• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Online Judge Practice Passing Rate Based on Knowledge Tracing

    2021-09-07 02:52:38HUANGYongfeng黃永鋒CHENGYanhua成燕華

    HUANG Yongfeng(黃永鋒), CHENG Yanhua(成燕華)

    College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: Programming ability has become one of the most practical basic skills, and it is also the foundation of software development. However, in the daily training experiment, it is difficult for students to find suitable exercises from a large number of topics provided by numerous online judge(OJ) systems. Recommending high passing rate topics with an effective prediction algorithm can effectively solve the problem. Directly applying some common prediction algorithms based on knowledge tracing could bring some problems, such as the lack of the relationship among programming exercises and dimension disaster of input data. In this paper, those problems were analyzed, and a new prediction algorithm was proposed. Additional information, which represented the relationship between exercises, was added in the input data. And the input vector was also compressed to solve the problem of dimension disaster. The experimental results show that deep knowledge tracing (DKT) with side information and compression (SC) model has an area under the curve (AUC) of 0.776 1, which is better than other models based on knowledge tracing and runs faster.

    Key words: individualized prediction; knowledge tracing; online judge (OJ); recommending; deep learning

    Introduction

    As the online judge (OJ) systems have accumulated many exercises so far, it is difficult for students to choose suitable topics[1-2]. Moreover, solving those programming exercises with a certain passing rate can effectively improve learning interest and encourage students to keep practicing[3-5]. Therefore, recommending exercises by predicting the passing rate is our purpose in this study.

    There are many algorithms in predicting the passing rate of programming exercises of students in the last years. Thai-Ngheetal.[6]proposed a novel approach using matrix factorization, which predicted the passing rate of unfinished programming exercises based on the previous performance matrix of students. However, the generalization ability of matrix factorization was weak, as it was difficult to integrate more useful features in the learning process. Corbett and Anderson[7]proposed another popular method, called Bayesian knowledge tracing(BKT), which assumes that the student knowledge state was represented as a set of binary variables, where the knowledge was either mastered or not. However, it ignored the relationship among knowledge points because they were trained separately in the model. To establish the connections among knowledge points in training, Kaseretal.[8]studied the hierarchy and relationship among knowledge combinations. Unfortunately, the accuracy of prediction results was still insufficient. Recently, a more accurate model of knowledge tracing had been proposed by Piechetal.[9], called deep knowledge tracing(DKT), which was based on a neural network. It has a better performance than the classic BKT model[10].

    The input of the knowledge tracking model mentioned above is all knowledge points, which assumes that the programming exercises under the same knowledge point are equivalent[11-13]. However, the programming exercises often have many differences, even if they have the same knowledge points, such as the difficulty of each exercise[14]. Therefore, replacing the knowledge points with exercises without any processing may lead to certain errors. In our algorithm, we use additional feature information, knowledge points, and programming exercises to establish the connection between the exercises. What’s more, we use linear transformations to compress the input size to save running time and memory.

    1 Problem Statement and DKT Overview

    1.1 Problem statement

    In the OJ system, there areUstudents,Qprogramming exercises, andMknowledge points. We record the learning process for each student asu= {(q1,r1), (q2,r2), …, (qt,rt)}, whereu∈U,qt∈Qandqtrepresents the programming exercise that the studentupracticed at timetandrtrepresents whether the student gets the correct answer of the exercise. Generally, if the student answers programming exerciseqtright,rt=1; otherwise,rt=0. Each programming exercise has no less than one knowledge point, represented by a problem-knowledge point matrixk∈{0, 1}q, m, if problemqcontains knowledge pointm,kq, m=1; otherwise,kq, m=0.

    According to the above definition, our task is to train a knowledge tracing model, and predict the probability of getting the correct answer to the programming exercise at timet.

    1.2 DKT model

    DKT model uses a recurrent neural network (e.g., long short term memory network, LSTM) to predict the passing rate of students in their programming exercises using previous records. The model diagram is shown in Fig. 1.

