• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Two Kinds of Similarity Factors on Principal Component Analysis Fault Detection in Air Conditioning Systems

    2021-09-07 06:31:04YANGXuebin楊學賓HERuru何如如WANGJiLUOWenjun羅雯軍

    YANG Xuebin(楊學賓), HE Ruru(何如如), WANG Ji(王 吉), LUO Wenjun(羅雯軍)

    1 College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

    2 Shanghai Division, China Ship Development and Design Center, Shanghai 201108, China

    Abstract: Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA). In order to find out the candidate data, this study compares unweighted and weighted similarity factors (SFs), which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets. The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data. From the historical fault-free database, the load parameters are employed to locate the candidate data similar to the current operating data. Fault detection method for air conditioning systems is based on principal component. The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection. Compared with the unweighted SF, the average fault-free detection rate of the weighted SF is 17.33% higher than that of the unweighted, and the average fault detection rate is 7.51% higher than unweighted.

    Key words: similarity factor(SF); fault detection; principal component analysis(PCA); historical candidate data; air conditioning system

    Introduction

    The energy saving potential of fault detection diagnosis (FDD) can be up to 10%-40% of heating ventilating and air conditioning (HVAC) energy consumption[1]. At present, FDD methods are mainly divided into three categories[2]: model-based, knowledge-based and data-driven. The model-based method needs to develop a simulation model, and the process is relatively complex. The knowledge-based method needs a large number of credible expert experience. And the data-driven method is not to establish an accurate system model, but to mine the recorded historical data[3]. The most commonly used data-driven methods[4]include principal component method, partial least squares method, support vector machine, artificial neural network and so on.

    Principal component analysis (PCA) has been widely used in fault detection for air conditioning systems. Wang and Xiao[5]employed PCA method to detect air conditioning sensor faults. Jin and Du[6]applied PCA method to detect the fixed deviation faults of temperature and flow sensors in variable air volume systems. Beghietal.[7]used PCA to detect the faults in water chiller. Gajjaretal.[8]defined the load limit of some variables in the principal component as zero, and then carried out fault detection. Hassanpouretal.[9]combined the first law of thermodynamics with PCA to detect faults in HVAC systems. Wangetal.[10]decomposed the data space into molecular space and residual subspace, and employed fractional matrix in PCA residual subspace to develop Bayesian model. Lietal.[11]applied statistical methods to eliminate singular points, and used PCA to detect sensor faults in nuclear power plants. Hanetal.[12]used wavelet transform to eliminate redundancy and noise in original data and improved the quality of PCA modeling data. Huetal.[13]proposed Bagging algorithm to eliminate wrong data and improved the stability of PCA fault detection. Huetal.[14-15]proposed an adaptive PCA method to automatically delete the wrong data in the original data and to improve the fault detection efficiency. Guoetal.[16]developed a Satizky-Golay method to smooth the original data, which was combined with PCA for fault detection of variable refrigerant flow systems.

    Unfortunately, most of the current research works mainly focused on the improvement and application of PCA method itself, or even used simulation data rather than field data. Also, some works took historical operation data as training data, but did not consider the historical fault-free candidate data and even the weights among various variables in actual systems.

    This study investigated the unweighted and weighted PCA similarity factors (SFs). Considering outdoor meteorological parameters and indoor load parameters, the similar candidate data were searched from historical fault-free database, and then were applied to PCA fault detection. The field data from ASHRAE 1312 were employed to test two calculating methods.

    1 Pattern Matching(PM) Model

    The PM method selects historical fault-free operating data which are similar to the current operating condition. The moving window divides the historical data into many data windows at a certain moving speed[17]. Each moving window has the same size as the current measured window. The SF is calculated to represent the degree of similarity between each moving window and current measured window. The first five data windows with the highest SFs are selected to form a reference for PCA fault detection.

    1.1 Load parameter variables

    Air conditioning systems are usually installed with temperature, humidity, flow and other sensors to measure system performance[18]. However, some variables reflecting air conditioning loads, such as solar irradiance, photoelectric power of equipment or lighting, the number of occupants, might not be available. After the air continuously enters the room, the cooling load or heating load is removed and the temperature gradually approaches the set-point. Once the system reaches equilibrium, the heat and moisture content also reach a balance[19]. Therefore, the measuring parameters can replace the unavailable load parameters. The enthalpy of outdoor air can reflect the climatic conditions to a certain extent[20], and the balance of heat and humidity in a room can reflect the operating load of the air condition. The air enthalpy can be calculated by temperature and humidity. As shown in Table 1, temperature, humidity and air flow rate are selected as indoor load parameters.

