田鎮(zhèn),陳愛華,曹奕,吳楊平,張雨,陳素華,張志東,李秋潔
摘要:【目的】了解群體選育過程中紅殼色文蛤(Meretrix meretrix)選育群體的遺傳多樣性變化及世代遺傳分化情況,為文蛤育種計劃的可持續(xù)性提供理論依據?!痉椒ā恳越K黃文蛤原種(SY)、江蘇紅文蛤原種(SR)及5個紅殼色文蛤選育群體(SRF1~SR5F5)為研究對象,利用15對微衛(wèi)星引物對各文蛤群體基因組DNA進行PCR擴增,然后通過Gel-Pro32 4.0、PopGen 32和MEGA 6.0等在線軟件分析7個文蛤群體的遺傳多樣性?!窘Y果】從7個文蛤群體中共檢測出766個等位基因,每個微衛(wèi)星位點在每個群體中檢測出3~18個等位基因,且等位基因數(shù)(Na)隨選育世代增加呈下降趨勢。15個微衛(wèi)星位點的平均多態(tài)信息含量(PIC)在0.575~0.630,均屬于高度多態(tài)性位點。7個文蛤群體的平均觀測雜合度(Ho)為0.442~0.502,平均期望雜合度(He)為0.629~0.680,群體中63.81%的微衛(wèi)星位點偏離Hardy-Weinberg平衡,表明各微衛(wèi)星位點存在一定程度的雜合子缺失;群體內近交系數(shù)(Fis)范圍為-0.0157~0.7409,平均為0.2777,表明文蛤群體內存在一定程度的近交水平;群體間遺傳分化系數(shù)(Fst)平均為0.0455,即文蛤群體變異中僅有4.55%是由不同群體間的基因差異所產生,而95.45%的變異來源于群體內部;各群體的基因流(Nm)為0.9002~18.9478,平均為8.8065,說明7個文蛤群體間的遺傳分化較低。UPMGA聚類分析發(fā)現(xiàn)7個文蛤群體聚類呈兩大支,江蘇紅文蛤原種及其選育群體聚為一支,而江蘇黃文蛤原種(SY)獨自聚為一支。【結論】經過5代人工選育的紅殼色文蛤選育群體雖然較基礎群體其遺傳多樣性指數(shù)略有下降,但并未導致各選育群體的遺傳結構發(fā)生改變,仍具有較高的遺傳多樣性。在連續(xù)的選擇育種計劃中,應增加親本養(yǎng)殖環(huán)境多樣化,避免因人工繁育的親本和養(yǎng)殖群體規(guī)模較小引起遺傳漂移或近交衰退而致使某些等位基因缺失,導致后代的遺傳結構發(fā)生改變。
關鍵詞: 文蛤;紅殼色;群體選育;微衛(wèi)星;遺傳多樣性;遺傳漂移
中圖分類號: S968.317? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)09-2582-08
Microsatellite analysis on genetic diversity of breeding populations of red shell color Meretrix meretrix
TIAN Zhen1,2, CHEN Ai-hua1*, CAO Yi1, WU Yang-ping1, ZHANG Yu1,
CHEN Su-hua1, ZHANG Zhi-dong1,2, LI Qiu-jie1,2
(1Jiangsu Institute of Marine Fisheries, Nantong, Jiangsu? 226007, China;2Shanghai Ocean University/National Experimental Teaching Demonstration Center of Aquatic Science, Shanghai? 201306, China)
Abstract:【Objective】In order to understand the genetic diversity and generational genetic differentiation of breeding populations of red shell color Meretrix meretrix during population selection, and to provide theoretical basis for long-term sustainability of breeding programs. 【Method】In this study, fifteen pairs of microsatellite markers were used to analyze seven populations of M. meretrix, including Jiangsu wild population with yellow shell(SY), wild population with red shell (SR) and five generations selected consecutively though red shell and shell length(SRF1-SR5F5). Fifteen pairs of microsatellite primers were used for PCR amplification of genomic DNA of sevenpopulations. The genetic diversity of se-ven populations was analyzed by online softwares such as Gel-Pro32 4.0, PopGen 32 and MEGA 6.0. 【Result】The results showed that a total of 766 alleles were detected in seven populations,and 3 to 18 alleles were detected at each microsatellite locus in each population. The number of alleles (Na) decreased with the increase of breeding generations. The mean polymorphic information content (PIC) of the 15 microsatellite loci ranged from 0.575 to 0.630, so they were highly polymorphic loci. The average observed heterozygosity(Ho) and expected heterozygosity(He) were 0.442-0.502 and 0.629-0.680, respectively. 63.81% of microsatellite loci deviated from Hardy-Weinberg equilibrium, indicating a certain degree of heterozygous deletion at each microsatellite locus. The number of inbreeding lines(Fis) ranged from -0.0157 to 0.7409, with an average of 0.2777, indicating that there was a certain level of inbreeding in the population. The average coefficient of genetic differentiation(Fst) between populations was 0.0455, that was, 4.55% of the population variation was caused by gene differences between different populations, and 95.45% of the population variation was from within populations. The gene flow (Nm) of each population ranged from 0.9002 to 18.9478, with an average of 8.8065, indica-ting low genetic differentiation among the seven populations. UPMGA cluster analysis showed that the seven clam populations clustered into two branches, the SR and its breeding population clustered into one branch, and SY clustered into one branch. 【Conclusion】After five generations of artificial selective breeding, the genetic diversity index of the selected po-pulation decreased slightly compared with SR and SY, but the genetic structure of the selected population did not change andthey still had a high genetic diversity. In the continuous selective breeding program, the breeding environment of parents should be diversified to avoid the genetic drift or inbreeding decline caused by the small size of artificially bred parents and breeding population, which leads to the deletion of some alleles in breeding population and the change of genetic structure of offspring.