    The input to this model is a time series that consists of knowledge points interaction sequences, given byu= {(s1,r1), (s2,r2), …, (st,rt)}, wherestrepresents the knowledge point of a certain programming exercise.xtis set to be a high-dimensional one-hot encoding of the knowledge point interaction tupleut= {st,rt},xt∈{0, 1}2M, whereMis the number of knowledge points, and the correctness of the programming exercisesrtis extended to a sequence0= (0, 0, …, 0) with the same dimensions of programming exercises embeddingvt. Ifstandrthave separate representation, the performance will be reduced[9]. The entire input is shown as

    (1)

    where0∈RM,xt∈R2M, ⊕ represents the combination of two vectors. This input could contain information about whether the correctness of answering the exercise influences the student master knowledge points. The forward equations of the DKT model using LSTM are given by

    ht∈A(xt),

    (2)

    yt=σ(Wyhht+by),

    (3)

    whereArepresents the formula of LSTM,htis the estimated knowledge state of the student at timet, theσis the sigmoid function. The final outputyt∈RMof the DKT model predicts the student’s proficiency over the knowledge points for next time stept+1. Since the assumption of DKT is that the mastery in the knowledge point is equivalent to mastery in any of the exercises containing the point, the lossltfor a specific student is defined as

    lt=l (yt[st+1],rt+1)

    ,

    (4)

    whereyt[st+1] is the success probability for the skillst.

    2 Proposed Model: DKT with Side Information and Compression(DKT-SC)

    The proposed model, DKT-SC, is applied to predict the passing rate of finishing each programming exercise rather than for each skill or knowledge point. Therefore, the input to the DKT-SC model is the identity of programming exercises. Compared with DKT model,the DKT-SC model is improved in two aspects, including addition of knowledge point information and compression of input, which are described in sections 2.1 and 2.2.

    2.1 Addition of knowledge point information

    Some programming exercises are similar, but others do not even contain the same or similar knowledge points. Considering the relationship between programming exercises is a good way to help students find suitable topics. However, the relationship among programming exercises would be ignored if utilizing the identity of exercises only as input. Therefore, additional information needs to be added to the input. Here, we directly appended additional information such as knowledge points to the end of the input in Eq. (1), which is quite simple and effective. In this way, the input contains both programming exercises information and knowledge points information. We useptas the programming exercises embedding. The improvement in the input is given by

    (5)

    Compared with Eq. (1), Eq. (5) substitutes programming exercises embeddingptfor skill embeddingvt, and appends knowledge pointkqat the end of input.

    2.2 Compression of input

    The input size is too large to train when the identity of programming exercises are used as input due to numerous exercises provided by the OJ system. If some additional information is contained, the size will become much larger, resulting in a disaster in the training process. Consequently, a linear layer is employed to compress the size of the input. The specific method is given by

    yt=wxt+b.

    (6)

    The dimension size ofwis set to compress the size of input into the specified size. The compressedytis used as the input of the DKT model. After compressing the data, the corresponding running time is shortened, and the memory is saved.

    2.3 DKT-SC model

    The input to the DKT-SC is the complete sequence of exercise recordu= {(q1,r1), (q2,r2), …, (qt,rt)}, whereqtrepresents the question answered at timetandrt∈{0, 1}.[Also, the additional information and knowledge points are appended to the input and then the input is compressed. Our goal is to predict, at the next time stept+ 1, the probability that the student will answer all theQquestions. DKT-SC has the same formula as DKT, as specified in Eq. (2). Simultaneously, a dropout layer is applied to solve the overfitting problem, and the formula is as follows

    yt=σ(Wy·dropout(ht)+by).

    (7)

    The update lossltfrom Eq. (4) at timetis given by

    lt=l (yt[qt+1],rt+1).

    (8)

    The structure of the whole model is shown in Fig. 2.

    3 Experiments

    3.1 Datasets and preprocessing

    The experimental data are crawled from the codeforces (CF) website using crawler technology. The CF website has many users and programming exercises, and most programming exercises have corresponding knowledge points.

    After crawling the data, the data processing is needed. Firstly, the programming exercises without knowledge points are removed which would affect training. Secondly, programming exercises with little user records are removed. These exercises have little contribution to the model, which will seriously delay the training of the model[15]. Finally, the crawled dataset includes 4 070 student users, 6 417 programming exercises, and 37 knowledge points.

    In the dataset, if one student submits the same programming exercise repeatedly, it will bring duplicate records. To train the data conveniently, the correctness of the first submission result of one programming exercise is recorded as part of the input information, and the number of student records on the programming exercise as additional information.

