• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Reactive Power Compensation of Distribution Network to Prevent Reactive Power Reverse

    2021-09-07 06:29:44XINGJieCAORuilin曹瑞琳QUANZhaolong權(quán)釗龍YUANZhiqiang袁智強(qiáng)

    XING Jie(邢 潔), CAO Ruilin(曹瑞琳), QUAN Zhaolong(權(quán)釗龍), YUAN Zhiqiang(袁智強(qiáng))

    1 College of Information Science and Technology, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China

    3 Shanghai Electric Power Design Institute Co., Ltd., Shanghai 200025, China

    Abstract: The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years. In severe cases, it will endanger the security and stability of power grid. This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse. Firstly, an integrated reactive power planning (RPP) model with power factor constraints is established. Capacitors and reactors are considered to be installed in the distribution system at the same time. The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period. Nodal power factor limits and reactor capacity constraints are new constraints. Then, power factor sensitivity with respect to reactive power is derived. An improved genetic algorithm by power factor sensitivity is used to solve the model. The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit. Finally, the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.

    Key words: reactive compensation planning; high voltage distribution network; power actor; improved genetic algorithm

    Introduction

    The optimal reactive power planning (ORPP) is mainly to determine the amount and location of shunt reactive power compensation devices needed for minimum cost while keeping an adequate voltage profile[1-3]. The ORPP is a typical nonlinear optimization problem with a large number of variables and constraints[4].

    In some studies, fitness functions suitable for multi-objective optimization were constructed, which introduced the numbers of control adjustment or considered multi-area interconnected systems[5-6]. Many efforts have been undertaken using classical optimization techniques[7-9]. Compared with the conventional optimization algorithm, intelligent optimization algorithms have attracted much more attention due to their advantages such as ignoring gradient of optimization model and dealing with discrete variables easily[10-14]. In order to solve the problem of large calculation quantity and long search time for numerous compensation points in distribution network, sensitivity analysis[3]and partition coefficient are used to reduce the candidates before searching. In addition, conventional reactive power planning (RPP) model based on deterministic load is expanded to that of uncertainty operating modes, in order to improve the adaptability of reactive power planning results[15-17]. However, most studies on ORPP are based on the power grid of overhead transmission lines. The capacitance of overhead lines is much smaller than that of underground cables at the same voltage, therefore, the capacitive reactive power reversal is not considered in ORPP[18].

    At present, the urban high voltage distribution network shows new characteristics. On the one hand, the load peak-valley difference of power grid increases significantly; on the other hand, due to the restriction of resource and environment, the newly-built lines are mainly large-section underground cables and the old overhead lines are gradually changed to the underground cables. With the further expansion of the scale of high-voltage distribution network, redundant capacitive reactive power flows back to the higher voltage grid under low load condition. It not only raises the system voltage and challenges the voltage regulation ability of substation, but also reduces the stability margin of under excited generator in the power grid, which affects the security and stability of power grid[19]. In the power grid, reactive power compensation is proceeded according to hierarchical balance. For a long time, the redundant capacitive reactive power of 110 kV grid is compensated by 35 kV or 10 kV reactors in 220 kV substations. There are usually no reactors in 110 kV substations. On the other hand, the main purpose of 110 kV high voltage reactor installed at long transmission line is to limit overvoltage rather than to balance reactive power. The centralized installation of capacitive and inductive compensation in 220 kV and above substations has gradually failed to meet the requirements of distribution network development[20]. Considering the difficulty of project implementation and practical economy, it is an effective and feasible method to integrate capacitors and reactors in the 10 kV sides of 110 kV substations.

    Taking Shanghai power grid as an example, in 2018, the daily maximum peak-valley difference reached 12 630 MW, accounting for 48.5% of daily maximum load. The total length of 110 kV underground cables in Shanghai power grid was 1 611 km, accounting for 42% of all 110 kV lines. Under the new development trend, the RPP would gradually become the coordinated planning of capacitive and inductive reactive compensation for relieving capacitive reactive power excess being caused by cables at low load condition. Meanwhile, the inequality constraints mainly include voltage constraints, capacitor capacity limits and other traditional constraints in conventional ORPP. However, in the current power grid, excess capacitive reactive power flows back to active power supply source, which often leads to the power factor exceeding the limit at the measurement point of distribution station. Consumers who exceeded the power factor limit have to pay punitive electric bill[21]. Therefore, it is helpful to solve the reactive power reversal and unqualified power factor under low load condition that the power factor constraint is considered into the ORPP.

