• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic properties of size-dependent MoTe2/WTe2 heterostructure*

    2019-11-06 00:45:36JingLiu劉婧YaQiangMa馬亞強(qiáng)YaWeiDai戴雅薇YangChen陳煬YiLi李依YaNanTang唐亞楠andXianQiDai戴憲起
    Chinese Physics B 2019年10期
    關(guān)鍵詞:馬亞

    Jing Liu(劉婧),Ya-Qiang Ma(馬亞強(qiáng)),?,Ya-Wei Dai(戴雅薇),Yang Chen(陳煬),Yi Li(李依),Ya-Nan Tang(唐亞楠),and Xian-Qi Dai(戴憲起),?

    1College of Physics and Materials Science,Henan Normal University,Xinxiang 453007,China

    2Physics Department,The University of Hong Kong,Pokfulam Road,Hong Kong,China

    3School of Physics and Electronic Engineering,Zhengzhou Normal University,Zhengzhou 450044,China

    Keywords:first-principles calculations,electronic structures,MoTe2/WTe2 superlattice,strain effects

    1.Introduction

    Heterostructures consisting of dissimilar materials have been the indispensable elements in modern electronics,including spin valve,[1]photovoltaics,[2]field-effect transistor,[3]energy harvester,[4]etc. Looking beyond conventional threedimensional(3D)semiconductors,creating two-dimensional(2D)heterostructures may provide unprecedented opportunities in device processing and engineering.[5,6]The 2D transition metal dichalcogenides(TMDs)[7,8]have received researchers’attention in view of their favourable electronic,optoelectronic,spin and valley hall properties associated with their direct bandgap and spin–orbit coupled electric sheets.[9]Recently,TMDs have been synthesized successfully through liquid or mechanical exfoliation,[10–12]which paved the way for the further application of TMDs-based devices. Abundant building blocks could be provided by the isolated atomic monolayers of different TMDs to construct either van der Waals heterostructure[13]or lateral heterostructures.[14]Both vertical and lateral heterostructures have been successfully achieved by chemical vapor deposition(CVD)and molecular beam epitaxy(MBE)methods.[15–18]Compared with the van der Waals heterostructures,the in-plane heterostructures with edge contacts are assembled seamlessly,which can tune band offset easier,[19]create novel diodes,and enhance rectifying behavior,emission response,and photovoltaic effects.[20]The construction of lateral heterojunctions will enable new devices,such as in-plane transistors and diodes,[5]complementary logic circuits,and photodetectors to be realized.[20]

    Previous studies suggested that increasing the number of interfaces by modulating the ratio between{101}and{001}facets could improve the photocatalytic activity at anatase TiO2surfaces and the optimal ratio was determined to be 45:55.[21,22]Like the scenario of lateral heterostructures,it can be supposed that the quantity of the interfaces may affect the photoelectric properties of the LHSs. Besides,the fabrication of 2D lateral heterostructures relies on the substrate choice,indicating that the strain is inevitable in material growth.[23]Recent studies also showed that the 2D LHSs promise to be used in flexible or stretchable electronics,[24]thus marking the strain engineering feasible and valuable.For heterostructures,the abundant dislocations and defects caused by large lattice mismatch between different materials would severely limit their photoelectric performance and device applications.Selecting suitable materials as the building blocks to construct lateral heterostructures is highly desirable. As typical TMD materials,MoTe2and WTe2have several polymorphs,including semiconducting 2H phase,metallic 1T and 1T’phases,[25,26]where 2H–MoTe2and 1T’–WTe2are energetically more favorable under ambient condition.[27]Thus,aroused is the enormous interest in exploring whether the combination of the 2H–MoTe2in stable state and the 2H–WTe2in metastable state can exist stably and results in excellent physicochemical properties. Many efforts have been devoted to 2D TMDs lateral heterostructures in both experiment and theory.The MoTe2-based p–n diodes have been constructed for optoelectronic logics.[28]Gong et al.[29]reported a method of growing the scalable single-step vapour phase for both vertical and in-plane WS2/MoS2heterojunctions.Huang et al.[5]grew the MoSe2/WSe2heterojunctions by lateral heteroepitaxy through using physical vapour transport. Wei et al.[30]investigated the MoS2/WS2and MoSe2/WS2in-plane heterostructures by using first principle calaulations.However,a systematic study of the building block width and strain effect on MoTe2/WTe2lateral heterostructure is still lacking.

    Here in this work,stimulated by the past achievements,we investigate the electronic properties of MoTe2/WTe2lateral heterostructures with increased building blocks by using first principle method and also study the efficient band gap engineering through external biaxial strain modulations.Some attractive properties are found,which open the way to exploring the MoTe2/WTe2-based electronics beyond the current scope.

    2.Computational methods

    The first-principles density functional theory(DFT)[31,32]calculations were employed in conjunction with the projector augmented wave(PAW)[33]scheme as implemented in the Vienna ab initio simulation package(VASP).[34–36]The exchange and correlation contributions were determined by Perdew–Burke–Ernzerhof(PBE)from the generalized gradient approximation(GGA).[37]The cutoff energy for the planewave expansion of wave functions was chosen to be 500 eV and the atomic positions were fully relaxed to an energy convergence of 10?5eV and force convergence of 0.01The K-points-resolved typical value is 0.02 2which is determined by a fine grid of the Monkhorst–Pack method[38]in the Brillouin zone through VASPKIT package.[39]We used the periodic boundary conditions and a vacuum space of 15in the z direction to eliminate the spurious interaction between repeat images.In addition,the spin–orbit coupling(SOC)effect was included in the calculations of self-consistent electronic structure and the band structures were also examined by the Heyd–Scuseria–Ernzerhof(HSE06)hybrid functional[40]for selected lateral heterostructures. Besides,ab initio molecular dynamics(AIMD)simulations were carried out to examine their thermal stability by using the 3×3×1 supercells for A-11 LHS containing 108 atoms and 5×2×1 supercells for Z-11 LHS containing 120 atoms at 300 K in time steps of 1 fs.