    3.2 LSTM

    In the experiments, the DKT model is implemented based on LSTM. We set the dimension of hidden states in LSTM as 512, the output dimension as 6 417, which is the number of programming exercises. The input dimension in the basic DKT is 12 834, which is twice the number of programming exercises. The input dimension in the model with knowledge points is 12 871, and the input dimension in the model with compression is 512. The number of hidden layers in the LSTM is 1. All the models are trained using the Adam optimizer[16]and adding the clip_grad clipping gradient to mitigate network training termination caused by gradient disappearance or explosion.

    3.3 Area under the curve(AUC)

    For the performance evaluation, we use the AUC to predict results as a performance metric. Meanwhile, In the experiments, 80% of the dataset is used for training and the rest for testing. Given that several improvements are included in the model, five different methods based on LSTM are compared.

    (1) The classic DKT model with input of programming exercises.

    (2) The DKT model with input of programming exercises and dropout layer.

    (3) The DKT with the side information(DKT-S) model with the addition of knowledge point information and dropout layer.

    (4) The DKT with the compression(DKT-C) model with input of programming exercises, compression for the input, and dropout layer.

    (5) The DKT-SC model with the addition of knowledge point information, compression for the input and dropout layers.

    3.4 Running time of each method

    During the experiment, the running time of each method is recorded to evaluate the operational efficiency. The methods are tested with the Tesla T4 GPU. The running time records the seconds that takes to one iterate.

    4 Results and Discussion

    4.1 Comparison between LSTM and RNN

    The AUC of the predicting results of the two network models, namely RNN and LSTM, are shown in Fig. 3. The results indicate that the LSTM model generally performs better than the RNN network model, causing gradient disappearance or gradient explosion[17]. The average length of our data sequence is 960, which means the application of the RNN model can easily come to the problem of gradient disappearance or gradient explosion, and bad results are unavoidable.

    Fig. 3 AUC of two networks

    Fig. 4 AUC results of five models

    4.2 AUC results

    Figure 4 shows the AUC of the five methods. It can be seen that DKT-SC, the model with additional information and input vector compression, has the best results. Since the DKT-S and DKT-C have better results than the DKT, adding additional information and compressing the input vector results are improvements over the classic DKT model. We can find that adding the dropout layer in the network can better improve the performance[18].

    4.3 Running time

    The running time of each model is recorded in Table 1. It can be seen from Table 1 that the running time of the DKT-C is almost half of the DKT when the input is compressed. Without compressing the input, the running time of the DKT-S comes to 1 123.9 s by adding extra information, which is 24% more than that of the DKT. However, the DKT-SC has a comparable running time to that of the DKT-C. The results in Table 1 indicate that the running time is significantly shortened by compressing the input, which would greatly benefit the future deployment of the model.

    Table 1 Running time of each model

    5 Conclusions

    In our work, the DKT model is applied to predict the passing rate of students in finishing programming exercises. Two improvements are implemented to reach better performance. The DKT-SC model could achieve 0.776 1 in predicting AUC, which is better than that of DKT model. In addition, the running time of this model is almost half of that of DKT model.

    In the future, we would like to introduce other information such as difficulty level to the input and encode the input in different forms. It would be a better choice for us to use graph model or knowledge graph to represent the relationship between exercises.