    This paper proposes an ORPP method considering power factor constraints in high voltage distribution network. This paper is organized as follows. Section 1 gives a comprehensive ORPP model with power factor constraints for optimizing the sizing and location of reactors and capacitors. The nodal power factor constraints are added into the mathematical model, which is used to solve the problems of reactive power reversal and power factor exceeding the limits in distribution network. Section 2 gives a brief formula derivation of the sensitivity of power factor to reactive power. Section 3 presents an improved genetic algorithm (IGA) by power factor sensitivity (PFS), in which the traditional genetic algorithm (GA) is improved by taking PFS as the guiding strategy for forming initial population. In section 4, the test and validation of model and algorithm are conducted on test systems. Finally, section 5 concludes the work.

    1 RPP Model Considering Power Factor Constraints

    1.1 Objective function

    The objective of the RPP is to minimize the total cost of active power loss and compensators during the planning period[2].The objective function is shown as

    (1)

    wheref1is the capacity cost of compensators, which are capacitor investment and reactor investment;f2is the cost of active power loss of distribution network;C1andC2are capacitor’s cost coefficient of unit capacity and reactor’s cost coefficient of unit capacity, respectively;QCiandQLiare the capacity of reactive power resources installed at busi;Tis the planning period; τ is the electricity price per kwh;tis the time of operation;Ploss1andPloss2are the active power loss of network and transformers;NCandNLare the numbers of installed capacitors and reactors.

    1.2 Conventional constraints

    Because the slack bus is the only reactive power source except compensation in the distribution network, the power flow equation is shown as

    (2)

    wherePiandQiare the injected active power and reactive power at busi;UiandUjare the voltage magnitudes of busiand busj;Gijis the conductance between busiandj;Bijis the transfer susceptance between busiandj;δijis the voltage angle difference between busiandj;nis the total number of buses;αiandβiare the switch variables with a value of 0 or 1, which decide the operation of capacitors or reactors. Because the capacitors and reactors cannot run at the same time, variablesαiandβicannot be taken as 1 simultaneously.

    Constraints of voltage magnitude and transmission line loading are as follows:

    (3)

    (4)

    1.3 Constraints of power factors and compensators

    1.3.1Powerfactoraffectedbyreactivepowerflowreversing

    In high voltage distribution network, the nodal power factor is measured at the coupling point of substation, which is determined by the suppling load and the power transferred to other substations. Due to the radial structure, the power factor of bus can be calculated by apparent power at the end of incoming line. The nodal power factor and reactive power distribution are different corresponding to overhead lines and underground cables being used in distribution network, even if there is the same active power loss.

    Fig. 1 Schematic diagram of chain connection distribution network

    As mentioned above, it is necessary to add power factor constraint and consider coordinating reactors and capacitors on the traditional RPP model which mainly focuses on capacitor compensation, so as to solve the problem of reactive power reversal and power factor exceeding the limit under the light load period.

    1.3.2Constraintsofpowerfactorandreactivepowercompensation

    Capacity constraints of reactive power compensation are shown as

    (5)

    (6)

    The constraint of power factor is shown as

    (7)

    (8)

    where distributed generation (DG) is not considered in the proposed model, so there is no active power sent to grid andPiis positive; sgn (Qi) is “1” whenQiis absorbed by load, otherwise it is “-1” and negative sign is used to indicate the reverse direction of reactive power flow. In this way, compensation schemes with reactive power reverse are excluded from the feasible solutions because they cannot meet power factor constraints. The new added constraint prevents reactive power flow reversely.

    2 IGA for the Proposed Model

    GA is an adaptive search algorithm simulating biological evolution, which does not need the gradient information of model. GA can obtain the global optimal solution in probability through the operation of selection, crossover and mutation[14].

    In this paper, the traditional GA is improved according to the characteristics of the planning model.