Key words:? Meretrix meretrix; red shell color; population selection; microsatellite; genetic diversity; genetic drift
Foundation item: Fishery Science and Technology Key Project of Jiangsu(D2018-1);General Project of Natural Science Foundation of Jiangsu(BK20181201);Subei Project of Jiangsu Department of Science and Technology(SZYC 2018064); Jiangsu Aquatic Breeds Conservation and Parent Updating Project(2020-SJ-006)
0 引言
【研究意義】文蛤(Meretrix meretrix)因肉質鮮美、分布范圍廣及資源量大等優(yōu)勢,已發(fā)展成為我國灘涂傳統(tǒng)養(yǎng)殖的主要貝類之一,也是朝鮮和日本等國家最常見的經濟貝類(王超,2011;孔令鋒等,2017)。文蛤野生群體存在殼色花紋復雜、生長速度低及抗逆性不強等缺陷,在今后很長一段時間內仍需通過人工選育途徑以打破期苗種限制。群體選育是目前廣泛應用于水產養(yǎng)殖品種遺傳改良的一種有效方法,但群體選育過程中產生的遺傳漂變(Keller and Waller,2002)和非隨機交配(曾吉,2018)等因素均有可能影響選育種群遺傳多樣性喪失,從而導致生長及抗逆等優(yōu)良性狀基因的缺失,增加近親交配衰退的風險(Wang et al.,2001;Evans et al.,2004)。在長期的群體選育過程中,選育群體遺傳多樣性降低已受到廣泛關注,包括魚類(Wang et al.,2011)、甲殼類動物(Zhang et al.,2014)和軟體動物等(Chen et al.,2017)。因此,如何最大限度地避免遺傳多樣性在選育后代中喪失,是水產育種工作者需要解決的首要問題?!厩叭搜芯窟M展】在遺傳育種工作中,保證選育種群足夠的遺傳變異水平不僅能增強其適應新環(huán)境及抵御疾病暴發(fā)的能力,還直接影響持續(xù)育種計劃的遺傳收益(Gamfeldt and Kallstrom,2007)?,F(xiàn)階段,有關長牡蠣(Crassostrea gigas)、菲律賓蛤仔(Ruditapes philippinarum)及泥蚶(Tegiccarca granosa)等選育群體遺傳結構的研究已有較多報道(王慶志等,2012;Xing et al.,2014;田野等,2015),但針對紅殼色文蛤選育群體世代中遺傳多樣性變化的研究并不多見。李太武等(2008)對5個文蛤地理群體不同殼色的研究發(fā)現(xiàn),不同地理群體的殼色存在明顯差異;朱東麗等(2012)利用SSR分子標記對4個殼色花紋文蛤品系進行遺傳分析,結果發(fā)現(xiàn)4個品系間存在明顯的遺傳差異;鄭培(2013)利用ISSR和SSR分子標記對3個文蛤選育世代的遺傳多樣性進行分析,發(fā)現(xiàn)選育群體遺傳多樣性仍保持在一個較高的水平;代平(2014)研究表明,繁育群體的有效群體大小直接會影響文蛤群體近交程度及親代對子代的貢獻率等;張雨等(2015)進行紅殼色文蛤選育時發(fā)現(xiàn),文蛤子代中的紅殼色個體比例不斷提高,且紅殼色文蛤F2代的殼長均顯著大于F1代,生長性能得到不斷提高,殼色也得到提純,即紅殼色文蛤的選育取得一定進展;吳楊平等(2017)在進行文蛤選育過程中發(fā)現(xiàn)紅殼色文蛤較其他殼色文蛤具有顯著的生長優(yōu)勢。【本研究切入點】開展選育群體遺傳多樣性檢測分析是實施遺傳改良計劃過程的必要環(huán)節(jié)(趙廣泰等,2010;彭敏等,2020)。江蘇海洋水產研究所經過5代的群體選育獲得一個文蛤新品系,在生長速度和殼色性狀上存在明顯的遺傳變異,但在群體選育過程中是否隨著選育世代增加各選育世代遺傳多樣性水平呈顯著變化,以及是否限制持續(xù)遺傳獲得的潛力和選擇力均有待進一步驗證。【擬解決的關鍵問題】通過基因組微衛(wèi)星分子標記評估群體選育過程中紅殼色文蛤選育群體的遺傳多樣性變化及世代遺傳分化情況,以期為文蛤育種計劃的可持續(xù)性提供理論依據。