    Table 1 Selection of meteorological and indoor load parameters

    1.2 SF

    SF is used to characterize the proximity between current measured data and historical operation data. The current measured data are defined asS, and the historical candidate data are defined asH. Both are composed ofnvariables andmdata, respectively. Assume thatk1andk2are the principal components ofSandH, respectively. The eigenvector matrix with the firstkprincipal component space ofLandMcan be used to calculate the PCA SF[21].

    (1)

    whereLdenotes principal component space ofS,Mmeans principal component space ofH, andkis the number of principal components.

    PCA model needs a similarity with the variance described by each principal component direction. The data variance ofkprincipal components varies greatly and each principal component is equally weighted. This cannot reflect the difference between different principal components. The square root of the corresponding eigenvalue is used to represent the difference between the principal components. The formula of weighted SF[22]is

    (2)

    1.3 Moving window

    The moving window, which has the same size as current measured data[23], slides forward at moving speedw. If a window moves one step,wobservations will be skipped. Historical fault-free database is divided into many data windows. The sizes of moving window and moving speed determine the number of data windows and corresponding SFs.

    All SFs are sorted from large to small. The windows with the top largest similarity factors are selected as a historical candidate pool. The duplicate data must be deleted and replaced by new data which are selected from the window with next largest SFs.

    2 Fault Detection Method

    In the actual system, the combination of variables can describe the physical process or event more accurately than a single variable[24]. Figure 1 shows the flow chart of the fault detection method. Principal components can convert complex variables into a set of unrelated or orthogonal variables. The square prediction error (SPE) is used as the fault judgment scale[25]. The SPE with a confidence level of 95% is used to detect whether the system fault or not. If the value of SPE is less than that of the threshold, it means that the system has no fault, otherwise the system is faulty.

    QSPE=‖e‖2≤Qα,

    (3)

    (4)

    Assumed that the data window of current measured data are 60 data points, and the moving speed is 10 data points. The SF is calculated one time when the moving window slides forward one step. The SPE between current measured data and historical candidate data are calculated to check whether the system is faulty or not. The fault detection rate[15]is used to evaluate the effect of fault detection.

    Fig. 1 Flow chart of the fault detection method

    3 Results and Discussion

    The stable running time of air conditioning systems is 10:00-18:00 every day, and the data are collected every one minute. Based on the first law of thermodynamics, selecting 12 operating performance parameters[5]to build up the PCA fault detection model, such as temperature, flow rate, power and fan speed.

    3.1 Fault-free condition

    The window of current data are defined as 60 data points recorded in one hour. During the stable running time, the data window is recorded from 10:00-11:00 to 17:00-18:00. Other data except the current measured data are used as the historical reference data.

    Figure 2 shows the fault-free detection results under two kinds of PCA SFs. On May 2, the average fault detection rate is 13.75%, that is, no fault symptom is detected. For the unweighted SF calculating method, SPEs during 12:00-13:00, 14:00-15:00, 16:00-17:00 and 17:00-18:00, are larger than 60% and even up to 100%, which means fault detected in these time periods. Fortunately, for the weighted method, SPEs only during 10:00-11:00 and 14:00-15:00 are higher than 50%, and no fault symptom is detected in the most of time periods. On August 25 and February 17, the average fault detection rates are 18.13% and 0.42%, respectively. And there is no fault in these two days.

    Fig. 2 Fault-free detection results under unweighted and weighted SFs (The red data mean the value of threshold,and the blue data are the fault detection rate)

    3.2 Fault condition

    Figure 3 shows the fault detection results under two kinds of PCA SFs. The current measured window is obtained from 10:00 to 18:00 hourly. All the data form 10:00 to 18:00 under fault-free condition are used as the historical fault-free database.