    2.1 Chromosome code mapping to Gray code

    In this paper, the traditional GA is improved according to the characteristics of the planning model. In order to save memory space, improve computing speed, and avoid Hamming cliff problem approaching the optimal solution, the definition domain of discrete control variables is mapped to gray code. In this way, the approximation can be avoided when the optimal chromosome is decoded between adjacent control variables. And the Gray code can also prevent probability density from being affected by the invalid solution in selection process, because the number of chromosomes produced by traditional binary code is larger than that of feasible solutions.

    2.2 Forming effective initial population

    2.2.1PFSwithrespecttoReactivePower

    The PFS is obtained by the partial derivative of power factor to the reactive power injection at the end of branch. PFS can reflect the influence of reactive compensation variation on nodal power factor. It can be seen from Fig. 1 that the power factor of busiis not only determined by the suppling load, but also affected by the load of other buses connected with it. The PFS of nodeito reactive power of network is shown as

    (9)

    where ?cosφi/?Piand ?cosφi/?Qican be calculated according to the power factor definition formula; ?Pi/?Qand ?Qi/?Qare the partial derivatives of injection power at busiwith respective to reactive power vector, which can be calculated by ?Ui/?Qj, ?Uj/?Qj, ?δi/?Qjand ?δj/?Qjfrom Jacobi matrix.

    2.2.2FormingeffectiveinitialpopulationwithPFSselectionstrategy

    When an initial population is formed, the reactive power compensations of chromosomes which exceed the power factor limits, are adjusted to meet the power factor constraints according to the results of PFS.

    Initial population is generated randomly in control variable domain. Then, for each chromosome that do not meet the power factor constraint, the sensitivities of over-limit power factor with respect to gene segments (compensation locations) are calculated according to Eq. (7) and sorted by their absolute values. The reactive power compensation with the largest PFS is adjusted by the direction of sensitivity change. If the compensation capacity is at the boundary, the reactive power compensation adjustment is carried out on the gene segment with the second largest PFS value until the power factor meets the constraints.

    2.3 Algorithm flow

    The main steps of the IGA are as follows.

    Step1Input network data and set parameters of IGA, such as maximum generation, population size, crossover probability and mutation probability.

    Step2Form initial population.

    Step3Reproduce chromosomes into a “mating pool” according to their fitness values by roulette wheel.

    Step4Perform crossover to each couple of chromosomes in the “mating pool” according to the crossover probability. Apply crossover operation successfully if power factors meet limits; otherwise keep chromosomes unchanged.

    Step5Perform mutation according to the mutation probability. Apply mutation operation successfully if power factors meet limits; otherwise keep chromosomes unchanged.

    Step6Stop the procedure and output the results if the convergence criterion is satisfied; otherwise go back to Step 3.

    3 Case Study

    In this section, the effectiveness of the proposed model and algorithm is tested using IEEE 14-bus test system. The system configuration is shown in Fig. 2 and the line data of system can be found in Appendix.

    Fig. 3 Capacity of reactive power compensation

    The network voltage is 110 kV. The limits of voltage magnitude are taken between 0.94 and 1.06 (per unit value) for all buses except the slack bus1. The capacity of each transformer is 50 MVA. Its load lossPkis 194 kW and short circuit impedance is 10.5%. At light load condition, the active and reactive power of buses are shown in Appendix. The reactive power compensation of each bus is grouped into 3 Mvar and 5 Mvar according to the actual equipment capacity.

    The IGA program in this paper is realized using MATLAB. The parameters set in algorithm are as follows: population size is 50, maximum generation is 15, crossover probability is 0.8 and mutation probability is 0.09. In the proposed RPP model, the planning period is 10 a, electricity price is 0.45 CNY/(kW·h), the unit capacity price of capacitor is 50 CNY/kvar, the unit capacity price of reactor is 80 CNY/kvar, the light load availability hours are 2 600 h and the range of power factor is [0.9, 1.0]. Because the use of 10 kV reactor in 110 kV substation has not been normalized, the price of reactor per unit capacity is higher than that of capacitor.

    In initial network without any reactive power compensation, the reactive power flowing into the slack bus is 18.16 Mvar and the total number of buses that violate power factor constraints is 3.

    The results of the proposed method in this paper are shown in Table 1.