    3.Results and discussion

    As typical TMD materials,monolayer Mo(W)Te2has a hexagonal crystal structure with the Mo(W)layer sandwiched between two Te layers.The in-plane heterostructure superlattice is constructed by stitching MoTe2and WTe2laterally in the same plane. To mimick the interfaces,the rhombic unit cell of MoTe2and WTe2are changed into a rectangular one,so are the Brillouin zones.In our study,there is no obvious lattice mismatch caused by using superlattice models to simulate MoTe2/WTe2heterostructure,which guarantees further experimental epitaxial quality with enhancing the electrical and optical capabilities of the interfaces. The lattice structures of MoTe2/WTe2heterojunctions with the one-dimensional(1D)interfaces along armchair and zigzag edge after geometry relaxation are illustrated in Figs.1(a)and 1(b),respectively.For convenience,the MoTe2/WTe2LHSs are denoted as A-mn for armchair interface while Z-mn for zigzag interface,where the index of m and n refer to the number of MoTe2and WTe2building units,respectively. It can be seen that the building blocks are seamlessly stitched together with almost no distortion being found along interlines.The interface boundaries in all considered MoTe2/WTe2LHSs remain distinguishable and sharp after geometry relaxations.

    Fig. 1. Top and side view atomic configurations of (a) A-mn MoTe2/WTe2 LHS and(b)Z-mn MoTe2/WTe2 LHS.

    After constructing various MoTe2/WTe2LHSs,the priority is to confirm their stability and assess the feasibility experimentally.The binding energy of the lateral heterostructure,as the energy gain in assembling MoTe2/WTe2LHSs,is calculated from the following equation:

    where Etotis the energy of the constructed LHSs,EMoTe2and EWTe2are,respectively,the total energy of MoTe2and WTe2component relative to that of their corresponding monolayer structures.The calculated Ebvalue is ?13 meV for A-11 LHS and ?5 meV for Z-11 LHS.As m and n increase from 1 to 6,the binding energy shows negligible difference and tends to be convergent.It is noteworthy that the decisive factor affecting the stability of LHS is related to the number of the interfaces between different building blocks.Accordingly,it is significant to study the structural stability of A-11 and Z-11 LHSs which own the maximum number of interfaces with serial building units.Then,the thermal stability of the A-11 and Z-11 LHSs are examined by ab initio molecular dynamics simulations.The variation of total energy and temperature during the simulation time as well as the snapshots of atomic configurations are shown in Fig.2.After heating at 300 K for 6 ps,neither broken bonds nor obvious structure distortion is found in the contact,and the oscillation for total energy is relatively slight during the AIMD simulation,[41]which confirms the fabrication of such LHS could be thermodynamically feasible in practice.

    Fig.2. Variation of total energy and snapshot structures with time of(a)A-11 and(b)Z-11 LHSs in the molecules dynamic simulation at 300 K in time steps of 6 ps.

    To study the electronic properties of these lateral heterostructures,the projected band structures at their optimized structured are calculated next. The band structure and corresponding atomic configurations of the pristine MoTe2and WTe2monolayers are presented in Figs.3(a)and 3(b).Both the relaxed MoTe2and WTe2building blocks have a rectangular lattice with size of a=3.55 ?A and b=6.15The obtained bond length of Mo–Te and W–Te are 2.73and 2.74respectively. The direct semiconducting character is observed in either MoTe2or WTe2monolayer with the bandgap value of 1.08 eV and 1.06 eV,respectively,which are corresponding to previous results.[42]Considering that the Mo and W atoms may have strong intrinsic SOC effect,taking the A-11 and Z-11 LHSs for example,the band structures of these two LHSs with and without the SOC effect are calculated as shown in Figs.3(c)–3(f).The A-11 and Z-11 LHSs also show the direct band gap semiconductor character and the band gap is located at P-point,which is sited on 1/3 X–Γ(the Q-point that will be sited on 0.24 X–Γ and mentioned later)in the rectangular Brillouin zone.The nonmagnetic nature is also maintained in both A-11 and Z-11 MoTe2/WTe2LHSs,which can be ascribed to the formation of perfect interfaces between different building blocks without any dangling bonds to sustain the pristine coordination numbers.Additionally,the dots in the band structures with different colors and diameters mean the orbital contributions from opposite MoTe2and WTe2components.The two kinds of building units with continuous spatial distribution lead to the mixed orbitals from both building blocks in the VBM and CBM.Based on the PBE method,the band gap value is 1.08 eV for A-11 LHS and the VBM and CBM move down to the lower energy in comparison with MoTe2monolayer while move up to the higher energy in comparison with WTe2monolayer.The band gap value is 1.05 eV for Z-11 LHS with the VBM and CBM shift towards the high energy level compared to both MoTe2and WTe2monolayers.As the SOC effect is considered,the energy splitting caused by the lack of inversion symmetry in 2H–TMDs narrows the band gap in both A-11 LHS and Z-11 LHSs.By contrast,the SOC effect applied on A-11 and Z-11 LHSs have no material influence on orbital contributions that origin from MoTe2and WTe2building blocks. Moreover,the projected band structure of A-11 and Z-11 LHSs with SOC effect also confirm the direct-gap semiconducting character. In order to verify the results predicted above,the calculated band structure of A-11 LHS and Z-11 LHS based on HSE06 level are provided in Fig.4. It can be seen that the energy gaps are still located at the P-point with the direct gap semiconducting character and the band gap value is,separately,1.51 eV for A-11 LHS and 1.47 eV for Z-11 LHS.The difference is minimal except for the changed bandgap values.Therefore,the DFT-PBE theory without SOC effect is reliable in describing such a kind of MoTe2/WTe2LHS and the PBE method without SOC will be adopted in the following studies.