1 材料與方法
1. 1 試驗動物
試驗動物為取自江蘇省海洋水產研究所呂四文蛤良種場保種的江蘇文蛤原種及經選育的不同世代江蘇紅殼色文蛤群體。選育群體是以江蘇南部沿海自然野生的紅殼色文蛤5000粒為育種基礎群體,以紅殼色+生長為目標性狀,通過閉鎖群體選育方式,經過10年選育獲得子五代選育系(表1),各選育世代的親本數(shù)均大于5000粒,每代的選擇強度約0.1%。利用不銹鋼編織網分割出7個不同區(qū)域放置文蛤幼苗進行同世代養(yǎng)殖對比,區(qū)域劃分為江蘇黃文蛤原種(SY)、江蘇紅文蛤原種(SR)、紅殼色文蛤選育群體子一代(SRF1)、紅殼色文蛤選育群體子二代(SR2F2)、紅殼色文蛤選育群體子三代(SR3F3)、紅殼色文蛤選育群體子四代(SR4F4)及紅殼色文蛤選育群體子五代(SR5F5);樣品獲取途徑均為實地采樣。每個群體隨機選取30個健康個體,除去附著物,吐沙完畢后以滅菌刀片將文蛤軟體部與殼體分離開,濾紙拭干軟體部與殼體,取其閉殼肌置于95%酒精中,-20 ℃保存?zhèn)溆谩?/p>
1. 2 試驗方法
1. 2. 1 基因組DNA提取 將文蛤閉殼肌從95%酒精中取出,濾紙吸干,剪碎,依次加入475 μL STE緩沖液、10 μL蛋白酶K(20 mg/mL)及25 μL 10% SDS(十二烷基硫磺鈉),混勻,55 ℃水浴消化2 h。參照DNA提取說明[生工生物工程(上海)股份有限公司]提取基因組DNA,經1.0%瓊脂糖凝膠電泳檢測后, -20 ℃保存?zhèn)溆谩?/p>
1. 2. 2 微衛(wèi)星引物篩選及來源 依據文蛤轉錄組開發(fā)微衛(wèi)星位點,通過Primer 5.0設計25對微衛(wèi)星引物,并委托生工生物工程(上海)股份有限公司合成。從中篩選出15對微衛(wèi)星引物用于7個文蛤群體的遺傳結構分析。微衛(wèi)星引物的詳細信息見表2。
1. 2. 3 PCR擴增 PCR反應體系25.0 μL:10×PCR Buffer 2.5 μL,2.5 mmol/L dNTP 2.0 μL,10 μmol/L上、下游引物各0.5 μL,Taq DNA聚合酶(2.5 U/μL) 0.5 μL,DNA模板1.0 μL,ddH2O補足至25.0 μL。擴增程序: 94 ℃預變性3 min;94 ℃ 30 s,退火30 s,72 ℃ 45 s,進行30個循環(huán);最后72 ℃延伸5 min。PCR擴增產物采用ABI3730進行毛細管電泳,確定每個個體的等位基因。
1. 2. 4 數(shù)據分析 使用Gel-Pro32 4.0讀取微衛(wèi)星目標條帶,利用PopGen 32分析等位基因數(shù)(Na)、有效等位基因數(shù)(Ne)、觀測雜合度(Ho)、期望雜合度(He)、基因流(Nm)、群體間遺傳分化系數(shù)(Fst)及Neis遺傳相似系數(shù)等,每個微衛(wèi)星位點均利用哈迪—溫伯格平衡法則(Hardy-Weinberg equilibrium,HWE)進行卡方檢驗,并采用MEGA 6.0以UPGMA法構建系統(tǒng)發(fā)育進化樹。參照Botstein等(1980)的方法計算多態(tài)信息含量(PIC),計算公式如下:
PIC=1-[i=1nPi2]-[i=1n-1j=i+1n2Pi2Pj2]
式中,Pi和Pj是某個位點第i、j個等位基因的基因頻率,n為該位點上的等位基因數(shù)。
2 結果與分析
2. 1 7個文蛤群體的微衛(wèi)星遺傳多樣性