    The results in Table 1 show that the objective function is 567×104CNY and the capacities of capacitors and reactors are respectively 6 Mvar and 26 Mvar. In this paper, the coordinated planning of reactor and capacitor is considered, which eliminates the problem of power factors exceeding the limits and reduces the reactive power of 18.16 Mvar to the upper power grid. Considering the huge scale of the actual high-voltage distribution network, the optimization results will be more obvious, which can effectively reduce the voltage regulation pressure of power grid.

    Table 1 Compensation results of the proposed RPP model

    Table 2 shows the improvement effect on reactive power reversal and power factors exceeding the limits in the proposed planning scheme. The negative sign indicates that the reactive power flows back into the bus.

    From the comparison in Table 2, it can be found that several nodal power factors in the original network are lower than 0.900, such as bus5 and bus9, and there is reactive power reverse in some buses, such as bus2, bus6 and bus11. The optimal results of RPP considering power factor constrains and coordination of capacitors and reactors, can avoid reactive power reversal and power factor exceeding the limit.

    Table A1 Loads of buses

    Table A2 Line parameters

    Figure 3 shows the optimal sizing of capacitors and reactors at low voltage buses of substations. In order to express clearly, shunt capacitors compensation is positive and reactor compensation is negative.

    The comparison of voltage profile is shown in Fig. 4. It can be found that the voltage profile of the proposed RPP is improved, which is much better than that of original network. The maximum voltage magnitude is reduced and the voltage gap is smaller. The sample standard deviations of two voltage fluctuation curves are 0.108 9 and 0.039 9, respectively. The results show that the network voltage fluctuation is smaller when reactive power compensation is carried out according to the planning scheme.

    Fig. 4 Voltage profile comparison

    Fig. 5 Convergence curve of IGA

    Figure 5 shows the convergence characteristics of the objective function of the proposed IGA method.

    4 Conclusions

    In this paper, an improved RPP model with power factor constraints is proposed, in which capacitors and reactors are considered coordinately. The objective function is the minimization of real power loss and compensation cost during the planning period and new constraints such as nodal power factor limits and reactor capacity constraints are taken into account. Then, PFS with respect to reactive power is derived. An IGA by PFS is used to solve the model. Finally, the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network. The results show that the proposed method can avoid reactive power reversal and power factor over-limit in the conditions of light load and large-scale underground cables in the high-voltage distribution network.

