting,superconducting,insulating,thermoelectric,and ferroelectric properties.[3–6]However,most 2D materials exhibit a nonmagnetic ground state,suggesting that they are different to be utilized as spintronic devices and magnetic recording materials due to the prerequisite requirements of magnetism.

    Usually,the electronic and magnetic characters of pristine 2D monolayers could be tuned and introduced by absorbing and doping transition metal(TM)atoms.This approach has been successfully realized in series of 2D monolayers,including graphene,[7,8]graphyne,[9]arsenene,[10]h-BN,[11,12]and phosphorene.[13]Another side,some intrinsic magnetic 2D materials such as CrI3,[14]Cr2Ge2Te6,[15]MnBi2Te4,[16]and Fe3GeTe2[17–19]have been experimentally discovered and investigated,which have potential applications in high-density data storage and nano-spintronic devices.[20,21]For instance,the spin polarization of half-metallic(HM)ferromagnets could reach 100%,due to the single spin state characteristics,i.e.,one spin state is metallic conduction while the other state is semiconducting.The HM magnets are important in some cases,such as spin-filters and spin-polarized scanning tunneling microscope.Half semiconductors(HSC)are characterized by unique spin states that valence band maximum(VBM)and conduction band minimum(CBM)come from the same spin state.For bipolar magnetic semiconductors(BMS),VBM and CBM consist of opposite spin states,indicating that they could apply in spin injection and generation.[22,23]These promising applications drive more scientists to explore the 2D magnetic nanomaterials.

    The 2D metal-organic frameworks(MOF)are porous hybrid materials consisting of transition metal nodes and organic ligands,and a recent class of magnetic materials.[24–26]Transition metal atoms are periodically connected with the organic ligands in MOF materials,inducing charge redistribution and strong interaction between them.These are beneficial to the stability of the framework structures.Recently,a series of 2D MOF nanomaterials were experimentally synthesized.For instance,M3C12X12andM3C36H12X12systems(M=transition metal atoms,X=O,S,and NH).[21,27–31]Scientists are paying more and more attention to these interesting lattice structures,they are seeking more MOF candidates using similar chemical reactions and theoretical investigations.For example,Rabczuket al.found that Ag,Cu,Cr,and MnC12(NH)122D MOF monolayers exhibit half-metallic characters,suggesting that they are promising candidates for spintronics.[32]Sarkaret al.proposed several 3d transition metals based on the M3C12S12.They found that Cr3C12S12exhibits spin-liquid,whereas Co3C12S12,Fe3C12S12,and Mn3C12S12are ferromagnetic half-metals.[33,34]Zhaoet al.found that Mn3C12S12monolayer exhibits a half-metallic performance,and its Curie temperature is about 200 K by using the Ising model.The Mn3C12S12monolayer possesses a nonmagnetic ground state and a SOC band-gap reaching 2.4 meV,indicating that it may achieve the quantum anomalous Hall effect.[35]A similar atomic structure,Mn3C12N12H12monolayer was predicted by Sunet al.The calculated results showed that the p–d exchange interactions could more effectively mediate the magnetic couplings,which results in a high Curie temperature of 450 K.[36]Very recently,Fenget al.reported a magnetic 2D Fe-PTC MOF material,which was synthesized from the reaction of 1,2,3,4,5,6,7,8,9,10,11,12-perthiolated coronene(Fe-PTC)with ammoniacal solutions of iron acetate.[37]The variable temperature conductivity measurements revealed that the 2D Fe-PTC MOF pellets display a typical semiconducting character and a room-temperature high conductivity reaching 10 S·cm?1.Furthermore,it is ferromagnetic below 20 K.The ferromagnetic ordering behavior mainly comes from the indirect exchanges between the localized spins of Fe atoms rather than the neighboring Fe atoms.

    Being influenced by the above findings,we propose several 2D transition metal-organic frameworks(TM-NH MOF,TM=Sc–Zn)systems using density functional theory(DFT)computations.The geometric construction and stability of these TM-NH MOF structures are firstly investigated.Then,their electronic structures are studied and diagnosed.Lastly,the magnetic properties of TM-NH MOF and their strain effect are systematically discussed.These results could provide a series of 2D MOF materials as potential excellent candidates applied in nanoscale spin electric devices.

    2.Methods

    The spin-polarized DFT calculations were performed with the Viennaab-initiosimulation package(VASP).[38,39]The generalized gradient approximation(GGA)with the Perdew–Burke–Ernzerhof(PBE)was selected to describe the exchange-correlation approximation.[40]The projected augmented wave(PAW)was adopted with the plane-wave cutoff energy of 500 eV.[41]The vacuum layer was larger than 20?A between the periodically repeated monolayers.The Hellmann–Feynman force on each atom was less than 0.01 eV·?A?1,and the total energy change was less than 1.0×10?5eV.A densek-point mesh with a grid density of 2π×0.01?A?1in the Monkhorst–Pack scheme was used.To treat the exchange–correlation energy of the localized d-orbital of TM atoms,the PBE+U(U=3 eV)calculations were employed by adding the Hubbard term to the Hamiltonian.[42,43]The VASPKIT code was used to manipulate the in/output VASP files.[44]Theab-initiomolecular dynamics(AIMD)was conducted with the Nose algorithm in theNVTensemble.[45]