    On May 27, the average fault detection rates for unweighted and weighted SF calculating methods, are 71.46% and 81.25%, respectively. For the unweighted SF calculating method, the fault detection rates during 10:00-11:00 and 11:00-12:00 are 7.70% and 5.39%, respectively, which means that no fault symptom is detected in these time periods. For the weighted method, however, the fault detection rates during 10:00-11:00 and 15:00-16:00 are 36.67% and 3.33%, respectively. Low detection rates cannot detect the generated fault symptom. On August 20, the average fault detection rates are 26.88% for the unweighted and 50.42% for the weighted. On February 8, the average fault detection rates are 61.25% for the unweighted and 73.96% for the weighted, respectively.

    4 Performance Evaluation of Fault Detection

    The unweighted SF only considerskprincipal components, and the influence of each component is the same. The weighted SF weights the eigenvalue corresponding to each principal component by squared root.

    Table 2 and Table 3 list the comparison of fault-free and fault detection results under two SFs. For fault-free condition, the fault-free detection rates of weighted SF are more than 78.33%. On May 2 and May 5, the fault detection rates of unweighted SF are more than 50%. The fault detection rates of weighted SF are not significantly better than those of unweighted.

    Table 4 evaluates the fault-free and fault detected rates of two PCA SFs. The weighted SFs are obviously better than the unweighted. The average detection rates of fault-free and fault are 17.33% and 7.51%, respectively. If the threshold is defined as 70%, the percentage of correct detection days for the weighted is 44.44% and 8.34% higher than that of the unweighted. If the threshold is defined as 60%, the percentage of correct detection days of weighted is 22.22% and 16.66% higher than that of unweighted.

    Table 2 Comparison of fault-free detection results of two SFs

    Table 3 Comparison of fault detection results of two similarity factors

    Table 4 Evaluation of fault-free and fault detected rates of two SFs

    5 Conclusions

    This paper compares two methods for calculating PCA SFs: unweighted and weighted. The weighted SF takes into account the difference of each principal component weight and uses the square root of eigenvalue of each principal component to assign the weight. Both methods are combined with PCA for fault detection in air conditioning systems. The main conclusions are as follows.

    (1) Considering the square root errors to represent the difference between the principal components, the weighted SF presents much better fault-free and fault detection effects than the unweighted.

    (2) Compared with the unweighted, the average fault-free detection rate and the average fault detection rate are 17.33% and 7.51%, which are higher than the unweighted SF, respectively.

    (3) If the threshold is 70%, the percentages of correct fault-free and fault detection days of the weighted are 44.44% and 8.34% higher than that of the unweighted. If the threshold is 60%, the percentages of correct fault-free and fault detection days of the weighted are 22.22% and 16.66% higher than that of the unweighted.