    午夜久久久在线观看| 久久久久九九精品影院| 亚洲第一青青草原| 免费看a级黄色片| 亚洲自偷自拍图片 自拍| 中文字幕久久专区| 我的亚洲天堂| 一卡2卡三卡四卡精品乱码亚洲| 好男人在线观看高清免费视频 | 国产精品,欧美在线| 成人av一区二区三区在线看| 女同久久另类99精品国产91| 精品国产乱子伦一区二区三区| 亚洲欧洲精品一区二区精品久久久| 人成视频在线观看免费观看| 久久久精品欧美日韩精品| 久久精品aⅴ一区二区三区四区| 精品人妻1区二区| 人人妻,人人澡人人爽秒播| 午夜成年电影在线免费观看| 熟女少妇亚洲综合色aaa.| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品无人区| 欧美日韩中文字幕国产精品一区二区三区 | 可以在线观看毛片的网站| 久久午夜综合久久蜜桃| 在线播放国产精品三级| 天堂影院成人在线观看| 久久久久精品国产欧美久久久| 亚洲avbb在线观看| 99久久精品国产亚洲精品| 久久午夜亚洲精品久久| 国产精品 国内视频| 日韩av在线大香蕉| 免费看美女性在线毛片视频| 国产亚洲欧美在线一区二区| 亚洲久久久国产精品| 久久婷婷人人爽人人干人人爱 | 99香蕉大伊视频| 国产亚洲av嫩草精品影院| 69av精品久久久久久| 欧美成人性av电影在线观看| 日本a在线网址| 国产av精品麻豆| 日韩视频一区二区在线观看| 91成年电影在线观看| 欧美日韩亚洲综合一区二区三区_| 精品国产乱码久久久久久男人| 成在线人永久免费视频| 亚洲人成77777在线视频| 国产精品日韩av在线免费观看 | 可以免费在线观看a视频的电影网站| 精品熟女少妇八av免费久了| 两性夫妻黄色片| 国产精品久久视频播放| 一个人观看的视频www高清免费观看 | 九色国产91popny在线| 伦理电影免费视频| 日韩欧美国产在线观看| 久久热在线av| 黄色a级毛片大全视频| 淫妇啪啪啪对白视频| 精品久久久久久久久久免费视频| 色尼玛亚洲综合影院| 精品欧美一区二区三区在线| 欧美丝袜亚洲另类 | 精品久久久久久久毛片微露脸| 天堂√8在线中文| 亚洲无线在线观看| 黑丝袜美女国产一区| 欧美日韩乱码在线| 又大又爽又粗| 在线观看午夜福利视频| 成年人黄色毛片网站| 91国产中文字幕| 首页视频小说图片口味搜索| 久久精品国产99精品国产亚洲性色 | 狠狠狠狠99中文字幕| 亚洲国产欧美一区二区综合| 国产精品 国内视频| 在线观看午夜福利视频| 午夜福利免费观看在线| 91成年电影在线观看| av欧美777| 男女做爰动态图高潮gif福利片 | 成人亚洲精品一区在线观看| 亚洲av第一区精品v没综合| 18禁美女被吸乳视频| 中国美女看黄片| 成人手机av| www.www免费av| 久久性视频一级片| 精品熟女少妇八av免费久了| 欧美色欧美亚洲另类二区 | 午夜影院日韩av| 国产av一区二区精品久久| 宅男免费午夜| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品九九99| 亚洲av成人不卡在线观看播放网| 又黄又爽又免费观看的视频| 又紧又爽又黄一区二区| 日韩精品青青久久久久久| 成人三级黄色视频| 久久精品aⅴ一区二区三区四区| 十八禁网站免费在线| 久久中文字幕一级| 国产成人精品无人区| 在线观看午夜福利视频| 免费在线观看黄色视频的| 人妻久久中文字幕网| 熟女少妇亚洲综合色aaa.| 午夜久久久久精精品| 可以在线观看毛片的网站| www日本在线高清视频| 激情在线观看视频在线高清| 国产一区二区三区视频了| 此物有八面人人有两片| 美女免费视频网站| 国产欧美日韩一区二区三| 在线天堂中文资源库| 国产精品自产拍在线观看55亚洲| 精品免费久久久久久久清纯| 在线观看午夜福利视频| 免费在线观看黄色视频的| 欧美丝袜亚洲另类 | 日韩成人在线观看一区二区三区| 午夜免费成人在线视频| 美女大奶头视频| 久久久水蜜桃国产精品网| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 好男人在线观看高清免费视频 | 精品国产一区二区久久| 免费不卡黄色视频| 午夜成年电影在线免费观看| 成人欧美大片| 中文字幕精品免费在线观看视频| 侵犯人妻中文字幕一二三四区| 亚洲全国av大片| 亚洲国产看品久久| 长腿黑丝高跟| 大陆偷拍与自拍| a级毛片在线看网站| 99香蕉大伊视频| 欧美另类亚洲清纯唯美| 精品一区二区三区av网在线观看| 91九色精品人成在线观看| 欧美成人午夜精品| 久久久久久免费高清国产稀缺| 