    3.Results and discussion

    3.1.Geometry and stability

    The unit cell of the studied 2D metal-organic frameworks is built by three transition-metal atoms on graphene with four pyridine-nitrogen-like atoms passivated by H atoms(TM-NH MOF),as shown in Fig.1,leading to a chemical formula of TM3(C2NH)12in a primitive cell.As similar to other 2D MOF materials,TM-NH MOF monolayers are 2D porous carbonrich materials with one-atom-thickness.The nanosheets of graphene with three high-symmetric sp2-C atoms(C1,C2,C3)possess largeπ-bonds,which would enhance the stability of these TM-NH MOF monolayers.The optimized lattice constants of these TM-NH MOF(TM=Sc–Zn)monolayers were calculated by the variation of energies with different lattice constants(Fig.S1).The calculated lattice constants(la),bond lengths of TM–N(DTM?N),N–H(DN?H),N–C1(DN?C1),C1–C2(DC1?C2),and C2–C3(DC2?C3),and the diameters of the hole(Φ)are summarized in Table 1 and Table S1.The lattice constants of the TM-NH MOF monolayers display a decreased trend for Sc–Co(13.23?A→12.52?A)and an increased trend for Ni–Zn(12.52?A→12.95?A).The bond lengths of N–H(DN?H),N–C1(DN?C1),C1–C2(DC1?C2),and C2–C3(DC2?C3)keep the same for different TM-NH MOFs.The bond lengths of TM–N(DTM?N)and the diameters of the hole(Φ)exhibit the same change trend as that of the lattice constants,as transition-metals have different atomic radii.For example,the Sc-NH MOF monolayer possesses the largest lattice constants(13.23?A)corresponding to the largest atomic radius of Sc atom,consistent with the previous theoretical investigations for other 2D MOF materials.[46,47]

    Fig.1.Schematic atomic structures of 2D TM-NH MOF materials.The red dashed lines outline the unit cell.

    Table 1.The geometric parameters[lattice constants(la),bond lengths of TM-N(DTM?N),diameters of the hole(Φ)],the binding energy(Eb)per unit cell,and charge transfer of TM(QTM)and N atoms(QN)for different TM-NH MOF monolayers.For Bader charge analysis,+and?denote gaining and losing electrons,respectively.

    Fig.2.Top and side views of TM-NH MOF materials after the AIMD simulations at 500 K for 3 ps.

    3.2.Electronic property

    Both non-magnetic and magnetic configurations were investigated to identify the ground states of TM-NH MOF systems.The spin-polarized energy difference(ΔEspin)between the total energies of non-magnetic and magnetic states was computed byΔEspin=ENM?EM,whereENMandEMare the total energies for non-magnetic and magnetic states,respectively.The calculated spin-polarized energy differenceΔEspinis listed in Table 2.For Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOFs,theΔEspinvalues are positive,while for Sc-,Ni-,and Zn-NH MOFs,theΔEspinvalues are zero.These results confirm that Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOFs have magnetic ground states and Sc-,Ni-,and Zn-NH MOFs do not have ferromagnetic states.

    The electronic band structures of the TM-NH MOF monolayers were explored and plotted in Fig.3.These 2D TM-NH MOF nanomaterials could exhibit versatile electronic structures.The Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOFs possess spin splitting of band structures,producing magnetism.The Sc-,Ni-,and Zn-NH MOFs do not display spin polarization,according to the spin-polarized energy difference(ΔEspin)and being close to the hexaaminobenzederived 2D MOFs.[32]The Sc-,Ti-,V-,Cr-,and Mn-NH MOFs exhibit metallic characters,while Fe-,Co-,Ni-,Cu-,and Zn-NH MOFs are semiconductors(SM),and their band gaps are 0.56 eV,0.25 eV,0.41 eV,0.48 eV,and 0.61 eV,respectively(Table 2).The energy band structures of the Coand Cu-NH MOFs show a good bipolar magnetic semiconductor(BMS)feature,indicating they could be used for spin generation and injection.[23]

    Structural stability is a prerequisite requirement for any practical material.We first calculated the binding energy(Eb)per metal atom of these TM-NH MOF materials by the formulaEb=(Etot?Elinker?ETM)/3,whereEtot,Elinker,andETMrefer to the total energy of a unit cell,the energies of an isolated organic ligand(NH-graphene)and a TM atom,respectively.From Table 1,it is found that the binding energies(Eb)per metal atom range from?4.78 eV to?12.87 eV,which possess a similar magnitude for M3C12S12,[48,49]M3C12N12H12,[32,50]and M3C12O12.[46,47]These negative binding energies imply that these TM-NH MOF monolayers can be synthesized through appropriate chemical reactions.