    Fig.3.Band structures of pristine(a)MoTe2 and(b)WTe2 monolayers,where black dashed rectangles present the building blocks of the LHSs.Projected band structures of A-11 LHS(c)without and(d)with SOC effect.Projected band structures of Z-11 LHS(e)without and(f)with SOC effect.Orange and red dots represent MoTe2 units,and green and blue dots refer to WTe2 units.The band gaps are marked by blue arrows.

    Fig.4.Band structures of(a)A-11 LHS and(b)Z-11 LHS based on HSE06,with blue arrows indicating bandgaps and horizontal solid lines representing Fermi level.

    To investigate the MoTe2/WTe2LHS comprehensively,the electronic properties of A-mn and Z-mn(m=n=2,3,4,5,6)lateral heterostructures are further studied,respectively. The corresponding projected band structures of the LHSs with armchair interface are illustrated in Figs.5(a)–5(e)while those of the LHSs with zigzag interface are shown in Figs.5(f)–5(j).A common feature is that the VBM and CBM are contributed by opposite components,manifesting the type-II band alignment.What is more,the feature becomes more obvious with the width increasing because of the wider spatial distributions of different building blocks.A similar phenomenon was also observed in the lateral heterostructure of arsenene and antimonene.[43]The chemical potential difference between MoTe2and WTe2building blocks causes the band to be bent at the contact,which causes the photon-generated electron–hole pairs to be separated at opposite domains[44]in MoTe2/WTe2LHS.Type-II band alignment occurring in the MoTe2/WTe2LHS is efficient to facilitate the quantum efficiency and can make MoTe2/WTe2LHS a appealing candidate for solar cells.Similarly,the out-of-plane MoTe2/WTe2heterostructure also shows the type-II alignment.[45]Meanwhile,the direct band gap character remains in all considered LHSs and the gap changes in range of 0.01 eV.However,the position of CBM and VBM shift from P-point to Γ-point in A-33 and A-66 LHSs. To further study the variation of band gap location,we put emphasis on the A-mn LHSs with different ratios of building blocks in the following. From Table 1,it can be found that the bandgap location can change from Ppoint to Γ-point when m plus n is a multiple of 3.As a result of Brillouin zone folding,P-point can be folded to Γ-point in the Brillouin zone when expanding to a triploid supercell for A-mn superlattice structure.For Z-mn LHSs,Brillouin zone folding occurs in Γ–Y and A–X,which has noinfluence on the bandgap location.In fact,the bandgap located at the high symmetry Γ-point rather than at the arbitrary point in the X–Γ is beneficial to optoelectronic device because of the convenient electron transition. It is noteworthy that the direct bandgap semiconducting nature also remains in all considered LHSs.

    Table 1.Bandgap locations of all considered A-mn LHSs,with m and n denoting the number of MoTe2 and WTe2 building blocks,respectively.Solid circle and empty circle represent bandgaps located at Γ and P points,respectively.

    Unlike 2D vertical heterostructures,the building blocks in the in-plane heterostrutures are connected by chemical bonding other than stacked by vdW interactions due to the distinct and clean interlines.In order to validate the bonding properties within the interfaces,taking A-55 and Z-55 LHSs for example,the corresponding plane-integrated and the 3D isosurface of charge density difference are demonstrated in Figs.6(a)and 6(b). The charge redistribution mainly exists near the interlines and the electrons flow from WTe2to MoTe2,which will produce a build-in electric field and cause the band to be bent near the interface,which is favorable for the efficient separation of photogenic charges.[46]Besides,the significant charge transfer around the grain boundaries suggests the strong ionic bonds in the LHS.To further confirm the bonding character,the electron localization function(ELF)of the Mo–Te and W–Te bonds away from and across the interlines are shown in Figs.6(c)and 6(d),respectively. Unlike the As/Sb LHS and some other lateral heterostructures,the Mo–Te and W–Te bonds across the interface show the typical ionic bonding,for the substantial concentration of electrons is only localized around Te atoms.By comparison,the ELF of Mo–Te and W–Te bonds that are away from the interface is very similar to the above case.The results also indicate the feasibility in synthesizing the MoTe2/WTe2LHS.

    Fig.5.Projected band structures of(a)A-22,(b)A-33,(c)A-44,(d)A-55,(e)A-66,(f)Z-22,(g)Z-33,(h)Z-44,(i)Z-55,and(j)Z-66 LHSs,respectively.