最好的美女福利视频网| 日本 av在线| 亚洲av日韩精品久久久久久密| 狠狠狠狠99中文字幕| tocl精华| 亚洲欧美激情综合另类| 国产人伦9x9x在线观看| 欧美绝顶高潮抽搐喷水| 999久久久精品免费观看国产| 亚洲第一av免费看| 国产精品,欧美在线| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| 久久香蕉激情| svipshipincom国产片| 精品国内亚洲2022精品成人| 欧美精品啪啪一区二区三区| 999精品在线视频| av欧美777| 嫩草影院精品99| 如日韩欧美国产精品一区二区三区| 国产精品亚洲av一区麻豆| 亚洲情色 制服丝袜| 少妇熟女aⅴ在线视频| 在线观看免费视频日本深夜| 在线观看免费视频网站a站| 99精品欧美一区二区三区四区| 国产av精品麻豆| 亚洲成av人片免费观看| 久久精品国产99精品国产亚洲性色 | 久久九九热精品免费| av片东京热男人的天堂| 最近最新中文字幕大全电影3 | 国内精品久久久久久久电影| 亚洲欧洲精品一区二区精品久久久| 亚洲精品av麻豆狂野| 国产精品98久久久久久宅男小说| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美一区视频在线观看| 亚洲精品粉嫩美女一区| 满18在线观看网站| 日韩一卡2卡3卡4卡2021年| 两个人看的免费小视频| 欧美乱色亚洲激情| 亚洲 欧美 日韩 在线 免费| 美女大奶头视频| 啦啦啦 在线观看视频| 69av精品久久久久久| 无人区码免费观看不卡| 成人18禁高潮啪啪吃奶动态图| 久久久久国产精品人妻aⅴ院| 久久久久久免费高清国产稀缺| 美女午夜性视频免费| 亚洲全国av大片| 国产野战对白在线观看| 亚洲成av片中文字幕在线观看| 日本a在线网址| 女警被强在线播放| 国产日韩一区二区三区精品不卡| 欧美激情久久久久久爽电影 | 后天国语完整版免费观看| 婷婷丁香在线五月| 久久 成人 亚洲| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| 91成年电影在线观看| 欧美成狂野欧美在线观看| 亚洲男人的天堂狠狠| 99国产精品99久久久久| 亚洲欧美精品综合一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产午夜精品久久久久久| 久久久久国内视频| 两人在一起打扑克的视频| 50天的宝宝边吃奶边哭怎么回事| 精品高清国产在线一区| 国产免费男女视频| 日本免费一区二区三区高清不卡 | 国产精品秋霞免费鲁丝片| 伦理电影免费视频| 欧美激情久久久久久爽电影 | 好男人在线观看高清免费视频 | 成人18禁在线播放| 又黄又粗又硬又大视频| 国产高清视频在线播放一区| 18禁国产床啪视频网站| 亚洲五月天丁香| bbb黄色大片| 久久人人爽av亚洲精品天堂| 国语自产精品视频在线第100页| 欧美av亚洲av综合av国产av| 欧美激情极品国产一区二区三区| 视频在线观看一区二区三区| 少妇的丰满在线观看| 免费一级毛片在线播放高清视频 | 最近最新中文字幕大全免费视频| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| 色哟哟哟哟哟哟| 天堂动漫精品| 后天国语完整版免费观看| 中文字幕最新亚洲高清| 国语自产精品视频在线第100页| 午夜福利欧美成人| 香蕉丝袜av| 欧美色欧美亚洲另类二区 | 国产精品影院久久| av有码第一页| 欧美日韩福利视频一区二区| 一卡2卡三卡四卡精品乱码亚洲| 一本大道久久a久久精品| 日韩成人在线观看一区二区三区| 国产精品精品国产色婷婷| 女人被狂操c到高潮| 国产精品亚洲美女久久久| 亚洲欧美日韩无卡精品| 国产精品自产拍在线观看55亚洲| 久9热在线精品视频| 亚洲在线自拍视频| 国产亚洲精品久久久久久毛片| 宅男免费午夜| a级毛片在线看网站| 国产精品 欧美亚洲| 侵犯人妻中文字幕一二三四区| 中文字幕人成人乱码亚洲影| 搡老妇女老女人老熟妇| av片东京热男人的天堂| 一级毛片精品| 黄网站色视频无遮挡免费观看| 欧美老熟妇乱子伦牲交| 久久久久国内视频| 日韩欧美国产在线观看| 又紧又爽又黄一区二区| 欧美午夜高清在线| 99riav亚洲国产免费| 自拍欧美九色日韩亚洲蝌蚪91| 9191精品国产免费久久| 午夜免费成人在线视频| 免费看美女性在线毛片视频| 精品欧美一区二区三区在线| 在线十欧美十亚洲十日本专区| 此物有八面人人有两片| 亚洲狠狠婷婷综合久久图片| 