    欧美3d第一页| 天天一区二区日本电影三级| 午夜老司机福利剧场| 毛片一级片免费看久久久久| 一个人观看的视频www高清免费观看| 色哟哟·www| 久久精品久久久久久噜噜老黄| av.在线天堂| 亚洲欧美成人精品一区二区| 丝瓜视频免费看黄片| 午夜激情福利司机影院| 一级毛片久久久久久久久女| 五月伊人婷婷丁香| 色综合色国产| 在线播放无遮挡| 尤物成人国产欧美一区二区三区| 久久精品夜色国产| 久久午夜福利片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 搞女人的毛片| 丝瓜视频免费看黄片| 国产精品99久久99久久久不卡 | 嘟嘟电影网在线观看| 亚洲精品影视一区二区三区av| 国产欧美另类精品又又久久亚洲欧美| 婷婷色麻豆天堂久久| 大香蕉久久网| 夜夜爽夜夜爽视频| 建设人人有责人人尽责人人享有的 | 日日摸夜夜添夜夜爱| 国产亚洲91精品色在线| 精品久久久久久电影网| 久久久久久久久久人人人人人人| 少妇人妻 视频| 国产精品人妻久久久久久| 日韩成人伦理影院| 国产淫语在线视频| 亚洲人成网站高清观看| 18禁在线无遮挡免费观看视频| 国产亚洲午夜精品一区二区久久 | 日日摸夜夜添夜夜爱| 国产亚洲91精品色在线| av免费观看日本| 高清午夜精品一区二区三区| 尾随美女入室| 日本一本二区三区精品| 狂野欧美白嫩少妇大欣赏| 欧美性猛交╳xxx乱大交人| 中文精品一卡2卡3卡4更新| 少妇人妻 视频| 国产乱人视频| 亚洲电影在线观看av| 高清视频免费观看一区二区| 国产色婷婷99| 欧美高清性xxxxhd video| 精品99又大又爽又粗少妇毛片| 一级av片app| 国产中年淑女户外野战色| 久久久色成人| 日韩欧美精品免费久久| 国产黄片视频在线免费观看| 久久影院123| 久久影院123| 男女国产视频网站| 午夜激情久久久久久久| 美女国产视频在线观看| 欧美日韩在线观看h| 久久久久久九九精品二区国产| 欧美人与善性xxx| 日韩亚洲欧美综合| 久久久久久久午夜电影| 一区二区三区精品91| 中国美白少妇内射xxxbb| 一级黄片播放器| 美女内射精品一级片tv| 精华霜和精华液先用哪个| 91狼人影院| 丝袜喷水一区| 又爽又黄无遮挡网站| 春色校园在线视频观看| 一区二区三区免费毛片| 久久综合国产亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品99久久99久久久不卡 | 免费av观看视频| 涩涩av久久男人的天堂| 亚洲精品成人av观看孕妇| 亚洲综合精品二区| 亚洲精品久久午夜乱码| 久久精品综合一区二区三区| 欧美bdsm另类| 2022亚洲国产成人精品| 国产成人精品久久久久久| 国产精品.久久久| 色5月婷婷丁香| 天堂网av新在线| 在线亚洲精品国产二区图片欧美 | 精品少妇久久久久久888优播| 少妇的逼好多水| 亚洲av成人精品一二三区| 久久久亚洲精品成人影院| 亚洲成人av在线免费| 十八禁网站网址无遮挡 | 久久精品久久久久久噜噜老黄| 日韩av在线免费看完整版不卡| 网址你懂的国产日韩在线| 免费人成在线观看视频色| 在线观看人妻少妇| 狠狠精品人妻久久久久久综合| 久久久久国产精品人妻一区二区| 最近手机中文字幕大全| 精品久久国产蜜桃| 插逼视频在线观看| 亚洲成人一二三区av| 国产精品久久久久久精品电影小说 | 国产探花极品一区二区| 99久国产av精品国产电影| 精品人妻视频免费看| kizo精华| 韩国高清视频一区二区三区| 一级毛片电影观看| 神马国产精品三级电影在线观看| 人人妻人人看人人澡| 超碰97精品在线观看| 免费大片18禁| 26uuu在线亚洲综合色| 精品久久久久久久人妻蜜臀av| 麻豆乱淫一区二区| 久久久久网色| 啦啦啦中文免费视频观看日本| 我要看日韩黄色一级片| 狂野欧美激情性xxxx在线观看| 听说在线观看完整版免费高清| 亚洲精品国产成人久久av| 精品一区在线观看国产| 综合色av麻豆| 久久久成人免费电影| 在线观看一区二区三区| 日本wwww免费看| av免费在线看不卡| av又黄又爽大尺度在线免费看| 国产男人的电影天堂91| 亚洲av.av天堂| 国产成人免费观看mmmm| 777米奇影视久久| 狂野欧美激情性xxxx在线观看| 91在线精品国自产拍蜜月| 亚洲欧美日韩卡通动漫| 久久久久九九精品影院| 欧美性感艳星| 日韩伦理黄色片| 久久精品国产自在天天线| 亚洲成人精品中文字幕电影| 全区人妻精品视频| 国产白丝娇喘喷水9色精品| 欧美日韩一区二区视频在线观看视频在线 | 国产91av在线免费观看| 亚洲久久久久久中文字幕| 观看免费一级毛片| 国产综合懂色| 成人综合一区亚洲| 亚洲欧美成人精品一区二区| 伦精品一区二区三区| 