由表3可知,5個紅殼色文蛤選育群體的Na、Ho、He和PIC整體上隨著世代的增加而呈一定下降趨勢。本研究中,15個微衛(wèi)星位點的平均PIC在0.575~0.630,均屬于高度多態(tài)性位點,但每對引物的變異程度不同,從7個文蛤群體中共檢測出766個等位基因。SY、SR、SRF1、SR2F2、SR3F3、SR4F4和SR5F5群體的Na依次降低,分別檢測出115、131、119、107、104、97和93個等位基因,群體間無顯著差異(P=0.394>0.05)。Na以SR群體的最高,SR5F5群體的最低,平均每位點有51.07個等位基因。每個微衛(wèi)星位點在每個群體中檢測出2~18個等位基因,其中以位點M2和M4表現(xiàn)為高度多態(tài)性。7個文蛤群體的平均He亦無顯著差異(P=0.645);與He相比,7個文蛤群體的平均Ho相對較低,處于0.442~0.502,表明各微衛(wèi)星位點存在一定程度的雜合子缺失。此外,有63.81%的微衛(wèi)星位點偏離Hardy-Weinberg平衡,進一步驗證存在雜合子缺失和純合子過剩現(xiàn)象。
2. 2 7個文蛤群體間的遺傳變異及基因交流情況
由表4可知,7個文蛤群體中僅位點M7的群體內近交系數(shù)(Fis)呈負值(-0.0157),其他14個微衛(wèi)星位點的Fis均為正值;Fis的范圍為-0.0157~0.7409,平均為0.2777,說明文蛤群體內存在一定程度的近交水平。15個微衛(wèi)星位點的總群體近交系數(shù)(Fit)范圍為0.0066~0.7491,平均為0.3103。此外,7個文蛤群體的平均Fst為0.0455,各群體的Nm為0.9002~18.9478,平均Nm為8.8065,表現(xiàn)出較高的基因交流,即7個文蛤群體間的遺傳分化較低。
2. 3 7個文蛤群體間的遺傳關系及聚類分析結果
由表5可知,7個文蛤群體間的Neis遺傳相似系數(shù)在0.8233~0.9726,遺傳距離在0.0198~0.1667,說明7個文蛤群體間存在一定的遺傳變異。其中,SR4F4群體與SR5F5群體的親緣關系最近,二者間的Neis遺傳相似系數(shù)最大(0.9726),遺傳距離最?。?.0198);SY群體與SRF1群體的親緣關系最遠,二者間的遺傳距離最大(0.1667),Neis遺傳相似性系數(shù)最?。?.8233),說明這2個群體間的遺傳變異程度相對較高。依據7個文蛤群體間的遺傳距離進行UPGMA聚類分析,從構建的聚類系統(tǒng)進化樹(圖1)可看出,7個文蛤群體聚類呈兩大支,江蘇紅文蛤原種(SR)及其選育群體(SRF1~SR5F5)聚為一支,而江蘇黃文蛤原種(SY)獨自聚為一支。在聚類系統(tǒng)進化樹中,SR4F4群體和SR5F5群體先聚為一支,再與SR3F3群體聚為一支;SRF1群體和SR2F2群體聚為一支;這2個分支聚為一支后再與SR群體聚為一大支。
3 討論
3. 1 文蛤群體的遺傳多樣性
在連續(xù)的選擇育種計劃中,遺傳變異和近親衰退是選育工作關注的重點內容。He是衡量群體總體遺傳多樣性的重要參數(shù)之一,能反映群體的遺傳一致性程度(Wang et al.,2016)。在本研究中,7個文蛤群體的Ho平均值明顯低于He平均值,存在明顯的雜合子缺失現(xiàn)象;但在不同選育世代間,Ho與He的差異不顯著,說明江蘇紅文蛤經過5代選育后,其選育群體的遺傳多樣性并無明顯變化。這與Yu和Guo(2004)對美洲牡蠣(Crassostrea virginica)、薛蕊(2015)對許氏平鮋(Sebastes schlegelii)的研究結論相似,均未觀察到生長選育與雜合度缺失間是否存在一定關聯(lián)。然而,與SY(江蘇黃文蛤原種)和SR(江蘇紅文蛤原種)基礎群體相比,選育群體的Na隨選育世代增加而呈降低趨勢,與菲律賓蛤仔和羅氏沼蝦(Macrobrachium rosenbergii)等水生生物養(yǎng)殖群體等位基因丟失的研究結論(聶鴻濤等,2016;董丁建和戴習林,2020)一致。等位基因丟失通常較雜合度降低更明顯,表明封閉群體中連續(xù)群體選擇可能會增加稀有等位基因發(fā)生遺傳漂移的概率,即等位基因丟失與否可能是衡量連續(xù)世代選育品系遺傳變異的一個理想指標(邢德等,2017)。本課題組的前期研究也發(fā)現(xiàn),文蛤的Na隨著選育世代增加而呈一定下降趨勢(鄭培,2013),表明連續(xù)選擇育種對選育群體的遺傳變異有一定未知影響,選育世代若連續(xù)選育可能會出現(xiàn)較高的隨機遺傳漂移風險。
3. 2 7個文蛤群體的遺傳分化