欧美色欧美亚洲另类二区 | 国产91精品成人一区二区三区| www.www免费av| 国产精品一区二区免费欧美| 麻豆久久精品国产亚洲av| 亚洲精品粉嫩美女一区| 无人区码免费观看不卡| 一本综合久久免费| 国产三级在线视频| 99国产精品一区二区蜜桃av| 91大片在线观看| 动漫黄色视频在线观看| 国产精品一区二区三区四区久久 | 亚洲av美国av| 国产欧美日韩一区二区精品| 国产成人免费无遮挡视频| 日韩欧美国产一区二区入口| 成人免费观看视频高清| 日韩有码中文字幕| 搡老熟女国产l中国老女人| 巨乳人妻的诱惑在线观看| 一个人观看的视频www高清免费观看 | 日韩免费av在线播放| 99精品欧美一区二区三区四区| 禁无遮挡网站| 国产激情欧美一区二区| 免费在线观看影片大全网站| 国产一区二区三区综合在线观看| 亚洲男人天堂网一区| 成年人黄色毛片网站| 日日夜夜操网爽| 日韩免费av在线播放| 国产成人精品在线电影| 国产麻豆69| 欧美乱色亚洲激情| 国产野战对白在线观看| 国产一区二区在线av高清观看| 亚洲人成电影观看| 人妻丰满熟妇av一区二区三区| 国产午夜福利久久久久久| 精品国产美女av久久久久小说| 又大又爽又粗| 9色porny在线观看| 亚洲成人免费电影在线观看| 一区二区日韩欧美中文字幕| 免费看十八禁软件| 丰满人妻熟妇乱又伦精品不卡| 黄色成人免费大全| 婷婷六月久久综合丁香| 久久久久国内视频| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区蜜桃| 大陆偷拍与自拍| 日本撒尿小便嘘嘘汇集6| 亚洲va日本ⅴa欧美va伊人久久| 日韩成人在线观看一区二区三区| 久久人妻熟女aⅴ| 免费久久久久久久精品成人欧美视频| 老司机在亚洲福利影院| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| 极品教师在线免费播放| 女人被狂操c到高潮| 色老头精品视频在线观看| 亚洲激情在线av| 91国产中文字幕| 黄色毛片三级朝国网站| 婷婷精品国产亚洲av在线| 一个人免费在线观看的高清视频| 大码成人一级视频| 亚洲五月色婷婷综合| 99在线人妻在线中文字幕| 国产精品亚洲av一区麻豆| 侵犯人妻中文字幕一二三四区| 亚洲精品粉嫩美女一区| 久久这里只有精品19| 亚洲一区中文字幕在线| 黄片小视频在线播放| 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看 | 人妻丰满熟妇av一区二区三区| 女性被躁到高潮视频| 久久婷婷人人爽人人干人人爱 | 最新美女视频免费是黄的| 好男人电影高清在线观看| 亚洲av第一区精品v没综合| 久久青草综合色| 午夜视频精品福利| 此物有八面人人有两片| 亚洲av电影在线进入| 精品日产1卡2卡| 黑人巨大精品欧美一区二区蜜桃| 日韩av在线大香蕉| 91精品国产国语对白视频| 岛国视频午夜一区免费看| 久久久国产成人精品二区| 少妇 在线观看| 叶爱在线成人免费视频播放| 国产成人啪精品午夜网站| 亚洲成人久久性| 国产欧美日韩精品亚洲av| 国产精品,欧美在线| 国产成人一区二区三区免费视频网站| 午夜激情av网站| 视频区欧美日本亚洲| 亚洲avbb在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美成人性av电影在线观看| 夜夜躁狠狠躁天天躁| 亚洲第一av免费看| 69精品国产乱码久久久| 日韩精品中文字幕看吧| 国产精品日韩av在线免费观看 | 中文亚洲av片在线观看爽| 国产精品爽爽va在线观看网站 | 人人妻人人澡人人看| 9热在线视频观看99| 国产午夜精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 成人国产一区最新在线观看| 一级,二级,三级黄色视频| 一级毛片高清免费大全| 一a级毛片在线观看| 久久香蕉激情| 中文亚洲av片在线观看爽| 大陆偷拍与自拍| 久久影院123| 精品人妻1区二区| 高清毛片免费观看视频网站| av电影中文网址| 精品乱码久久久久久99久播| 女人精品久久久久毛片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品sss在线观看| 久9热在线精品视频| 777久久人妻少妇嫩草av网站| 亚洲精品在线观看二区| 国产成人精品在线电影| 国产人伦9x9x在线观看| 一区二区三区激情视频| 国产一区二区在线av高清观看| 午夜久久久在线观看| 涩涩av久久男人的天堂| 