成人亚洲精品一区在线观看 | 五月天丁香电影| 干丝袜人妻中文字幕| av女优亚洲男人天堂| 免费观看的影片在线观看| 少妇 在线观看| 91精品国产九色| 韩国高清视频一区二区三区| 日本黄色片子视频| 麻豆精品久久久久久蜜桃| 青春草国产在线视频| 日韩 亚洲 欧美在线| 久热久热在线精品观看| 黄色欧美视频在线观看| 精品亚洲乱码少妇综合久久| 国产精品一区www在线观看| 久久99热这里只频精品6学生| 国产精品秋霞免费鲁丝片| 欧美精品人与动牲交sv欧美| 男人添女人高潮全过程视频| av女优亚洲男人天堂| 深爱激情五月婷婷| 校园人妻丝袜中文字幕| 国产国拍精品亚洲av在线观看| 久久99蜜桃精品久久| 日本-黄色视频高清免费观看| 欧美人与善性xxx| 欧美变态另类bdsm刘玥| 男女那种视频在线观看| 国产精品久久久久久精品古装| 51国产日韩欧美| 超碰97精品在线观看| 国产日韩欧美亚洲二区| 干丝袜人妻中文字幕| 国产亚洲一区二区精品| 亚洲精品中文字幕在线视频 | 18禁动态无遮挡网站| 久久久久久久大尺度免费视频| 少妇 在线观看| 久久久成人免费电影| 一级片'在线观看视频| 免费av毛片视频| 国产精品女同一区二区软件| 欧美成人a在线观看| 2021少妇久久久久久久久久久| 卡戴珊不雅视频在线播放| 国产av国产精品国产| 精品久久久久久久末码| 熟女人妻精品中文字幕| 最近的中文字幕免费完整| 乱系列少妇在线播放| 日本黄色片子视频| 成人鲁丝片一二三区免费| 男人狂女人下面高潮的视频| 大又大粗又爽又黄少妇毛片口| 免费看不卡的av| 国产在线男女| 伦精品一区二区三区| 亚洲色图av天堂| 日本-黄色视频高清免费观看| 人妻夜夜爽99麻豆av| 国产精品一及| 男男h啪啪无遮挡| 欧美成人精品欧美一级黄| 看免费成人av毛片| 欧美日韩视频精品一区| 校园人妻丝袜中文字幕| 超碰97精品在线观看| 亚洲丝袜综合中文字幕| 国产伦在线观看视频一区| 亚洲成色77777| 国产精品一区二区性色av| 男女啪啪激烈高潮av片| 91aial.com中文字幕在线观看| 亚洲美女视频黄频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲美女视频黄频| 国产一区亚洲一区在线观看| 亚洲内射少妇av| 偷拍熟女少妇极品色| 亚洲欧美日韩卡通动漫| 国产亚洲精品久久久com| 超碰97精品在线观看| 亚洲不卡免费看| 欧美97在线视频| 中国美白少妇内射xxxbb| 在线a可以看的网站| 成年女人看的毛片在线观看| 亚洲欧美精品专区久久| 各种免费的搞黄视频| 国产精品女同一区二区软件| 亚洲最大成人手机在线| 精品人妻熟女av久视频| 极品教师在线视频| 成人一区二区视频在线观看| 国产男女超爽视频在线观看| 久久鲁丝午夜福利片| 波野结衣二区三区在线| 永久免费av网站大全| 日韩中字成人| 草草在线视频免费看| 亚洲成人中文字幕在线播放| 男女下面进入的视频免费午夜| 国产精品av视频在线免费观看| 97超视频在线观看视频| 欧美性猛交╳xxx乱大交人| 免费观看无遮挡的男女| 男人和女人高潮做爰伦理| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花 | 亚洲人与动物交配视频| 18+在线观看网站| 神马国产精品三级电影在线观看| 欧美精品国产亚洲| 午夜免费鲁丝| 亚洲va在线va天堂va国产| 一级黄片播放器| 人妻 亚洲 视频| 熟女电影av网| 日韩欧美精品v在线| 日韩三级伦理在线观看| 美女xxoo啪啪120秒动态图| 嫩草影院入口| 干丝袜人妻中文字幕| 国产色婷婷99| 麻豆成人av视频| 男人舔奶头视频| 一级片'在线观看视频| 国产精品熟女久久久久浪| 婷婷色av中文字幕| 看黄色毛片网站| 免费看不卡的av| 99精国产麻豆久久婷婷| 91aial.com中文字幕在线观看| 国产成人91sexporn| 久久影院123| 亚洲av免费高清在线观看| 成人亚洲精品av一区二区| 99久久精品一区二区三区| 日韩国内少妇激情av| 日本黄大片高清| 久久久久久久久大av| 久久6这里有精品| 性色av一级| 可以在线观看毛片的网站| 寂寞人妻少妇视频99o| 男女国产视频网站| 亚洲最大成人手机在线| 日韩av不卡免费在线播放| 亚洲av.av天堂| 嫩草影院精品99| 一本一本综合久久| 免费在线观看成人毛片| 欧美一级a爱片免费观看看| 九九在线视频观看精品| 亚洲成人中文字幕在线播放| 男女国产视频网站| 最近手机中文字幕大全| 男人狂女人下面高潮的视频| 一级毛片aaaaaa免费看小| 亚洲,欧美,日韩| 亚洲精品乱码久久久久久按摩| 亚洲怡红院男人天堂| 色视频在线一区二区三区| 美女视频免费永久观看网站| 国产成人freesex在线| 亚洲熟女精品中文字幕| 久久久久久久精品精品| 亚洲成人一二三区av| 免费看光身美女| 久久精品国产自在天天线| 国产免费视频播放在线视频| 九九爱精品视频在线观看| 国产精品99久久久久久久久| .