    少妇人妻 视频| 欧美激情国产日韩精品一区| 街头女战士在线观看网站| 五月玫瑰六月丁香| 国产免费一区二区三区四区乱码| 中文字幕制服av| 国产伦理片在线播放av一区| 亚洲精品自拍成人| 免费久久久久久久精品成人欧美视频 | 免费黄频网站在线观看国产| 欧美最新免费一区二区三区| 日本vs欧美在线观看视频 | 老司机影院毛片| 国产亚洲5aaaaa淫片| 一级片'在线观看视频| 亚洲综合精品二区| 观看免费一级毛片| 色94色欧美一区二区| 欧美日韩在线观看h| 国国产精品蜜臀av免费| 能在线免费看毛片的网站| 99热这里只有是精品在线观看| 久久久精品免费免费高清| 日本黄大片高清| 十分钟在线观看高清视频www | 熟女av电影| 边亲边吃奶的免费视频| 一级毛片电影观看| 国产视频内射| 国产精品99久久久久久久久| 国产真实伦视频高清在线观看| 久久ye,这里只有精品| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 插逼视频在线观看| 国产亚洲91精品色在线| 欧美日韩av久久| 国产一区有黄有色的免费视频| 黑丝袜美女国产一区| 免费播放大片免费观看视频在线观看| 91精品国产国语对白视频| 一级av片app| 国产伦理片在线播放av一区| 26uuu在线亚洲综合色| 久久青草综合色| 国产精品久久久久久精品古装| 日韩成人伦理影院| 日本色播在线视频| 大片免费播放器 马上看| 99热这里只有精品一区| 日本免费在线观看一区| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 国产高清不卡午夜福利| 国产男人的电影天堂91| 在线 av 中文字幕| 午夜免费男女啪啪视频观看| 一区二区三区精品91| 伦理电影免费视频| 亚洲精品中文字幕在线视频 | √禁漫天堂资源中文www| 国产老妇伦熟女老妇高清| 一级爰片在线观看| 男人舔奶头视频| 91久久精品国产一区二区三区| 久久精品夜色国产| 国产一区二区三区综合在线观看 | 我的老师免费观看完整版| 国产精品国产三级国产av玫瑰| 亚洲综合精品二区| 80岁老熟妇乱子伦牲交| 少妇人妻一区二区三区视频| 精品少妇久久久久久888优播| 欧美3d第一页| www.av在线官网国产| 日韩中字成人| 人妻人人澡人人爽人人| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 亚洲内射少妇av| 黄色视频在线播放观看不卡| av专区在线播放| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 国产黄色视频一区二区在线观看| 亚洲无线观看免费| 少妇人妻 视频| 成人无遮挡网站| 91精品国产九色| 十八禁网站网址无遮挡 | 久久精品国产a三级三级三级| 亚洲成色77777| 女人精品久久久久毛片| 国产淫片久久久久久久久| 一级毛片aaaaaa免费看小| 久久热精品热| 精品少妇久久久久久888优播| 18禁动态无遮挡网站| 黄色日韩在线| 大片电影免费在线观看免费| 99热这里只有是精品在线观看| 欧美激情国产日韩精品一区| 99久久中文字幕三级久久日本| 中文字幕精品免费在线观看视频 | 亚洲美女搞黄在线观看| 日本免费在线观看一区| 丰满迷人的少妇在线观看| 国产精品伦人一区二区| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 国产中年淑女户外野战色| a级片在线免费高清观看视频| 国产精品无大码| 亚洲欧美日韩卡通动漫| 一个人免费看片子| av在线观看视频网站免费| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久精品古装| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 男人和女人高潮做爰伦理| 在线观看免费视频网站a站| 欧美亚洲 丝袜 人妻 在线| 少妇裸体淫交视频免费看高清| 欧美 日韩 精品 国产| 国产白丝娇喘喷水9色精品| 七月丁香在线播放| av女优亚洲男人天堂| 国产精品不卡视频一区二区| 精品久久久久久电影网| 亚洲人与动物交配视频| 成年人免费黄色播放视频 | 成人二区视频| 欧美三级亚洲精品| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜添av毛片| 一区二区av电影网| 国产片特级美女逼逼视频| 亚洲人成网站在线观看播放| 成人国产麻豆网| 美女cb高潮喷水在线观看| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 