通過人工選育對一些特定性狀進行定向選擇,一定程度上會導致近交衰退的現(xiàn)象,從而造成遺傳多樣性降低(王統(tǒng)苗等,2019)。本研究結果顯示,7個文蛤群體間的平均Fst為0.0455,說明文蛤群體變異中僅有4.55%是由不同群體間的基因差異所產生,而95.45%的變異來源于群體內部,即文蛤群體的遺傳變異絕大部份來源于各群體內個體間的遺傳差異,選育原種群體與選育世代之間及各選育世代之間存在較低的遺傳變異,在海灣扇貝(Argopecten irradians concentricus)和太平洋牡蠣選育系F5代的微衛(wèi)星分析中(陳靜等,2012;Xu et al.,2019)也獲得類似結論。Fst為0.0455還提示隨著連續(xù)多代選擇的進行和幼蟲期的高死亡率,而導致選育群體可能出現(xiàn)潛在的基因交換障礙,在南美白對蝦(Litopenaeus vannamei)和鯉魚(Cyprinus carpio L.)的一些選育品系中(Andriantahina et al.,2013;李鵬飛等,2015)也有類似現(xiàn)象。Nm是指基因從一個種群到另一個種群的轉移程度,本研究中7個文蛤群體間的Nm為0.9002~18.9478,平均為8.8065(Nm>4.000),表明各種群間的基因交流更充分,其遺傳分化尚處于較低水平。
3. 3 基因型分布偏離Hardy-Weinberg平衡
本研究結果表明,7個文蛤群體的微衛(wèi)星位點中有63.81%偏離Hardy-Weinberg平衡,尤其以位點M4、M7、M11和M13的偏離較多。實際上,偏離Hardy-Weinberg平衡的現(xiàn)象在海洋生物中普遍存在,究其原因有選擇作用、群體混合及非隨機交配等(王軍等,2018;崔文濤等,2020)?;A群體和選育群體均出現(xiàn)明顯的Hardy-Weinberg平衡偏離現(xiàn)象說明存在一些無效等位基因,在牡蠣等貝類的微衛(wèi)星位點上也有類似現(xiàn)象(Zhang et al.,2018)。此外,部分Hardy-Weinberg平衡偏離位點出現(xiàn)雜合子缺失現(xiàn)象,7個文蛤群體的Fis范圍為-0.0157~0.7409,平均為0.2777,說明群體間存在一定的種群自交現(xiàn)象,導致近親繁殖,增加選育群體中某些位點等位基因的純合子頻率,相對減少雜合子頻率,從而出現(xiàn)因雜合子缺失或純合子過量引起遺傳信息丟失,一定程度上影響群體遺傳多樣性水平(Xu and Li,2009)。紅殼色文蛤選育群體中多數(shù)微衛(wèi)生位點偏離Hardy-Weinberg平衡,與Singh等(2015)對鯉選育群體的研究結果相似,故推測這種現(xiàn)象是由于閉鎖選育過程中非隨機交配和定向選擇所造成,在人工定向選擇過程中,部分個體所攜帶的遺傳物質被淘汰,導致種群原有的部分等位基因缺失,引起雜合子缺失而造成偏離Hardy-Weinberg平衡現(xiàn)象。因此,在今后的群體選育種工作中要注意群體性別比例平衡及保證有效親本數(shù)量,盡可能避免出現(xiàn)雜合子缺失現(xiàn)象。
4 結論
經過5代人工選育的紅殼色文蛤選育群體雖然較基礎群體其遺傳多樣性指數(shù)略有下降,但并未導致各選育群體的遺傳結構發(fā)生改變,仍具有較高的遺傳多樣性。在連續(xù)的選擇育種過程中,應增加親本養(yǎng)殖環(huán)境多樣化,避免因人工繁育的親本和養(yǎng)殖群體規(guī)模較小引起遺傳漂移或近交衰退而致使某些等位基因缺失,導致后代的遺傳結構發(fā)生改變。
參考文獻:
陳靜,劉志剛,鄔思榮,宋雪芹. 2012. 海灣扇貝南部亞種(Argopecten irradians concentricus)選育系 F5的生長及SSR分析[J]. 海洋與湖沼, 43(4):784-788. [Chen J,Liu Z G,Wu S R,Song X Q. 2012. Growth and microsatellite analysis of F5 selected line of Argopecten irradians concentricus[J]. Oceanologia et Limnologia Sinica,43(4):784-788.] doi:10.11693/hyhz201204015015.