国产精品久久| 亚洲熟女精品中文字幕| 97在线视频观看| 99久国产av精品国产电影| 中文字幕久久专区| 在线观看av片永久免费下载| videos熟女内射| 成人毛片60女人毛片免费| 精品久久国产蜜桃| 色哟哟·www| 狂野欧美激情性bbbbbb| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 久久久久精品久久久久真实原创| 中文乱码字字幕精品一区二区三区| 尾随美女入室| 日本色播在线视频| 欧美日韩国产mv在线观看视频 | 国产一区二区三区综合在线观看 | 亚洲精品乱久久久久久| 日韩精品有码人妻一区| 久久久久久久午夜电影| 国产乱来视频区| 91精品一卡2卡3卡4卡| 在线a可以看的网站| 亚洲av.av天堂| 国产亚洲精品久久久com| 免费黄网站久久成人精品| 成人欧美大片| 成年女人看的毛片在线观看| 日韩制服骚丝袜av| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线 | 欧美高清成人免费视频www| 国产女主播在线喷水免费视频网站| 18禁裸乳无遮挡动漫免费视频 | 特级一级黄色大片| 国产永久视频网站| 色吧在线观看| 69av精品久久久久久| 久久99热6这里只有精品| 91精品一卡2卡3卡4卡| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 国产美女午夜福利| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 国产国拍精品亚洲av在线观看| 在线免费十八禁| 可以在线观看毛片的网站| 国内少妇人妻偷人精品xxx网站| 大片电影免费在线观看免费| 久久久色成人| 国产日韩欧美在线精品| 国内精品美女久久久久久| 97超视频在线观看视频| 大香蕉97超碰在线| 精品一区二区三卡| 久久久久久九九精品二区国产| 精品一区在线观看国产| 大香蕉97超碰在线| 国产色婷婷99| 制服丝袜香蕉在线| xxx大片免费视频| 国产精品一区www在线观看| 99久久精品一区二区三区| av网站免费在线观看视频| 噜噜噜噜噜久久久久久91| 男人狂女人下面高潮的视频| 人妻制服诱惑在线中文字幕| 亚洲av成人精品一二三区| 日韩欧美精品免费久久| 亚洲av成人精品一区久久| 一个人看的www免费观看视频| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 九九爱精品视频在线观看| 成人午夜精彩视频在线观看| 日韩一本色道免费dvd| 国产精品女同一区二区软件| 久久久久精品性色| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久免费av| 日韩欧美 国产精品| 少妇的逼好多水| 99热这里只有是精品在线观看| 精品少妇黑人巨大在线播放| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 国产精品国产三级专区第一集| 久久精品久久精品一区二区三区| 国产乱人偷精品视频| 亚洲av日韩在线播放| 97在线视频观看| 美女主播在线视频| 亚洲va在线va天堂va国产| 国产色爽女视频免费观看| 纵有疾风起免费观看全集完整版| 欧美性猛交╳xxx乱大交人| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 一二三四中文在线观看免费高清| 精品人妻一区二区三区麻豆| 91午夜精品亚洲一区二区三区| videossex国产| 少妇的逼水好多| 成人黄色视频免费在线看| 国产免费视频播放在线视频| 99久久人妻综合| 天堂中文最新版在线下载 | 久久ye,这里只有精品| 一级av片app| 在线观看av片永久免费下载| 久久97久久精品| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 97热精品久久久久久| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲国产最新在线播放| 蜜桃久久精品国产亚洲av| 永久免费av网站大全| 性插视频无遮挡在线免费观看| 久久久a久久爽久久v久久| 街头女战士在线观看网站| 国内精品宾馆在线| 国产一区二区三区综合在线观看 | 简卡轻食公司| 人妻一区二区av| 最近最新中文字幕免费大全7| 久久精品夜色国产| 日韩,欧美,国产一区二区三区| 