国语对白做爰xxxⅹ性视频网站| 国产淫语在线视频| 免费人妻精品一区二区三区视频| 国产免费一区二区三区四区乱码| 久热这里只有精品99| 亚洲真实伦在线观看| 久久97久久精品| 精品亚洲成国产av| 男女边摸边吃奶| 视频中文字幕在线观看| tube8黄色片| 久久久久久久久久久久大奶| 日日摸夜夜添夜夜爱| 老熟女久久久| 亚洲激情五月婷婷啪啪| 99久久综合免费| 夜夜爽夜夜爽视频| 观看av在线不卡| 人妻人人澡人人爽人人| 亚洲,欧美,日韩| 国产一区二区在线观看av| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 国产一级毛片在线| av.在线天堂| 搡老乐熟女国产| 国产91av在线免费观看| 免费观看av网站的网址| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| 男的添女的下面高潮视频| 久久综合国产亚洲精品| 欧美97在线视频| 国产精品福利在线免费观看| 99久久精品国产国产毛片| 久久毛片免费看一区二区三区| 精华霜和精华液先用哪个| 国产精品久久久久成人av| 少妇被粗大的猛进出69影院 | 黄色一级大片看看| 色哟哟·www| 亚洲av综合色区一区| 欧美日韩综合久久久久久| 有码 亚洲区| 免费看日本二区| 国产有黄有色有爽视频| 99九九线精品视频在线观看视频| av在线老鸭窝| 久久久久精品久久久久真实原创| 亚洲精品第二区| 少妇高潮的动态图| 日韩av免费高清视频| 欧美 日韩 精品 国产| 成年美女黄网站色视频大全免费 | 欧美丝袜亚洲另类| 成年美女黄网站色视频大全免费 | 国产精品久久久久久久久免| 亚洲av欧美aⅴ国产| 日本爱情动作片www.在线观看| 亚洲av成人精品一区久久| 国产精品无大码| 国产精品久久久久成人av| 国产毛片在线视频| 亚洲内射少妇av| 国产欧美日韩一区二区三区在线 | 国国产精品蜜臀av免费| 观看免费一级毛片| 久久精品久久久久久噜噜老黄| 一本一本综合久久| 欧美激情国产日韩精品一区| 黑人猛操日本美女一级片| 欧美成人午夜免费资源| 欧美精品一区二区大全| 午夜福利视频精品| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 亚洲精品456在线播放app| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 日日撸夜夜添| 亚洲国产欧美日韩在线播放 | 妹子高潮喷水视频| 亚洲精品aⅴ在线观看| 国产高清有码在线观看视频| 人人妻人人看人人澡| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 汤姆久久久久久久影院中文字幕| 麻豆成人午夜福利视频| 99视频精品全部免费 在线| 久久午夜综合久久蜜桃| 成人综合一区亚洲| 99久久中文字幕三级久久日本| 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| 国产精品99久久久久久久久| 91久久精品国产一区二区三区| 极品少妇高潮喷水抽搐| 视频区图区小说| 少妇 在线观看| 色网站视频免费| 亚洲国产精品一区三区| 日韩电影二区| 最近最新中文字幕免费大全7| 国产亚洲一区二区精品| 午夜福利在线观看免费完整高清在| 国产综合精华液| 精品一区二区三卡| 日日撸夜夜添| 黑人巨大精品欧美一区二区蜜桃 | 两个人的视频大全免费| 91精品伊人久久大香线蕉| 少妇的逼水好多| 成人国产av品久久久| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片| 如何舔出高潮| 国产极品天堂在线| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 91精品国产国语对白视频| a级片在线免费高清观看视频| 777米奇影视久久| 亚洲不卡免费看| 亚洲精品,欧美精品| 99久国产av精品国产电影| 国产成人精品福利久久| 视频中文字幕在线观看| 尾随美女入室| 亚洲精品国产成人久久av| 观看免费一级毛片| 少妇人妻久久综合中文| 性色av一级| 日韩欧美 国产精品| 亚洲婷婷狠狠爱综合网| 五月开心婷婷网| 青春草亚洲视频在线观看| 在线观看一区二区三区激情| 久久久久久伊人网av| 91精品国产九色| 这个男人来自地球电影免费观看 | 亚洲成人手机| 成年人免费黄色播放视频 | 成人综合一区亚洲| 日本vs欧美在线观看视频 | 爱豆传媒免费全集在线观看| 成年av动漫网址| 日本与韩国留学比较| 亚洲国产精品成人久久小说| 