崔文濤,鄭國棟,蘇曉磊,李寶玉,陳杰,鄒曙明. 2020. 魴鲌雜交及回交F2群體的微衛(wèi)星遺傳結構及其生長性能分析[J]. 中國水產科學,27(6):613-623. [Cui W T,Zheng G D,Su X L,Li B Y,Chen J,Zou S M. 2020. Analysis of microsatellite markers and growth performance of hybrid F2 and two backcross F2 populations of Megalobrama amblycephala ♀ and Culter alburnus ♂[J]. Journal of Fishery Sciences of China,27(6):613-623.] doi:10.3724/SP.J.1118.2020.19290.
代平. 2014. 文蛤(Meretrix meretrix)選育群體的遺傳測定及生長相關SNP鑒定[D]. 北京:中國科學院大學. [Dai P. 2014. Genetic test of breeing populations and identification of growth-associated SNPs in the clam Meretrix mere-trix[D]. Beijng:University of Chinese Academy of Scien-ces.]
董丁建,戴習林. 2020. 羅氏沼蝦不同群體世代遺傳多樣性的SSR分析[J]. 南方農業(yè)學報,51(2):421-428. [Dong D J,Dai X L. 2020. SSR analysis on genetic diversity in different populations and generations of Macrobrachium rosenbergii[J]. Journal of Southern Agriculture,51(2):421-428.] doi:10.3969/j.issn.2095-1191.2020.02.023.
孔令鋒,王曉璇,松隈明彥,李琪. 2017. 中國沿海文蛤屬分類研究進展[J]. 中國海洋大學學報(自然科學版),47(9):30-35. [Kong L F,Wang X X,Matsukuma A,Li Q. 2017. A review of taxonomy of genus Meretrix along the coast of China[J]. Periodical of Ocean University of China,47(9):30-35.] doi:10.16441/j.cnki.hdxb.20170023.
李鵬飛,徐開達,周宏霞. 2015. 浙江近海三疣梭子蟹養(yǎng)殖與野生群體的基因組微衛(wèi)星分析[J]. 浙江海洋學院學報(自然科學版),34(6):538-542. [Li P F,Xu K D,Zhou H X. 2015. Genetic diversity of Portunus trituberculatus among the cultured and wild populationsinthe offing of Zhejiang using microsatellite markers[J]. Journal of Zhejiang Ocean University(Natural Science),34(6):538-542.] doi:10.3969/j.issn.1008-830X.2015.06.007.
李太武,張安國,蘇秀榕. 2008. 文蛤花紋的形態(tài)及形成觀察[J]. 動物學雜志,43(6):83-87. [Li T W,Zhang A G,Su X R. 2008. Morphology and formation of stripes in Meretrix meretrix[J]. Chinese Journal of Zoology,43(6):83-87.] doi:10.3969/j.issn.0250-3263.2008.06.012.
聶鴻濤,李佳,霍忠明,郭煒,閆喜武. 2016. 菲律賓蛤仔人工選育群體與野生群體的遺傳多樣性分析[J]. 中國水產科學,23(3):538-546. [Nie H T,Li J,Huo Z M,Guo W,Yan X W. 2016. Analysis of genetic variability in selec-ted lines and a wild population of Ruditapes philippinarum using microsatellite markers[J]. Journal of Fishery Sciences of China,23(3):538-546.] doi:10.3724/SP.J. 1118.2016.15307.
彭敏,陳慧芳,李強勇,楊春玲,曾地剛,劉青云,趙永貞,陳曉漢,林勇,陳秀荔. 2020. 凡納濱對蝦連續(xù)3個世代選育群體的遺傳多樣性分析[J]. 南方農業(yè)學報,51(6):1442-1450. [Peng M,Chen H F,Li Q Y,Yang C L,Zeng D G,Liu Q Y,Zhao Y Z,Chen X H,Lin Y,Chen X L. 2020. Genetic diversity of three consecutive generations of Litopenaeus vannamei[J]. Journal of Southern Agriculture,51(6):1442-1450.] doi:10.3969/j.issn.2095-1191.2020.06.026.
田野,邵艷卿,肖國強,縢爽爽,柴雪良,張炯明,方軍. 2015. 泥蚶人工選育群體的微衛(wèi)星分析[J]. 海洋科學,39(4):1-7. [Tian Y,Shao Y Q,Xiao G Q,Teng S S,Chai X L,Zhang J M,F(xiàn)ang J. 2015. Analysis of genetic variability in selective breeding populations of Tegiccarca granosa by microsatellites[J]. Marine Science,39(4):1-7.] doi:10.11759/hykx20140624001.
王超. 2011. 文蛤(Meretrix meretrix)選擇群體生長、抗性差異的初步解析[D]. 北京:中國科學院研究生院. [Wang C. 2011. Preliminary analysis of growth and resistance differences among selected Meretrix meretrix populations[D]. Beijing:Institute of Oceanology,Chinese Academy of Science.]