    To further examine the thermal dynamics of these 2D MOF materials,canonical ensemble-based AIMD simulations were conducted under 500 K for 3000 fs.As shown in Figs.2 and S2,the variations of the total energy and temperature during the whole process display a little oscillation within a fixed value.The AIMD final geometric structures of these TM-NH MOFs show a slight buckling distortion and no bond-breaking,confirming their robust thermal structural stabilities.

    The structural stability confirms the effective connection between the TM nodes and NH-graphene organic ligands,which could be further validated by the charge transfer through Bader charge analyses.[51]The Bader charge results are listed in Table 1.The TM atoms lose electrons,while the neighboring N atoms get electrons.The losing electrons of the TM atoms decrease monotonously from Sc to Cu,which is tied to the electronegativity of TM.Generally,the lower electronegativity an element possesses,the more easily it loses electrons.The intense difference in electronegativity of TM and N elements induces strong charge transfer and interaction,which contributes to their robust ionic bonds(Fig.S3).

    Table 2.Band structure(BS)(M,HSM,BMS,SM denote metal,half-semiconductor,bipolar magnetic semiconductor,and semiconductor),total magnetic moment MT(μB)of TM-NH MOF,the magnetic moment of TM atomic basin MTM(μB)and N MN(μB)atom for TM-NH MOF systems and the integer values of TM atoms MTM?in(μB).ΔEspin(eV)is the energy difference between the total energies for non-magnetic and magnetic states.The spin polarization P(E(F/HOMO))at the Fermi level or the HOMO.

    Fig.3.Band structures of TM-NH MOF monolayers.The Fermi levels(EF)are set to 0 eV.

    To better understand the electrical features of TM-MH MOF nano-monolayers,the total density of states(TDOS)is depicted in Fig.4.The spin-asymmetry of TDOS around the Fermi energy is observable for Ti-,V-,Cr-,Mn-,Fe-,Co-,and Cu-NH MOF monolayers,while the delicate symmetrical TDOS can be found for Sc-,Ni-,and Zn-NH MOF nanosheets,consistent with the band structures.

    3.3.Magnetic property

    The total magnetic moments(MT)of TM-NH MOF systems,magnetic moments of TM atomic basin(MTM)and N(MN)atom in TM-NH MOF systems are listed in Table 2.For Sc-,Ni-,and Zn-NH MOF systems,the total magnetic moment is zero.Ti-,V-,Cr-,and Mn-NH MOF single layers possess fractional magnetic moments that range from 3.13μBto 9.56μBdue to fractional transfer charges from the TM atoms to the N atoms.While Fe-,Co-,and Cu-NH MOF systems exhibit integer magnetic moments with the values of 6μB,3μB,and 3μB,respectively,which are similar to the cases for TM-germanene,[52]TM-BeO,[53]and TMgraphdiyne/graphyne.[9]The total magnetic moments(MT)primarily come from the TM atoms(MTM).The total magnetic moments are lower than the corresponding integer values of the TM atoms(MTM?in),which results from the strong interaction between the TM atoms and the NH-graphene.

    It could be concluded that the different TM atoms in MOF monolayers could effectively tune their magnetic and electronic characteristics.This modulation mainly results from the electron transfer between TM elements and the NHgraphene.From Table 2,obvious charge transfer takes place from TM atoms to NH-graphene ligands,which could not only strengthen the structure stability but also tune the magnetic and electronic properties effectively.

    To further study the magnetism of these TM-NH MOF sheets,their spin-charge densities are plotted in Fig.5.Sc-,Ni-,Zn-NH MOFs have no spin density distribution,suggesting their total magnetic momentsMTbeing 0μB.In Ti-,V-,Cr-,Mn-,Fe-,and Co-NH MOF materials,the magnetic moments are localized.The spin-up densities are mainly around the TM atoms,while some spin-down densities distribute near the nearest N atoms.In the Cu-NH MOF monolayer,there are some spin-up densities around the N atoms,and spin-up and spin-down densities around the Cu atom,according to the results of magnetic moments depicted in Table 2.

    Fig.4.Total density of states of TM-NH MOF monolayers.The Fermi levels(EF)are set to 0 eV.

    Fig.5.Spin density distribution for(a)–(j)Sc–Zn TM-NH MOF monolayers.The yellow and blue isosurfaces denote the spin-up and spin-down charge densities,respectively.The isosurface charge density is 0.005 e/?A3.

    Fig.6.PDOS of C1(denote in Fig.1),N,and TM in TM-NH MOF monolayers.The Fermi levels(EF)are set to 0 eV.