777米奇影视久久| 麻豆乱淫一区二区| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久av不卡| 国产成人午夜福利电影在线观看| 欧美日韩在线观看h| 国产片特级美女逼逼视频| 日本熟妇午夜| 大码成人一级视频| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 国产男人的电影天堂91| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 色视频在线一区二区三区| 国产成人精品一,二区| 亚洲成人精品中文字幕电影| 2021少妇久久久久久久久久久| 日韩国内少妇激情av| 一级a做视频免费观看| videos熟女内射| 亚洲成人中文字幕在线播放| 亚洲国产精品成人久久小说| 看十八女毛片水多多多| 日韩强制内射视频| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 香蕉精品网在线| 亚洲精品乱码久久久久久按摩| 天天躁日日操中文字幕| 国产精品不卡视频一区二区| 日日撸夜夜添| 国产精品伦人一区二区| 1000部很黄的大片| 能在线免费看毛片的网站| 久久鲁丝午夜福利片| 99九九线精品视频在线观看视频| 亚洲三级黄色毛片| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| 肉色欧美久久久久久久蜜桃 | 国产高清三级在线| 欧美日韩在线观看h| 久久久久性生活片| 身体一侧抽搐| 丝袜美腿在线中文| 久久亚洲国产成人精品v| 大码成人一级视频| 亚洲图色成人| 黄片无遮挡物在线观看| 简卡轻食公司| 国产av码专区亚洲av| 一区二区三区四区激情视频| 久久久精品免费免费高清| 成人国产av品久久久| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 国产一区二区三区av在线| 日韩 亚洲 欧美在线| 日本-黄色视频高清免费观看| 欧美zozozo另类| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| av免费观看日本| a级毛色黄片| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 欧美+日韩+精品| 夫妻午夜视频| 午夜精品一区二区三区免费看| 99久久精品热视频| 国产精品久久久久久久久免| 神马国产精品三级电影在线观看| 一本一本综合久久| 九九在线视频观看精品| 少妇猛男粗大的猛烈进出视频 | 免费电影在线观看免费观看| 精品99又大又爽又粗少妇毛片| 国产精品成人在线| 51国产日韩欧美| 永久免费av网站大全| 大香蕉97超碰在线| 三级男女做爰猛烈吃奶摸视频| 国精品久久久久久国模美| 欧美老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产av新网站| 免费看日本二区| 成人黄色视频免费在线看| 国产69精品久久久久777片| 2022亚洲国产成人精品| 极品教师在线视频| 日韩av在线免费看完整版不卡| 国产淫片久久久久久久久| 边亲边吃奶的免费视频| 国产亚洲精品久久久com| 熟女电影av网| 春色校园在线视频观看| 熟女电影av网| 免费观看的影片在线观看| 国产av码专区亚洲av| 男插女下体视频免费在线播放| 精品国产露脸久久av麻豆| 欧美日韩国产mv在线观看视频 | 亚洲性久久影院| 欧美一区二区亚洲| 国产伦理片在线播放av一区| 成人特级av手机在线观看| 午夜免费观看性视频| 精品久久久久久久久av| 联通29元200g的流量卡| 国产成人精品婷婷| 亚洲人成网站高清观看| 国产精品一及| 国产亚洲av片在线观看秒播厂| 国内揄拍国产精品人妻在线| 99热这里只有精品一区| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| av免费观看日本| 18禁动态无遮挡网站| 日韩不卡一区二区三区视频在线| 别揉我奶头 嗯啊视频| 成人国产av品久久久| 在线免费观看不下载黄p国产| 寂寞人妻少妇视频99o| 亚洲四区av| 国产精品一区二区性色av| 日韩亚洲欧美综合| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 国产免费一级a男人的天堂| 在线 av 中文字幕| 寂寞人妻少妇视频99o| 成年人午夜在线观看视频| 国产永久视频网站| 狂野欧美白嫩少妇大欣赏| 国产黄色免费在线视频| 久久久久性生活片| 91aial.com中文字幕在线观看| 嘟嘟电影网在线观看| 五月伊人婷婷丁香| 中文字幕制服av| 亚洲怡红院男人天堂|