王軍,王清印,孔杰,孟憲紅,曹家旺,王明珠,馮亞萍,呂丁. 2018. 中國明對蝦人工選育群體與野生群體遺傳多樣性的SSR分析[J]. 漁業(yè)科學進展,39(2):104-111. [Wang J,Wang Q Y,Kong J,Meng X H,Cao J W,Wang M Z,F(xiàn)eng Y P,Lü D. 2018. SSR analysis on genetic diversity in breeding and wild populations of Fenneropenaeus chinensis[J]. Progress in Fishery Sciences,39(2):104-111.] doi:10.19663/j.issn2095-9869.20170227001.
王慶志,李琪,孔令鋒. 2012. 長牡蠣3代人工選育群體的微衛(wèi)星分析[J]. 水產學報,36(10):1529-1536. [Wang Q Z,Li Q,Kong L F. 2012. Genetic variability assessed by microsatellites in mass selection lines of Pacific oyster(Crassostrea gigas)[J]. Journal of Fisheries of China,36(10):1529-1536.] doi:10.3724/SP.J.1231.2012.28157.
王統(tǒng)苗,張莘,陳博雯,常國斌,白皓,江勇,張揚,王志秀,陳國宏. 2019. 我國六個地方鴨品種的群體遺傳結構及遺傳分化[J]. 甘肅農業(yè)大學學報,54(6):24-29. [Wang T M,Zhang X,Chen B W,Chang G B,Bai H,Jiang Y,Zhang Y,Wang Z X,Chen G H. 2019. Population gene-tic structure and genetic differentiation of six local duck breeds in China[J]. Journal of Gansu Agricultural University,54(6):24-29.] doi:10.13432/j.cnki.jgsau.2019.06.004.
吳楊平,陳愛華,張雨,曹奕,姚國興,蔡永祥,王超. 2017. 文蛤紅殼色選育系F3的生長規(guī)律及模型[J]. 海洋漁業(yè),39(4):411-418. [Wu Y P,Chen A H,Zhang Y,Cao Y,Yao G X,Cai Y X,Wang C. 2017. On the growth law and model of the selected line (F3) of red shell colored Meretrix meretrix[J]. Marine Fisheries,39(4):411-418.] doi:10.3969/j.issn.1004-2490.2017.04.006.
邢德,李琪,張景曉. 2017. 利用微衛(wèi)星熒光多重PCR技術分析殼白長牡蠣3代人工選育群體的遺傳多樣性[J]. 水產學報,41(12):1838-1846. [Xing D,Li Q,Zhang J X. 2017. Analysis of genetic diversity in mass selection lines of white-shell Pacific oyster (Crassostrea gigas) using mic-rosatellite fluorescent multiplex PCR technique[J]. Journal of Fisheries of China,41(12):1838-1846.] doi:10.11964/ jfc.20161110611.
薛蕊. 2015. 許氏平鲉(Sebastes schlegelii)EST-SSR標記開發(fā)及快速生長選育系遺傳結構分析[D]. 上海:上海海洋大學. [Xue R. 2015. Development of EST-SSR markers and genetics assessment of fast-growing breeding lines for the black rockfish,Sebastes schlegelii[D]. Shanghai:Shanghai Ocean University.]
曾吉. 2018. 非隨機交配對種群基因頻率的影響[J]. 生物學教學,43(1):68. [Zeng J. 2018. Effect of non-random ma-ting on gene frequency in population[J]. Biology Tea-ching,43(1):68.] doi:10.3969/j.issn.1004-7549.2018.01. 038.
張雨,陳愛華,姚國興,吳楊平,曹奕. 2015. 兩世代紅殼色文蛤早期表型性狀差異分析[J]. 海洋漁業(yè),37(4):325-330. [Zhang Y,Chen A H,Yao G X,Wu Y P,Cao Y. 2015. Comparison of characters on the early growth of offspring from Meretrix meretrix with two generation[J]. Marine Fisheries,37(4):325-330.] doi:10.3969/j.issn. 1004-2490.2015.04.005.
趙廣泰,劉賢德,王志勇,蔡明夷,姚翠鸞. 2010. 大黃魚連續(xù)4代選育群體遺傳多樣性與遺傳結構的微衛(wèi)星分析[J]. 水產學報,34(4):500-507. [Zhao G T,Liu X D,Wang Z Y,Cai M Y,Yao C L. 2010. Genetic structure and genetic diversity analysis of four consecutive breeding ge-nerations of large yellow croaker (Pseudosciaena crocea) using microsatellite markers[J]. Journal of Fisheries of China,34(4):500-507.] doi:10.3724/SP.J.1231.2010. 06624.