    We plot the characteristics of projected density of states(PDOS)of the TM,N,and C1atoms for all ten TM-NH MOF systems in Fig.6.For Sc-NH MOF monolayer(Fig.6(a)),the delicate symmetry of PDOS indicates its nonmagnetic ground state.The N-pz,C-pzstates significantly overlap with the Sc-E1(dyz,dxz)states at Fermi level(EF),which manifests that the Sc-NH MOF possesses metallic character.As shown in Fig.6(b),the hybridization between the E1(dyz,dxz)orbitals of Ti and pzorbitals of O/N atoms occurs at the Fermi level(EF),leading to a metallic character.The giant asymmetry in the E2(dxy,dx2?y2)and A(dz2)orbitals of Ti atoms results in Ti-NH MOF monolayer becoming original magnetic,agreeing well with the spin density distribution shown in Fig.5(b).According to the PDOS of V-,Cr-,Mn-NH MOFs in Figs.6(c)–6(e),they show similar distribution.The E1(dyz,dxz)orbitals of TM and pzorbitals of O/N atoms are split asymmetrically atEF,which induce the magnetic moments of 7.13μB,9.53μB,9.56μBfor V-,Cr-,and Mn-NH MOFs,respectively.

    The Fe-NH MOF is similar to Co-NH MOF(Figs.6(f)–6(g)).The pzand E1(dyz,dxz)orbitals are split asymmetrically near the Fermi level,while the px,py,E2(dxy,dx2?y2)and A(dz2)orbitals are split asymmetrically far away from the Fermi level,which manifests their spin magnetism.The origins of VBM and CBM of Fe-and Co-NH MOF systems are different.For the Fe-NH MOF monolayer,the VBM and CBM come from the degenerate spin up Fe-dyzand Fe-dxzorbitals.While for the Co-NH MOF single-layer,the VBM and CBM are originated from the degenerate spin-down Co-dyzand spinup Co-dxzorbitals,respectively.These show that the Fe-NH MOF monolayer is a half-semiconductor(HSM)and Co-NH MOF is a bipolar magnetic semiconductor(BMS).Fe-and Co-NH MOF systems display the same spin polarization of 100%(Table 2),implying that they are potential candidates for spinelectronic devices.

    The PDOSs of Ni-and Zn-NH MOF monolayers shown in Figs.6(h)and 6(j)clearly indicate that the spin-up and spin-down states are symmetric,indicating their nonmagnetic ground states.Their origins of VBM and CBM are different,which are Ni-E1(dyz,dxz)and N-pzfor Ni-NH MOF,while C-pzand N-pzfor Zn-NH MOF.Ni-and Zn-NH MOF monolayers are nonmagnetic semiconductors with band-gap energy of 0.41 eV and 0.61 eV,respectively.

    For the monolayer Cu-NH MOF,the spin-up and spindown PDOSs are asymmetrical,indicating the presence of magnetism.The N-pz,C-pz,and E1(dyz,dxz)orbitals split asymmetrically and significantly overlap near the Fermi level,leading to the spin-up densities of Cu and N atoms in Cu-NH MOF(Fig.6(i)).Cu-NH MOF is a bipolar magnetic semiconductor(BMS),the VBM and CBM come from the spin-up N-pzand spin-down N-pzorbitals,respectively.

    3.4.Strain effect

    The 2D MOF materials possess a large dynamical range of exerting elastic strain,which could encourage them in the application of flexible spintronic devices.[54–56]The biaxial strain is defined byε=Δc/c0,where the lattice constants of the pristine and strained supercells arec0andc=c0±Δc,respectively.Here,the+|ε|and–|ε|represent tensile strain and compressive strain,respectively.The strain range from?5%to+5%was considered according to their mechanical strength and the previous reports,and the corresponding variations of the total magnetic moment(MT)of TM-NH MOF structures were calculated and shown in Fig.7.The strain can not induce the magnetism of Sc-,Ni-,and Zn-NH MOF systems,they still stay in the nonmagnetic ground state(Table S2).The strain also does not affect the total magnetic moments of Feand Co-NH MOFs,they remain at 6μBand 3μB,respectively.Interestingly,Cr-NH MOF has an approximately linear correlation between the total magnetic moment and strain(?5%to+5%).For V-and Ti-NH MOF monolayers,there is a slight increase from compressive strain of?5% to tensile strain of+5%.The Cu-NH MOF sheet exhibits a total magnetic moment of 1μBunder the strain of?5% to?3%,and a total magnetic moment of 3μBunder the strain of?1% to+5%.Furthermore,the PDOS of E1(dyz,dxz),E2(dxy,dx2?y2)and A(dz2)of the TM atoms in TM-NH MOFs under the different strain were calculated and shown in Fig.S4.The PDOS display different overlap nearEFunder different strain,leading to the variation in the total magnetic moments.The results confirm that strain engineering is an effective strategy to tune the electric and magnetic characters of nanomaterials.

    Fig.7.Magnetic moments of TM-NH MOF monolayers under the strain from?5%to 5%.