国产成人精品久久久久久| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 日韩欧美一区视频在线观看 | 熟女av电影| 高清av免费在线| 高清在线视频一区二区三区| 亚洲伊人久久精品综合| 九九爱精品视频在线观看| 欧美日韩视频精品一区| 亚洲欧美日韩另类电影网站| 亚洲一区二区三区欧美精品| 国产美女午夜福利| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 欧美精品一区二区大全| 丝袜脚勾引网站| 精品国产露脸久久av麻豆| 国产高清有码在线观看视频| 九草在线视频观看| 高清不卡的av网站| 内射极品少妇av片p| 成人影院久久| 午夜免费观看性视频| 久久久久视频综合| 97在线人人人人妻| 我的女老师完整版在线观看| 久久久国产欧美日韩av| 日日撸夜夜添| 久久久a久久爽久久v久久| 极品人妻少妇av视频| 国产爽快片一区二区三区| 亚洲天堂av无毛| 久久99热6这里只有精品| 国产成人精品久久久久久| 国模一区二区三区四区视频| 精品国产露脸久久av麻豆| 六月丁香七月| 欧美日韩综合久久久久久| 午夜福利视频精品| av天堂中文字幕网| 性色avwww在线观看| av福利片在线观看| 亚洲国产最新在线播放| 熟女电影av网| 一本一本综合久久| 欧美精品一区二区大全| 亚洲人与动物交配视频| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 久久人妻熟女aⅴ| 能在线免费看毛片的网站| 国产精品一区二区在线观看99| 久久97久久精品| 国产成人freesex在线| 天美传媒精品一区二区| 欧美激情极品国产一区二区三区 | 成人特级av手机在线观看| 久久狼人影院| 多毛熟女@视频| 秋霞伦理黄片| 欧美另类一区| 熟女av电影| 青春草亚洲视频在线观看| 18+在线观看网站| 国产亚洲最大av| 亚洲人成网站在线观看播放| 成人漫画全彩无遮挡| 日韩成人伦理影院| 精品少妇久久久久久888优播| 99re6热这里在线精品视频| 美女xxoo啪啪120秒动态图| 亚洲国产精品999| 我要看日韩黄色一级片| 久久av网站| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添av毛片| 国产黄片视频在线免费观看| 人妻制服诱惑在线中文字幕| 国产精品久久久久久av不卡| 九九在线视频观看精品| 日韩亚洲欧美综合| 亚洲av欧美aⅴ国产| 熟女人妻精品中文字幕| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲网站| 亚洲精品日韩av片在线观看| 欧美成人午夜免费资源| 日韩大片免费观看网站| 免费人成在线观看视频色| 国产亚洲午夜精品一区二区久久| 18+在线观看网站| 在线观看国产h片| 国产伦在线观看视频一区| 欧美日韩视频高清一区二区三区二| 欧美激情国产日韩精品一区| 在线观看免费高清a一片| 女性生殖器流出的白浆| 国模一区二区三区四区视频| 国产免费福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 婷婷色麻豆天堂久久| 建设人人有责人人尽责人人享有的| 免费高清在线观看视频在线观看| 国产精品久久久久久久久免| 精品久久久久久电影网| 成人美女网站在线观看视频| 97在线视频观看| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 色94色欧美一区二区| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区| 美女大奶头黄色视频| 少妇 在线观看| 国产精品成人在线| 免费黄网站久久成人精品| 少妇人妻久久综合中文| 男人添女人高潮全过程视频| 我要看日韩黄色一级片| 国产在线免费精品| 亚洲国产最新在线播放| 两个人的视频大全免费| a级毛色黄片| 欧美日韩视频精品一区| 亚洲精品一区蜜桃| 大片电影免费在线观看免费| 日韩成人伦理影院| 国产成人免费无遮挡视频| 成人亚洲欧美一区二区av| 一本久久精品| 日韩一本色道免费dvd| 人妻系列 视频| 69精品国产乱码久久久| 在线观看人妻少妇| √禁漫天堂资源中文www| 久久亚洲国产成人精品v| 久久99热这里只频精品6学生| 国产精品一区二区三区四区免费观看| 午夜福利影视在线免费观看| a级毛片在线看网站| 色视频www国产| 99热国产这里只有精品6| 国产乱人偷精品视频| 国产精品人妻久久久影院| 国产伦精品一区二区三区四那| 国产高清国产精品国产三级| 欧美激情极品国产一区二区三区 | 久久6这里有精品| 99精国产麻豆久久婷婷| 乱系列少妇在线播放| 