    Fig.6.Plane-integrated electron density difference and 3D isosurface of electron density difference(background)of(a)A-55 LHS and(b)Z-55 LHS,where purple and green areas represent electron accumulation and depletion,respectively,and isosurface value is set to be 0.005 Electron localization function(ELF)of Mo–Te and W–Te bonds across(upper)and away from(lower)interlines for(c)A-55 LHS and(d)Z-55 LHS,respectively.

    To study the variations of electronic structure near the interfaces,the local density of states(LDOS)projected on Mo(W)and two Te atoms adjacent next to the contacts of A-55 and Z-55 LHSs are plotted in Fig.7.The interfaces can be easily distinguished from the electronic structures.For A-55 LHS as shown in Figs.7(a)–7(f),the CBM and VBM state shift towards low energy compared with the pristine MoTe2unit cell.When approaching to interline,the first peak in unoccupied state becomes smaller and the occupied states move towards the Fermi level,leading the bandgap value to decrease. As shown in Figs.7(g)–7(l),the CBM states shift towards low energy while the VBM states shift towards the Fermi energy compared with intrinsic WTe2unit cell.The unoccupied states move towards the Fermi energy,reducing the bandgap value with approaching to the interface.The LDOS on Mo(W)and Te atoms of Z-55 LHS show a similar tendency of A-55 LHS.It can be seen clearly that the band bending occurs near the 1D interface,which consists with previous analysis.

    Fig.7.(a),(a′))Total density of states(TDOS)of pristine MoTe2 unit cell,(l),(l′)total density of states(TDOS)of pristine WTe2 unit cell,and(a)–(k),(a′)–(k′)local density of states(LDOS)of Mo(W)and Te atoms(between the two black dashed lines)adjacent to the interface region corresponding to A-55 LHS(top panel)and Z-55 LHS(bottom panel).

    For applications in nanodevices,bandgap engineering is considered as a powerful technique.Previous theoretical investigations reveal that an external strain has a remarkable influence on the band structure and dielectric constant of twodimension semiconducting TMDs.[47,48]In addition,applying suitable biaxial strain is an effective way to manipulate the electronic properties of MoTe2-based alloy compound.[49]The 1D interfaces formed by MoTe2and WTe2are strain free due to the negligible lattice mismatch.Therefore,taking the A-22 and Z-22 LHSs for example,an external biaxial strain is used to manipulate the band structures of MoTe2/WTe2lateral heterostructures.The biaxial strain effects on band edge variation for A-22 and Z-22 LHSs are calculated in Figs.8(c)and 8(d),respectively.The in-plane strain is defined as ε=(c?c0)/c0,where c0and c refer to the lattice constant of unstrained and strained supercell,respectively.For brevity,?ε represents the compressive strain.As shown in Fig.8(c),the band-gap of A-22 LHS retains direct and decreases gradually as tensile strain increases. The band gap transition dependent on the expansile lattice constant is linear and monotonic. On the other hand,as the compressive strain increases,the value of band gap initially increases until ε=?2%and then decreases continually to a strain of ?4%. There is also a direct–indirect transition at a critical strain of ?2%.The band gap variation tendency dependent on the shrinking lattice is not linear nor monotonic due to the direct–indirect transition.It can be seen from Fig.8(c)that the energy of the lowest unoccupied state at P-point(CBM at P)is lower than that at X-point(CBM at X)under the biaxial tensile strain or a relatively small compressive strain. However,CBM at P moves up until above the CBM at X when the lattice constant is reduced by 1.5%,which causes the direct–indirect transition.Figure 8(d)shows the band edge energy transition of Z-22 LHS.Comparing with the A-22 LHS,the difference is that the CBM state transition is between P and Q points instead of P and X points. Besides,as the compressive strain increases,the value of band gap initially increases until ε=?3%and then decreases to the strain of ?4%.As a consequence,the applied external biaxial strain has a remarkable influence on the electronic structures of MoTe2/WTe2lateral heterostructure.To study why the band edge states change with the elastic strain,the TDOS of A-22 and Z-22 LHSs and projected density of states(PDOS)of Mo,W,and Te atoms which are selected around the interfaces are calculated and exhibited in Figs.8(a)and 8(b),respectively.The electronic structures of VBM and CBM in the two LHSs are mainly dominated by Mo-d orbital,W-d orbital and a little by Te-p orbital. The Mo-d and W-d states overlap with the Te-p state significantly,which demonstrates the strong bonding at the interface.When applying a tensile(compressive)strain,the coupling between metal d and nonmetal p orbitals will weaken(strengthen),which further influences the bonding component in the VBM and CBM states and leads to the direct–indirect transition of the band gap.Besides,no band alignment transition is observed after applying the biaxial strain,indicating that the MoTe2/WTe2LHSs can be the candidate materials for the applications in flexible electronics.

    Fig.8.Plots of total density of states(TDOSs)and projected density of states(PDOSs)versus energy of(a)A-22 LHS and(b)Z-22 LHS.Fermi energy is set to be zero and indicated by vertical dotted black line.(c)Plots of calculated shift of the band edge energy(VBM states at P and X points,CBM states at P and X points)versus biaxial strain for A-22 LHS and(d)plots of band edge energy(VBM states at P and Q points,CBM states at P and Q points)versus axial strain for Z-22 LHS.