    4.Conclusion

    In summary,a series of 2D MOF materials TM3(C2NH)12are investigated by DFT calculations.The binding energies and AIMD indicate that these ten TM-NH MOF(TM=Sc–Zn)monolayers possess excellent structural stability,which results from the charge transfer and strong interaction between TM and NH-graphene.The optimized lattice constants of the TM-NH MOF monolayer are 12.52?A–13.23?A,which is dependent on the atomic radii of the transition-metal atoms.These TM-NH MOF monolayers exhibit different magnetic and electronic characters.Sc-,Ti-,V-,Cr,and Mn-NH MOFs are metallic,while Ni-and Zn-NH MOFs exhibit semiconductors(SM)with band gaps of 0.41 eV and 0.61 eV,respectively.Co-and Cu-NH MOF nanomaterials are good bipolar magnetic semiconductors(BMS).Fe-NH MOF monolayer is a half-semiconductor(HSM).The central transition metal atom could effectively modulate the magnetic property of TMNH MOFs,especially the different spin polarized d-orbitals of the TM atoms.The effect of elastic strain on the magnetic and electronic characters is studied under strain(from?5%to+5%).The results testify that charge redistribution of TM-3d states is responsible for the magnetic transformation under different elastic strains.This work proposes a new class of 2D MOF materials,and could shed light on the development of 2D magnetic materials.

    Acknowledgment

    The authors thank the high performance computing center of Henan Normal University,and national super computing center in Zhengzhou.