只有这里有精品99| 欧美成人午夜免费资源| 老司机影院成人| 寂寞人妻少妇视频99o| 熟女人妻精品中文字幕| 国产极品天堂在线| 亚洲美女搞黄在线观看| 午夜激情久久久久久久| 人人妻人人爽人人添夜夜欢视频 | 伦精品一区二区三区| 黄色毛片三级朝国网站 | 建设人人有责人人尽责人人享有的| 日本午夜av视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲内射少妇av| 高清视频免费观看一区二区| 亚洲婷婷狠狠爱综合网| 伊人亚洲综合成人网| 超碰97精品在线观看| 亚洲av成人精品一二三区| 亚洲第一av免费看| 噜噜噜噜噜久久久久久91| 久久久久国产网址| 我要看黄色一级片免费的| 亚洲精品亚洲一区二区| 国产爽快片一区二区三区| 亚洲自偷自拍三级| 熟女av电影| 嫩草影院入口| 22中文网久久字幕| 国产精品伦人一区二区| 欧美区成人在线视频| 国产精品久久久久久精品电影小说| 国产精品福利在线免费观看| 又爽又黄a免费视频| 国产亚洲午夜精品一区二区久久| 人妻制服诱惑在线中文字幕| 一区二区三区免费毛片| 天天操日日干夜夜撸| 国产精品一二三区在线看| 精品国产一区二区久久| 国产欧美日韩精品一区二区| 日本av手机在线免费观看| 熟女电影av网| 三级国产精品片| 亚洲欧洲国产日韩| 精品视频人人做人人爽| 国产综合精华液| 久久女婷五月综合色啪小说| 日韩 亚洲 欧美在线| av福利片在线| 国产淫语在线视频| av在线播放精品| 免费观看av网站的网址| 在线观看www视频免费| 菩萨蛮人人尽说江南好唐韦庄| 美女中出高潮动态图| 观看美女的网站| 国产有黄有色有爽视频| 国产视频内射| 桃花免费在线播放| 国产又色又爽无遮挡免| 精品卡一卡二卡四卡免费| 纵有疾风起免费观看全集完整版| 香蕉精品网在线| 日韩三级伦理在线观看| 国产精品99久久久久久久久| 大香蕉97超碰在线| 国产黄频视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 伦理电影免费视频| av福利片在线观看| 久久精品夜色国产| 国产一区二区在线观看av| 国产在线男女| 亚洲婷婷狠狠爱综合网| 亚洲精品日韩在线中文字幕| 九九爱精品视频在线观看| 一级a做视频免费观看| 不卡视频在线观看欧美| 99久国产av精品国产电影| 国产一区二区三区av在线| 国产精品麻豆人妻色哟哟久久| 美女xxoo啪啪120秒动态图| 国产av码专区亚洲av| 在线免费观看不下载黄p国产| 久久精品久久久久久噜噜老黄| 亚洲丝袜综合中文字幕| 国产免费视频播放在线视频| 22中文网久久字幕| 久久精品国产亚洲av天美| 精品一区在线观看国产| 最近中文字幕2019免费版| 日韩一区二区三区影片| 亚洲一级一片aⅴ在线观看| 亚洲精品一二三| 一区二区三区乱码不卡18| 亚洲真实伦在线观看| 老女人水多毛片| 国产综合精华液| 制服丝袜香蕉在线| 如何舔出高潮| 国产精品三级大全| 免费av不卡在线播放| 久久久久国产精品人妻一区二区| 亚洲国产精品专区欧美| 欧美老熟妇乱子伦牲交| 我要看黄色一级片免费的| 国产 一区精品| 青春草视频在线免费观看| 久久97久久精品| 精品人妻偷拍中文字幕| 伊人久久国产一区二区| 欧美性感艳星| 在线看a的网站| 国产欧美日韩一区二区三区在线 | 少妇熟女欧美另类| 日韩大片免费观看网站| 日本黄色日本黄色录像| 下体分泌物呈黄色| 精品久久久久久电影网| 国产成人一区二区在线| 老司机影院成人| 成人国产麻豆网| 97超碰精品成人国产| 国产精品久久久久成人av| 五月伊人婷婷丁香| 两个人免费观看高清视频 | 亚洲av中文av极速乱| 丁香六月天网| 最近中文字幕高清免费大全6| 22中文网久久字幕| av在线app专区| 黄色怎么调成土黄色| 成人毛片a级毛片在线播放| 国产爽快片一区二区三区| 久久ye,这里只有精品| 免费观看av网站的网址| 国产欧美日韩一区二区三区在线 | 麻豆精品久久久久久蜜桃| 国产一区亚洲一区在线观看| 久久久久国产网址| 亚洲精品第二区| 亚洲精品色激情综合| av有码第一页| 青春草国产在线视频| 五月玫瑰六月丁香| 性高湖久久久久久久久免费观看| 日韩一区二区三区影片| 自拍欧美九色日韩亚洲蝌蚪91 | 国产老妇伦熟女老妇高清| 亚洲美女视频黄频| 中国美白少妇内射xxxbb| 亚洲精品日本国产第一区| 日本wwww免费看| 久久久久久久久久成人| 下体分泌物呈黄色| 七月丁香在线播放| 国产欧美亚洲国产| 韩国av在线不卡| 午夜激情久久久久久久| 国产男女超爽视频在线观看| 啦啦啦啦在线视频资源| 夫妻午夜视频| 亚洲第一区二区三区不卡| 欧美成人午夜免费资源|