鄭培. 2013. 文蛤三個選育世代的多樣性研究[D]. 上海:上海海洋大學. [Zheng P. 2013. Genetic diversity analysis of three generations of selective breeding of Meretrix meretrix[D]. Shanghai:Shanghai Ocean University.]
朱東麗,董迎輝,林志華,姚韓韓. 2012. 利用微衛(wèi)星標記對文蛤4個殼色花紋品系的遺傳分析[J]. 水產學報,36(2):202-209. [Zhu D L,Dong Y H,Lin Z H,Yao H H. 2012. Genetic analysis among four strains of different shell colors and decorative patterns of Meretrix meretrix using microsatellite markers[J]. Journal of Fisheries of China,36(2):202-209.] doi:10.3724/SP.J.1231.2012.27603.
Andriantahina F,Liu X L,Huang H. 2013. Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits in Litopenaeus vannamei for selective breeding applications[J]. PLoS One,8(9):e75206. doi:10.1371/journal.pone.0075206.
Botstein D,White R L,Skolnick M,Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,32(3):314-331.
Chen N,Luo X,Lu C K,Ke C H,You W W. 2017. Effects of artificial selection practices on loss of genetic diversity in the Pacific abalone,Haliotis discus hannai[J]. Aquaculture Research,48(9):4923-4933. doi:10.1111/are.13311.
Evans F,Matson S,Brake J,Langdon C. 2004. The effects of inbreeding on performance traits of adult Pacific oysters (Crassostrea gigas)[J]. Aquaculture,230(1-4):89-98. doi:10.1016/j.aquaculture.2003.09.023.
Gamfeldt L,Kallstrom B. 2007. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations[J]. Oikos,116(4):700-705.
Keller L F,Waller D M. 2002. Inbreeding effects in wild po-pulations[J]. Trends in Ecology and Evolution,17(5):230-241. doi:10.1016/S0169-5347(02)02489-8.
Singh E,Sharma O P,Jain H K,Sharma A,Ojha M. L,Saini V P. 2015. Microsatellite based genetic diversity and differentiation of common carp,Cyprinus carpio in Rajasthan(India)[J]. National Academy Science Letters,38(3):193-196. doi:10.1007/s40009-014-0340-6.
Wang L,Meng Z N,Liu X C,Liu X C,Zhang Y,Lin H R. 2011. Genetic diversity and differentiation of the orange-spotted grouper (Epinephelus coioides) between and wi-thin cultured stocks and wild populations inferred from microsatellite DNA analysis[J]. International Journal of Molecular Science,12(7):4378-4394. doi:10.3390/ijms 12074378.
Wang S Z,Hard J J,Utter F. 2001. Salmonid inbreeding:A review[J]. Reviews in Fish Biology and Fisheries,11(4):301-319. doi:10.1023/A:1021330500365.
Wang X B,Li Q,Yu H,Kong L F. 2016. Genetic variation assessed with microsatellites in mass selection lines of the Pacific oyster(Crassostrea gigas) in China[J]. Journal of Ocean University of China,15(4):1039-1045. doi:10. 1007/s11802-016-3056-z.
Xing K,Gao M L,Li H J. 2014. Genetic differentiation between natural and hatchery populations of Manila clam (Ruditapes philippinarum) based on microsatellite mar-kers[J]. Geneticsand Molecular Research,13(1):237-245. doi:10.4238/2014.January.17.7.
Xu K F,Li Q. 2009. Inheritance pattern of microsatellite loci and their use for kinship analysis in the Japanese scallop Patinopecten yessoensis[J]. Journal of Ocean University of China,8(2):184-190. doi:10.1007/s11802-009-0184-8.
Xu L,Li Q,Xu C X,Yu H,Kong L F. 2019. Genetic diver-sity and effective population size in successive mass selected generations of black shell strain Pacific oyster (Crassostrea gigas) based on microsatellites and mtDNA data[J]. Aquaculture,500:338-346. doi:10.1016/j.aquaculture.2018.10.007.
Yu Z N,Guo X M. 2004. Genetic analysis of selected strains of eastern oyster(Crassostrea virginica) using AFLP and microsatellite markers[J]. Marine Biotechnology,6(6):575-586. doi:10.1007/s10126-004-3600-5.
Zhang J X,Li Q,Wang Q Z,Cong R H,Ge J L,Kong L F. 2018. The impact of successive mass selection on population genetic structure in the Pacific oyster(Crassostrea gigas) revealed by microsatellite markers[J]. Aquaculture International,26:113-125. doi:10.1007/s10499-017-0196-0.
Zhang K,Wang W J,Li W Y,Zhang Q Q,Kong J. 2014. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite mar-kers[J]. Journal of Ocean University of China,13:647-656. doi:10.1007/s11802-014-2208-2.
(責任編輯 蘭宗寶)