    猜你喜歡
    馬亞
    影 子
    馬亞飛 書法作品
    新疆藝術(2023年6期)2023-12-20 13:37:48
    乙醇和乙酸常見考點例忻
    買一束鮮花送自己
    Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon*
    基于ADRC的四旋翼飛行器抗干擾控制研究
    軟件(2020年3期)2020-04-20 00:54:46
    Electronic properties of size-dependent MoTe2/WTe2 heterostructure*
    有機化學專項訓練(二)
    對比學習“分子”和“原子”
    2015年高考化學模擬試題
    国产97色在线日韩免费| 国产xxxxx性猛交| 久久香蕉国产精品| 午夜精品在线福利| 久久久久久久久免费视频了| 亚洲色图av天堂| 99久久人妻综合| 91精品三级在线观看| a级毛片在线看网站| 操美女的视频在线观看| 日本vs欧美在线观看视频| 亚洲av第一区精品v没综合| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看亚洲国产| 一级作爱视频免费观看| 在线观看免费午夜福利视频| 欧美日韩视频精品一区| 99久久国产精品久久久| 久久99一区二区三区| 国产一区二区激情短视频| 丝袜美腿诱惑在线| 99国产精品一区二区蜜桃av | 欧美日韩一级在线毛片| 免费不卡黄色视频| 人妻久久中文字幕网| 亚洲欧洲精品一区二区精品久久久| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 自线自在国产av| 国产不卡av网站在线观看| 国产男女超爽视频在线观看| 国产国语露脸激情在线看| 淫妇啪啪啪对白视频| 亚洲精品成人av观看孕妇| 黄色女人牲交| 男人的好看免费观看在线视频 | 国产精品国产高清国产av | 国产成人啪精品午夜网站| 欧美精品啪啪一区二区三区| 无遮挡黄片免费观看| 天天添夜夜摸| 国产成人免费观看mmmm| 91九色精品人成在线观看| 国产欧美日韩一区二区三区在线| 亚洲av电影在线进入| 久久久国产成人免费| 人妻丰满熟妇av一区二区三区 | 欧美精品人与动牲交sv欧美| 欧美精品av麻豆av| 亚洲精品国产区一区二| 久久久久久久午夜电影 | 国产1区2区3区精品| 国产99白浆流出| 在线免费观看的www视频| 在线观看午夜福利视频| 亚洲欧美日韩高清在线视频| 亚洲三区欧美一区| 亚洲男人天堂网一区| 一级片免费观看大全| 免费久久久久久久精品成人欧美视频| 麻豆成人av在线观看| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 91麻豆av在线| av免费在线观看网站| 久久久精品免费免费高清| 天天操日日干夜夜撸| 一级片'在线观看视频| 岛国在线观看网站| 91麻豆精品激情在线观看国产 | 在线播放国产精品三级| 水蜜桃什么品种好| 亚洲av美国av| 如日韩欧美国产精品一区二区三区| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 亚洲精品国产精品久久久不卡| 久久香蕉激情| 天天躁日日躁夜夜躁夜夜| 亚洲少妇的诱惑av| av超薄肉色丝袜交足视频| 夫妻午夜视频| 妹子高潮喷水视频| 久久久久久久午夜电影 | 中文字幕av电影在线播放| 精品电影一区二区在线| 色94色欧美一区二区| 久久久精品国产亚洲av高清涩受| av不卡在线播放| 搡老岳熟女国产| 亚洲一码二码三码区别大吗| 正在播放国产对白刺激| 999精品在线视频| 老汉色av国产亚洲站长工具| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 黄色女人牲交| av福利片在线| 老司机深夜福利视频在线观看| 搡老岳熟女国产| 亚洲av欧美aⅴ国产| 国产成人啪精品午夜网站| 国产精品98久久久久久宅男小说| 人妻 亚洲 视频| 免费看十八禁软件| 两个人看的免费小视频| 韩国精品一区二区三区| 男女免费视频国产| xxx96com| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线观看99| 日本vs欧美在线观看视频| 不卡av一区二区三区| 一a级毛片在线观看| 国产有黄有色有爽视频| 国内久久婷婷六月综合欲色啪| 国产亚洲av高清不卡| 人人妻人人爽人人添夜夜欢视频| 国产成人av教育| 欧美乱码精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产午夜精品久久久久久| 波多野结衣一区麻豆| 91麻豆av在线| 日本黄色视频三级网站网址 | 色婷婷久久久亚洲欧美| 少妇被粗大的猛进出69影院| 亚洲人成电影免费在线| 天天躁日日躁夜夜躁夜夜| 日韩 欧美 亚洲 中文字幕| av网站免费在线观看视频| 成人影院久久| 不卡一级毛片| 国产一区二区三区在线臀色熟女 | 99国产精品一区二区三区| av视频免费观看在线观看| 久久性视频一级片| 91精品国产国语对白视频| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频| 国产人伦9x9x在线观看| 国产日韩欧美亚洲二区| 久久久久国内视频| 精品国产国语对白av| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 欧美最黄视频在线播放免费 | 精品国产美女av久久久久小说| 成人手机av| 国产成人免费无遮挡视频| 亚洲国产精品sss在线观看 | 欧美黄色淫秽网站| 亚洲欧美激情在线| 极品教师在线免费播放| 免费看a级黄色片| av网站免费在线观看视频| 午夜久久久在线观看| 黄网站色视频无遮挡免费观看| 女性生殖器流出的白浆| 欧美中文综合在线视频| 三上悠亚av全集在线观看| 一夜夜www| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 国产精品欧美亚洲77777| 国产亚洲精品久久久久久毛片 | 欧美国产精品va在线观看不卡| 久久中文看片网| 国产精品秋霞免费鲁丝片| 美女国产高潮福利片在线看| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美98| 午夜激情av网站| 国产精品二区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆乱淫一区二区| 久久精品人人爽人人爽视色| 国产片内射在线| 久久久久久人人人人人| 一级片免费观看大全| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 