    4.Conclusions

    Using first-principles methods,we systematically investigate the electronic properties of size-dependent in-plane heterostructures constructed by MoTe2and WTe2building blocks. The corresponding geometric structures are studied and the ab initio molecular dynamics confirms their thermal stability at room temperature. The formed interfaces in all considered MoTe2/WTe2LHSs remain distinguishable and sharp after structure optimization,indicating the feasibility of synthesizing such LHSs. The direct bandgap nonmagnetic semiconductor nature is also observed in both kinds of seamless MoTe2/WTe2LHSs,which can be ascribed to the formation of perfect interfaces between MoTe2and WTe2building blocks. On account of Brillouin zone folding,the band gap location will change from P-point to Γ-point when expanding to a triploid supercell for A-mn LHSs,which is convenient for electron excitation so that these materials may be used in optoelectronic devices.The highly coveted type-II alignment with the physical separation of excitons is also identified,showing the enhanced quantum efficiency and the appealing applications in solar cells,electronics,and photocatalysis.Moreover,the external biaxial strain can lead to efficient bandgap engineering due to the change of nonmetal–metal coupling strength caused by the tensile or compressive strain while no band alignment transitions are observed under different biaxial strains.In general,this research points out a new perspective on electronic and optoelectronic devices and sheds light on exciting new opportunities in material science.

    Acknowledgment

    The authors thank the High Performance Computing Center of Henan Normal University for computing.