成年人黄色毛片网站| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 婷婷成人精品国产| 人成视频在线观看免费观看| 精品国产国语对白av| 一区福利在线观看| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 真人做人爱边吃奶动态| 亚洲视频免费观看视频| 精品午夜福利视频在线观看一区| 日韩欧美国产一区二区入口| 制服诱惑二区| 亚洲午夜精品一区,二区,三区| 高清视频免费观看一区二区| 午夜成年电影在线免费观看| 涩涩av久久男人的天堂| 亚洲人成电影免费在线| 建设人人有责人人尽责人人享有的| 国产精品自产拍在线观看55亚洲 | 色94色欧美一区二区| 欧美国产精品一级二级三级| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片 | 天堂√8在线中文| 久久精品国产99精品国产亚洲性色 | 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 国产免费现黄频在线看| 午夜成年电影在线免费观看| 国产成人系列免费观看| 热99re8久久精品国产| 亚洲国产精品合色在线| 国产精品九九99| 黑人猛操日本美女一级片| 亚洲伊人色综图| 午夜福利在线观看吧| 男男h啪啪无遮挡| 他把我摸到了高潮在线观看| 亚洲人成伊人成综合网2020| 亚洲精品中文字幕在线视频| 18在线观看网站| 午夜91福利影院| 宅男免费午夜| 亚洲avbb在线观看| 三上悠亚av全集在线观看| 一级片免费观看大全| 丝袜美足系列| 免费在线观看完整版高清| 中文字幕色久视频| 欧美日韩亚洲高清精品| 中亚洲国语对白在线视频| 中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 亚洲一区高清亚洲精品| 999久久久国产精品视频| av网站免费在线观看视频| 看黄色毛片网站| 99热只有精品国产| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 欧美乱妇无乱码| 男男h啪啪无遮挡| 国产精品久久久av美女十八| 老汉色av国产亚洲站长工具| 超色免费av| 一区在线观看完整版| www.熟女人妻精品国产| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲| 狠狠婷婷综合久久久久久88av| 操美女的视频在线观看| 不卡av一区二区三区| 午夜福利乱码中文字幕| 在线观看午夜福利视频| 精品久久久久久久久久免费视频 | 精品高清国产在线一区| av中文乱码字幕在线| 亚洲av第一区精品v没综合| 国产精品永久免费网站| 午夜两性在线视频| 国产欧美日韩精品亚洲av| 国产精品秋霞免费鲁丝片| 欧美性长视频在线观看| 99在线人妻在线中文字幕 | 黄色视频不卡| 欧美精品av麻豆av| 国产蜜桃级精品一区二区三区 | 一进一出好大好爽视频| 欧美国产精品一级二级三级| 亚洲精品久久成人aⅴ小说| 日本一区二区免费在线视频| 亚洲精品成人av观看孕妇| 亚洲av第一区精品v没综合| 色综合婷婷激情| 十八禁网站免费在线| 国产精品久久电影中文字幕 | 一级作爱视频免费观看| 身体一侧抽搐| 夜夜爽天天搞| 欧美日韩瑟瑟在线播放| 香蕉丝袜av| 黄色a级毛片大全视频| 国产免费av片在线观看野外av| 可以免费在线观看a视频的电影网站| 男人舔女人的私密视频| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 亚洲九九香蕉| 久久国产亚洲av麻豆专区| 高清视频免费观看一区二区| 黄片播放在线免费| 亚洲男人天堂网一区| 夫妻午夜视频| 久久久精品免费免费高清| 久久草成人影院| 日本五十路高清| 久9热在线精品视频| 亚洲成人免费电影在线观看| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 纯流量卡能插随身wifi吗| 18禁裸乳无遮挡免费网站照片 | 亚洲av第一区精品v没综合| 亚洲国产欧美网| 亚洲精品美女久久av网站| 黄色丝袜av网址大全| 国产淫语在线视频| 国产精品久久电影中文字幕 | x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 青草久久国产| 建设人人有责人人尽责人人享有的| av超薄肉色丝袜交足视频| 久久久久国产精品人妻aⅴ院 | 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 色94色欧美一区二区| 国产精品一区二区在线不卡| 伊人久久大香线蕉亚洲五| a级毛片在线看网站| svipshipincom国产片| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 性少妇av在线| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区| 国产成人欧美在线观看 | av超薄肉色丝袜交足视频| 日日爽夜夜爽网站| 国产亚洲精品第一综合不卡| av网站免费在线观看视频| 日日夜夜操网爽| 精品一品国产午夜福利视频| 一级作爱视频免费观看| 曰老女人黄片| 捣出白浆h1v1| 精品欧美一区二区三区在线| 999精品在线视频| 天天操日日干夜夜撸| 中文字幕高清在线视频| 国产精品.久久久| 黄色怎么调成土黄色| 亚洲av美国av| 欧美最黄视频在线播放免费 | 18禁国产床啪视频网站| 亚洲成a人片在线一区二区| 变态另类成人亚洲欧美熟女 | 建设人人有责人人尽责人人享有的| 黑丝袜美女国产一区| 国产片内射在线| 一进一出抽搐gif免费好疼 | 高清毛片免费观看视频网站 | 最新美女视频免费是黄的| 免费看a级黄色片| 91国产中文字幕| 在线观看舔阴道视频| 国产主播在线观看一区二区| 成人手机av| 757午夜福利合集在线观看| 美女高潮到喷水免费观看| 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 久久人妻熟女aⅴ| 成人三级做爰电影| 97人妻天天添夜夜摸| 18禁国产床啪视频网站| 一级作爱视频免费观看| 久久精品国产综合久久久| 久久久久久久国产电影| 精品人妻在线不人妻| 日韩一卡2卡3卡4卡2021年| 精品第一国产精品| 免费黄频网站在线观看国产| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 九色亚洲精品在线播放| 老司机影院毛片| 国内久久婷婷六月综合欲色啪| av中文乱码字幕在线| 国产精品久久视频播放| 黑人操中国人逼视频| 国产一区有黄有色的免费视频| 免费看十八禁软件| 亚洲欧美一区二区三区久久| 99热只有精品国产| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 