    猜你喜歡
    馬亞
    影 子
    馬亞飛 書法作品
    乙醇和乙酸常見考點(diǎn)例忻
    買一束鮮花送自己
    Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12*
    Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon*
    基于ADRC的四旋翼飛行器抗干擾控制研究
    軟件(2020年3期)2020-04-20 00:54:46
    有機(jī)化學(xué)專項(xiàng)訓(xùn)練(二)
    對(duì)比學(xué)習(xí)“分子”和“原子”
    2015年高考化學(xué)模擬試題
    18禁黄网站禁片免费观看直播| 观看免费一级毛片| 国产成人影院久久av| 一夜夜www| 日韩欧美三级三区| 人人妻,人人澡人人爽秒播| 成人特级黄色片久久久久久久| 精品一区二区三区人妻视频| 国产三级中文精品| 国产精品无大码| 国产伦精品一区二区三区视频9| 久久久久久伊人网av| 亚州av有码| 欧美性猛交黑人性爽| 91在线精品国自产拍蜜月| 天天躁日日操中文字幕| 99久国产av精品国产电影| 国产精品一二三区在线看| 亚洲在线观看片| 亚洲成人av在线免费| 黄片wwwwww| 免费观看人在逋| 日本黄色片子视频| 日韩在线高清观看一区二区三区| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 国产中年淑女户外野战色| 欧美最黄视频在线播放免费| 97碰自拍视频| 亚洲性夜色夜夜综合| 国产人妻一区二区三区在| 亚洲在线自拍视频| 国产高潮美女av| 黑人高潮一二区| 日本一二三区视频观看| 亚洲三级黄色毛片| 麻豆久久精品国产亚洲av| 国产成人91sexporn| 亚洲aⅴ乱码一区二区在线播放| 成人二区视频| 少妇高潮的动态图| 丰满的人妻完整版| 高清毛片免费观看视频网站| 啦啦啦韩国在线观看视频| 三级男女做爰猛烈吃奶摸视频| 成人三级黄色视频| 日韩精品有码人妻一区| 午夜影院日韩av| 最好的美女福利视频网| 国产一级毛片七仙女欲春2| 欧美不卡视频在线免费观看| 在线播放无遮挡| a级一级毛片免费在线观看| 成人亚洲精品av一区二区| 久久精品夜色国产| 国产片特级美女逼逼视频| 插阴视频在线观看视频| 日韩 亚洲 欧美在线| 麻豆成人午夜福利视频| 在现免费观看毛片| 春色校园在线视频观看| 久久久久性生活片| 国产综合懂色| 日韩在线高清观看一区二区三区| 亚洲性久久影院| 黄色配什么色好看| 成人特级黄色片久久久久久久| 国产高清视频在线播放一区| 久久久午夜欧美精品| 看非洲黑人一级黄片| 精品乱码久久久久久99久播| 亚洲精品影视一区二区三区av| av卡一久久| 欧美xxxx性猛交bbbb| 欧美xxxx性猛交bbbb| 在线免费十八禁| 午夜激情欧美在线| 别揉我奶头 嗯啊视频| 搞女人的毛片| 精品一区二区免费观看| 亚洲av免费高清在线观看| 国内精品久久久久精免费| 1000部很黄的大片| 18禁在线播放成人免费| 精品99又大又爽又粗少妇毛片| 欧美激情久久久久久爽电影| 亚洲av美国av| 一级黄片播放器| av在线亚洲专区| 精品人妻视频免费看| 女人十人毛片免费观看3o分钟| 九九爱精品视频在线观看| 成人亚洲欧美一区二区av| 国产成人91sexporn| 亚洲精品国产av成人精品 | 日韩欧美 国产精品| АⅤ资源中文在线天堂| 麻豆av噜噜一区二区三区| 天天一区二区日本电影三级| 精品一区二区免费观看| 久99久视频精品免费| 赤兔流量卡办理| 国产av在哪里看| 亚洲av第一区精品v没综合| 成年av动漫网址| 国产视频一区二区在线看| 国产成年人精品一区二区| 麻豆国产av国片精品| 午夜精品一区二区三区免费看| 永久网站在线| 国产高清视频在线观看网站| 久久午夜亚洲精品久久| 亚洲天堂国产精品一区在线| 免费av不卡在线播放| 人妻夜夜爽99麻豆av| 一进一出抽搐gif免费好疼| 波多野结衣高清无吗| 少妇被粗大猛烈的视频| 国产乱人视频| 小说图片视频综合网站| 国产精品国产高清国产av| 看十八女毛片水多多多| 欧美绝顶高潮抽搐喷水| 亚洲欧美成人精品一区二区| 亚洲人成网站在线观看播放| 亚洲人成网站在线观看播放| 日韩在线高清观看一区二区三区| 可以在线观看毛片的网站| 一本精品99久久精品77| 可以在线观看的亚洲视频| 桃色一区二区三区在线观看| 久久精品夜色国产| 亚洲美女搞黄在线观看 | 永久网站在线| 亚洲成人精品中文字幕电影| 日本精品一区二区三区蜜桃| 性插视频无遮挡在线免费观看| 久久天躁狠狠躁夜夜2o2o| 国产精品嫩草影院av在线观看| 国产真实乱freesex| 99在线视频只有这里精品首页| 一边摸一边抽搐一进一小说| 欧美在线一区亚洲| 一级毛片我不卡| 在现免费观看毛片| 午夜激情欧美在线| a级毛色黄片| 久久精品国产99精品国产亚洲性色| 欧美成人免费av一区二区三区| 内地一区二区视频在线| 天堂av国产一区二区熟女人妻| 国产黄片美女视频| 亚洲精品日韩av片在线观看| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| 女生性感内裤真人,穿戴方法视频| 欧美成人a在线观看| 美女 人体艺术 gogo| 日本三级黄在线观看| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av| 禁无遮挡网站| 看片在线看免费视频| 欧美又色又爽又黄视频| 毛片一级片免费看久久久久| 在线播放无遮挡| 成人国产麻豆网| 精品一区二区三区视频在线| 黄色一级大片看看| 少妇的逼好多水| 欧美3d第一页| 三级国产精品欧美在线观看| 免费搜索国产男女视频| 欧美潮喷喷水| 丰满的人妻完整版| 色视频www国产| 国产精品一区二区三区四区免费观看 | 久久久精品欧美日韩精品| 色视频www国产| 欧美日韩国产亚洲二区| h日本视频在线播放| av女优亚洲男人天堂| 联通29元200g的流量卡| 免费观看精品视频网站| 在线观看av片永久免费下载| 91久久精品国产一区二区三区| 能在线免费观看的黄片| 黄色欧美视频在线观看| 免费无遮挡裸体视频| 亚洲精品成人久久久久久| 日韩欧美免费精品| 99热这里只有是精品在线观看| 少妇的逼水好多| 