国产欧美日韩一区二区精品| 变态另类成人亚洲欧美熟女 | 国产日韩欧美亚洲二区| 久久九九热精品免费| 夜夜躁狠狠躁天天躁| 人妻 亚洲 视频| 国产男女内射视频| 日本欧美视频一区| a在线观看视频网站| 久久国产精品影院| 狠狠狠狠99中文字幕| 亚洲 欧美一区二区三区| 丰满的人妻完整版| 黑人猛操日本美女一级片| 久久久久久久国产电影| 露出奶头的视频| svipshipincom国产片| 久久久久久人人人人人| 黑丝袜美女国产一区| 国产人伦9x9x在线观看| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av | 久久久国产精品麻豆| av国产精品久久久久影院| 国产又爽黄色视频| 久久香蕉激情| 国产精品乱码一区二三区的特点 | 日韩欧美国产一区二区入口| 69av精品久久久久久| 看黄色毛片网站| 亚洲视频免费观看视频| 亚洲人成电影免费在线| 老司机在亚洲福利影院| 岛国毛片在线播放| 女人被狂操c到高潮| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产综合久久久| 90打野战视频偷拍视频| 久久ye,这里只有精品| 免费在线观看影片大全网站| 香蕉丝袜av| 欧美国产精品一级二级三级| 精品一区二区三卡| 色综合欧美亚洲国产小说| 日本欧美视频一区| 精品午夜福利视频在线观看一区| 欧美日韩一级在线毛片| 欧美久久黑人一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 一区在线观看完整版| 一级a爱视频在线免费观看| 国产有黄有色有爽视频| 91精品国产国语对白视频| 精品乱码久久久久久99久播| www.精华液| 啦啦啦免费观看视频1| 两人在一起打扑克的视频| 国产欧美日韩一区二区三区在线| 在线观看免费日韩欧美大片| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜制服| 少妇猛男粗大的猛烈进出视频| 欧美黑人欧美精品刺激| av一本久久久久| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| www.自偷自拍.com| 麻豆国产av国片精品| 黄网站色视频无遮挡免费观看| 久久天躁狠狠躁夜夜2o2o| 变态另类成人亚洲欧美熟女 | 99精品欧美一区二区三区四区| 日日爽夜夜爽网站| а√天堂www在线а√下载 | 很黄的视频免费| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 美女高潮喷水抽搐中文字幕| 韩国av一区二区三区四区| 母亲3免费完整高清在线观看| 国产精品久久久久久精品古装| aaaaa片日本免费| 国产不卡一卡二| 国产日韩一区二区三区精品不卡| 午夜福利在线免费观看网站| 777久久人妻少妇嫩草av网站| 青草久久国产| 午夜福利视频在线观看免费| 国产aⅴ精品一区二区三区波| videosex国产| 色老头精品视频在线观看| 久久精品亚洲av国产电影网| 男女午夜视频在线观看| 免费av中文字幕在线| 亚洲精品粉嫩美女一区| 岛国在线观看网站| 免费观看a级毛片全部| 新久久久久国产一级毛片| 亚洲国产中文字幕在线视频| 国产午夜精品久久久久久| 欧美国产精品va在线观看不卡| 一区二区三区精品91| 精品人妻1区二区| 高清在线国产一区| 91成年电影在线观看| 久久久久国产精品人妻aⅴ院 | 色在线成人网| xxx96com| 少妇裸体淫交视频免费看高清 | 精品人妻1区二区| 国产精品永久免费网站| 色94色欧美一区二区| 国产乱人伦免费视频| 男人操女人黄网站| 亚洲第一av免费看| 免费观看精品视频网站| 高清黄色对白视频在线免费看| 国产99白浆流出| 首页视频小说图片口味搜索| 欧美黄色片欧美黄色片| 一本大道久久a久久精品| 久久精品亚洲av国产电影网| 无遮挡黄片免费观看| 9色porny在线观看| 午夜亚洲福利在线播放| 国产亚洲一区二区精品| 操美女的视频在线观看| 国产精品免费一区二区三区在线 | 日韩三级视频一区二区三区| 国产精品国产高清国产av | 国产又爽黄色视频| 一级毛片女人18水好多| 日本a在线网址| 精品国产亚洲在线| 欧美黄色淫秽网站| 中文字幕人妻丝袜一区二区| 欧美精品啪啪一区二区三区| 99香蕉大伊视频| 国产又爽黄色视频| 亚洲色图综合在线观看| 满18在线观看网站| 三上悠亚av全集在线观看| 亚洲国产中文字幕在线视频| 久久久国产精品麻豆| 在线观看66精品国产| 日韩一卡2卡3卡4卡2021年| 国产不卡av网站在线观看| 91九色精品人成在线观看| 欧美亚洲 丝袜 人妻 在线| 人人妻,人人澡人人爽秒播| 国内久久婷婷六月综合欲色啪| 亚洲av电影在线进入| 变态另类成人亚洲欧美熟女 | av福利片在线| 精品人妻在线不人妻| 亚洲午夜理论影院| 国产精品成人在线| 国产又爽黄色视频| 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| 极品少妇高潮喷水抽搐| 国产精品一区二区在线不卡| 少妇裸体淫交视频免费看高清 | 在线观看一区二区三区激情| 精品少妇久久久久久888优播| 大型av网站在线播放| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产色婷婷电影| 国产男女超爽视频在线观看| 一区二区三区激情视频| 国产单亲对白刺激| 欧美激情极品国产一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 日本撒尿小便嘘嘘汇集6| 国产一卡二卡三卡精品| 99久久99久久久精品蜜桃| 亚洲五月婷婷丁香| 巨乳人妻的诱惑在线观看| av国产精品久久久久影院| av超薄肉色丝袜交足视频| 女人高潮潮喷娇喘18禁视频| 黄色a级毛片大全视频| 久久久久久久精品吃奶| 久久久久久久国产电影| 中文字幕最新亚洲高清| 18禁美女被吸乳视频| 18禁观看日本| 男女高潮啪啪啪动态图| 亚洲性夜色夜夜综合| 建设人人有责人人尽责人人享有的| 中出人妻视频一区二区| 日本精品一区二区三区蜜桃| www日本在线高清视频| av福利片在线| 黄色女人牲交| 久久精品亚洲精品国产色婷小说| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久人人做人人爽| 国产成+人综合+亚洲专区| 精品熟女少妇八av免费久了| 一进一出好大好爽视频| 不卡av一区二区三区| 人人妻人人澡人人看| 欧美黄色片欧美黄色片| 曰老女人黄片| 夜夜夜夜夜久久久久| 99在线人妻在线中文字幕 | 午夜老司机福利片| 亚洲av美国av| 国产乱人伦免费视频| 欧美黄色淫秽网站| 国产精品九九99| 亚洲三区欧美一区| 美女扒开内裤让男人捅视频| 极品教师在线免费播放| 一进一出抽搐gif免费好疼 |