国产av在哪里看| 熟女人妻精品中文字幕| 2021天堂中文幕一二区在线观| 日本五十路高清| 国产私拍福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 成年av动漫网址| 少妇高潮的动态图| 99热只有精品国产| 国产v大片淫在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 国产成人精品久久久久久| 偷拍熟女少妇极品色| 老女人水多毛片| 神马国产精品三级电影在线观看| 午夜福利视频1000在线观看| 亚洲av五月六月丁香网| 亚洲精品国产成人久久av| 别揉我奶头 嗯啊视频| 欧美+亚洲+日韩+国产| 六月丁香七月| 一个人看视频在线观看www免费| 日韩欧美三级三区| 欧美高清性xxxxhd video| 欧美一区二区精品小视频在线| 一区二区三区四区激情视频 | 日韩人妻高清精品专区| 国产精华一区二区三区| 伦精品一区二区三区| 久久中文看片网| 夜夜夜夜夜久久久久| 欧美三级亚洲精品| 天天躁日日操中文字幕| 91在线观看av| 国产一区二区激情短视频| 亚洲av不卡在线观看| 波野结衣二区三区在线| 最好的美女福利视频网| 网址你懂的国产日韩在线| 五月玫瑰六月丁香| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 国产成人freesex在线 | 亚洲va在线va天堂va国产| 欧美高清性xxxxhd video| 91久久精品电影网| 69人妻影院| av天堂中文字幕网| 小说图片视频综合网站| 亚洲精品色激情综合| 久久久国产成人免费| 亚洲中文日韩欧美视频| 无遮挡黄片免费观看| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| АⅤ资源中文在线天堂| 少妇人妻精品综合一区二区 | 在线播放国产精品三级| 久久精品91蜜桃| 欧美性猛交黑人性爽| 午夜爱爱视频在线播放| 赤兔流量卡办理| 蜜臀久久99精品久久宅男| 我要看日韩黄色一级片| a级毛色黄片| 日本熟妇午夜| 91麻豆精品激情在线观看国产| 免费在线观看成人毛片| 人妻制服诱惑在线中文字幕| 床上黄色一级片| 久久精品国产鲁丝片午夜精品| 亚洲美女黄片视频| 性插视频无遮挡在线免费观看| 青春草视频在线免费观看| 看非洲黑人一级黄片| 99热6这里只有精品| 午夜福利在线观看免费完整高清在 | а√天堂www在线а√下载| 天堂av国产一区二区熟女人妻| 99久久中文字幕三级久久日本| 如何舔出高潮| 色在线成人网| 国产精品美女特级片免费视频播放器| 麻豆久久精品国产亚洲av| 中国美女看黄片| 亚洲欧美日韩东京热| 国产精品日韩av在线免费观看| 国产在视频线在精品| 婷婷色综合大香蕉| 蜜桃亚洲精品一区二区三区| 免费看a级黄色片| 亚洲欧美中文字幕日韩二区| 国产午夜福利久久久久久| 嫩草影院入口| 亚洲欧美日韩东京热| 嫩草影院精品99| 中文字幕久久专区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av一区综合| 日韩一区二区视频免费看| 亚洲一级一片aⅴ在线观看| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 麻豆av噜噜一区二区三区| 中文字幕av成人在线电影| 最后的刺客免费高清国语| 伊人久久精品亚洲午夜| 日本免费a在线| 人人妻人人看人人澡| 亚洲内射少妇av| 久久久久久久亚洲中文字幕| 丰满人妻一区二区三区视频av| 久久99热6这里只有精品| 亚洲中文字幕日韩| 日本一二三区视频观看| 成人亚洲欧美一区二区av| 女人十人毛片免费观看3o分钟| av在线亚洲专区| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 国产一区二区在线av高清观看| 极品教师在线视频| 一个人看视频在线观看www免费| 成人综合一区亚洲| 黄色日韩在线| 免费高清视频大片| 51国产日韩欧美| 国产色婷婷99| 日韩人妻高清精品专区| 国产精品日韩av在线免费观看| 亚洲国产色片| 淫妇啪啪啪对白视频| 免费看光身美女| 2021天堂中文幕一二区在线观| 97在线视频观看| 麻豆乱淫一区二区| 熟妇人妻久久中文字幕3abv| 搡女人真爽免费视频火全软件 | 中文字幕免费在线视频6| 全区人妻精品视频| 国产精品日韩av在线免费观看| 99热全是精品| 久久精品国产亚洲av涩爱 | 又粗又爽又猛毛片免费看| 久久久久久伊人网av| 嫩草影院精品99| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久人妻蜜臀av| 嫩草影视91久久| 成人特级av手机在线观看| 国产成人福利小说| 美女cb高潮喷水在线观看| 成人美女网站在线观看视频| 亚洲精品一区av在线观看| 一夜夜www| 人妻丰满熟妇av一区二区三区| 国产成人影院久久av| 99热这里只有是精品50| 精品国产三级普通话版| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人综合另类久久久 | 免费人成视频x8x8入口观看| 亚洲精品一卡2卡三卡4卡5卡| 卡戴珊不雅视频在线播放| 欧美不卡视频在线免费观看| 欧美性感艳星| 亚洲成av人片在线播放无| 国产欧美日韩精品亚洲av| 亚洲av成人精品一区久久| 日韩中字成人| 亚洲美女搞黄在线观看 | 国产欧美日韩精品一区二区| 国产成年人精品一区二区| 精品久久久久久久久久免费视频| 少妇的逼好多水| 十八禁国产超污无遮挡网站| 日本精品一区二区三区蜜桃| av专区在线播放| 女生性感内裤真人,穿戴方法视频| 成人欧美大片| 日韩强制内射视频| 国产免费男女视频| 舔av片在线| 日本一本二区三区精品| 免费高清视频大片| 久久久久久久久中文| 激情 狠狠 欧美| 搡老熟女国产l中国老女人| 久久综合国产亚洲精品| 精品少妇黑人巨大在线播放 | 麻豆国产97在线/欧美| 免费人成在线观看视频色| 有码 亚洲区| a级一级毛片免费在线观看| 成人特级av手机在线观看| 97超碰精品成人国产| 一级毛片久久久久久久久女| 亚洲av五月六月丁香网| 一本久久中文字幕| 12—13女人毛片做爰片一| 能在线免费观看的黄片| 日产精品乱码卡一卡2卡三| 性欧美人与动物交配| 成人三级黄色视频| 中文字幕免费在线视频6| 国产伦精品一区二区三区视频9| 尤物成人国产欧美一区二区三区| 亚洲国产欧洲综合997久久,| 看黄色毛片网站| 18禁在线播放成人免费| 少妇高潮的动态图| 亚洲欧美清纯卡通| 国产精品综合久久久久久久免费| 久久99热6这里只有精品| 一级a爱片免费观看的视频| 精品99又大又爽又粗少妇毛片| 日韩制服骚丝袜av| 淫妇啪啪啪对白视频| 国产一区二区在线av高清观看| 看片在线看免费视频| 欧美性猛交黑人性爽| 亚洲性久久影院| 女人十人毛片免费观看3o分钟| .国产精品久久| 国产精品久久视频播放| 午夜福利在线观看免费完整高清在 | 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 成年女人毛片免费观看观看9| 一区福利在线观看| 亚洲av成人精品一区久久| 国产精品三级大全| 熟妇人妻久久中文字幕3abv| 一区二区三区免费毛片| 99久久久亚洲精品蜜臀av| 亚洲人与动物交配视频| 村上凉子中文字幕在线| 亚洲久久久久久中文字幕| 久久精品国产清高在天天线| av专区在线播放| 欧美性感艳星| 一个人看的www免费观看视频| 高清毛片免费观看视频网站| 亚洲成人久久性| 在线免费观看不下载黄p国产| 91久久精品电影网| 女人被狂操c到高潮| 成人国产麻豆网| 亚洲人成网站高清观看| 国产一区二区在线av高清观看| 中国美白少妇内射xxxbb| 欧美激情在线99| 国产熟女欧美一区二区| 午夜激情欧美在线| 久久精品国产自在天天线| 级片在线观看| 一级毛片电影观看 | 麻豆乱淫一区二区| 亚洲精品一区av在线观看| 美女 人体艺术 gogo| 美女免费视频网站| 真实男女啪啪啪动态图| 久久久久久大精品| 欧美激情久久久久久爽电影| 午夜福利视频1000在线观看| 99国产极品粉嫩在线观看| 极品教师在线视频| 在线免费观看的www视频| 波多野结衣巨乳人妻| 日本免费a在线| 欧美最新免费一区二区三区| 国产真实乱freesex| 国产乱人视频| 老司机午夜福利在线观看视频| 免费av毛片视频| 成人一区二区视频在线观看| 日本免费a在线| 国产老妇女一区| 精品人妻熟女av久视频| 国产精品久久视频播放| 99精品在免费线老司机午夜| 少妇被粗大猛烈的视频| 麻豆av噜噜一区二区三区| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频 | 深爱激情五月婷婷| 尤物成人国产欧美一区二区三区| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 真实男女啪啪啪动态图| 久久精品国产自在天天线| 性色avwww在线观看| 看片在线看免费视频| 国产精品一及| 尤物成人国产欧美一区二区三区| 少妇丰满av| 成熟少妇高潮喷水视频| 美女大奶头视频| 成人二区视频| 国产不卡一卡二| 天堂网av新在线| 欧美性猛交╳xxx乱大交人| 人人妻人人澡人人爽人人夜夜 | 日本熟妇午夜| 日本欧美国产在线视频| 精品一区二区三区人妻视频| 久久国内精品自在自线图片| 国内精品一区二区在线观看| 亚洲精品国产成人久久av| 欧美最黄视频在线播放免费| 日韩欧美一区二区三区在线观看| 啦啦啦啦在线视频资源| 亚洲一区二区三区色噜噜| 免费人成视频x8x8入口观看| 免费无遮挡裸体视频| 日日摸夜夜添夜夜爱| 国产av麻豆久久久久久久| 九色成人免费人妻av| 国产欧美日韩精品一区二区| 免费观看人在逋| 国产精品久久久久久久电影| 99热这里只有是精品在线观看| 丰满的人妻完整版| 天堂影院成人在线观看| 日韩制服骚丝袜av| 久久久久性生活片| 亚洲欧美精品综合久久99| 免费av观看视频| 97在线视频观看| 国产激情偷乱视频一区二区| 男女边吃奶边做爰视频| 欧美潮喷喷水| 亚洲国产欧美人成| 国产色爽女视频免费观看| 日韩制服骚丝袜av| 国产v大片淫在线免费观看| 99国产极品粉嫩在线观看| 久久久国产成人免费| 两性午夜刺激爽爽歪歪视频在线观看| 哪里可以看免费的av片| 精品久久久久久久久久久久久| 九九久久精品国产亚洲av麻豆| 亚洲不卡免费看| 香蕉av资源在线| 尤物成人国产欧美一区二区三区| 国产精品,欧美在线| 国产在视频线在精品| 亚州av有码| 亚洲在线自拍视频| 国产精品av视频在线免费观看| 成人鲁丝片一二三区免费| 日本黄大片高清| 俺也久久电影网| 人人妻人人澡人人爽人人夜夜 | 亚洲熟妇中文字幕五十中出| 亚洲人成网站高清观看| 久久久久久伊人网av| 欧美极品一区二区三区四区| 蜜臀久久99精品久久宅男| 狂野欧美白嫩少妇大欣赏| 99久久久亚洲精品蜜臀av| 亚洲四区av| 1000部很黄的大片| 在线免费十八禁| 成人av一区二区三区在线看| 午夜爱爱视频在线播放| 久久热精品热| 国产日本99.免费观看| 神马国产精品三级电影在线观看| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 最近中文字幕高清免费大全6| 久久久久久久久久成人| 男女边吃奶边做爰视频| 小蜜桃在线观看免费完整版高清| 久久久精品94久久精品| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 国产免费男女视频| 久久6这里有精品| 亚洲av五月六月丁香网| 一区二区三区四区激情视频 | 亚洲在线自拍视频| 美女黄网站色视频| 国产av一区在线观看免费| 久久久久久伊人网av| 国产aⅴ精品一区二区三区波| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 狂野欧美激情性xxxx在线观看| 黄色一级大片看看| 99热6这里只有精品| 婷婷色综合大香蕉| 亚洲第一电影网av| 亚洲av美国av| 免费观看精品视频网站| 国产黄a三级三级三级人| 成人欧美大片| 久久精品综合一区二区三区| 国产在线精品亚洲第一网站| 十八禁网站免费在线| 亚洲中文日韩欧美视频| 我要搜黄色片| 看十八女毛片水多多多| 春色校园在线视频观看| 国产高清视频在线播放一区| 午夜激情欧美在线| 色在线成人网| 日本在线视频免费播放| 高清日韩中文字幕在线| 天堂av国产一区二区熟女人妻| 嫩草影院新地址| 久久热精品热| av在线老鸭窝| 观看美女的网站| 免费在线观看影片大全网站| 久久精品国产亚洲网站| 日韩中字成人| 别揉我奶头 嗯啊视频|