色播亚洲综合网| 欧美久久黑人一区二区| 一级a爱视频在线免费观看| 亚洲成人精品中文字幕电影| 国产精品久久久久久精品电影 | 国产成年人精品一区二区| 搡老岳熟女国产| 亚洲人成77777在线视频| 大码成人一级视频| 国产一区二区三区视频了| 国产一区二区激情短视频| 久久久国产成人精品二区| 免费在线观看影片大全网站| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一码二码三码区别大吗| 看片在线看免费视频| 亚洲激情在线av| 自拍欧美九色日韩亚洲蝌蚪91| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看 | 丝袜在线中文字幕| 色播亚洲综合网| 亚洲情色 制服丝袜| 日韩 欧美 亚洲 中文字幕| bbb黄色大片| 一区二区三区激情视频| av视频在线观看入口| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 中文字幕色久视频| 999久久久国产精品视频| 国产色视频综合| 女性被躁到高潮视频| 天天添夜夜摸| 午夜日韩欧美国产| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 午夜福利18| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 18美女黄网站色大片免费观看| 91九色精品人成在线观看| 亚洲精品美女久久av网站| 午夜久久久久精精品| 男女下面进入的视频免费午夜 | 美女高潮喷水抽搐中文字幕| 午夜福利成人在线免费观看| 99国产极品粉嫩在线观看| 好男人在线观看高清免费视频 | 久久精品91蜜桃| 一个人观看的视频www高清免费观看 | av天堂久久9| 97人妻精品一区二区三区麻豆 | 最近最新中文字幕大全免费视频| 午夜免费鲁丝| 男人舔女人下体高潮全视频| 亚洲免费av在线视频| 日韩免费av在线播放| 一区二区三区精品91| 国产乱人伦免费视频| 午夜亚洲福利在线播放| 亚洲国产日韩欧美精品在线观看 | 一级a爱视频在线免费观看| 亚洲精品中文字幕一二三四区| 色综合婷婷激情| 亚洲中文av在线| 可以在线观看毛片的网站| 免费av毛片视频| 美女扒开内裤让男人捅视频| 91成人精品电影| 国产成人一区二区三区免费视频网站| 色哟哟哟哟哟哟| 久久性视频一级片| 国语自产精品视频在线第100页| 两个人视频免费观看高清| 成人永久免费在线观看视频| 一个人免费在线观看的高清视频| 免费观看精品视频网站| 国产精品,欧美在线| 伦理电影免费视频| 日本 av在线| 午夜久久久在线观看| 婷婷精品国产亚洲av在线| 久久精品成人免费网站| 曰老女人黄片| 日韩欧美三级三区| 日韩欧美国产在线观看| 91麻豆精品激情在线观看国产| 免费久久久久久久精品成人欧美视频| 国产在线观看jvid| av片东京热男人的天堂| av天堂在线播放| 三级毛片av免费| 91字幕亚洲| 午夜老司机福利片| 大型黄色视频在线免费观看| 日韩有码中文字幕| 黄色 视频免费看| 99在线视频只有这里精品首页| 亚洲三区欧美一区| 高清毛片免费观看视频网站| 亚洲欧美日韩另类电影网站| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | 男女下面插进去视频免费观看| 国产免费男女视频| 免费女性裸体啪啪无遮挡网站| 国产精品电影一区二区三区| 老汉色av国产亚洲站长工具| 欧美久久黑人一区二区| 国产精品免费一区二区三区在线| 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影 | 日韩欧美国产在线观看| 在线永久观看黄色视频| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| 午夜成年电影在线免费观看| 午夜福利一区二区在线看| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看| 正在播放国产对白刺激| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 免费在线观看完整版高清| 精品第一国产精品| 国产精品二区激情视频| 午夜免费鲁丝| 亚洲av日韩精品久久久久久密| 热re99久久国产66热| 国产精品自产拍在线观看55亚洲| 熟妇人妻久久中文字幕3abv| 亚洲欧美一区二区三区黑人| 欧美激情久久久久久爽电影 | 国产乱人伦免费视频| 国产成人影院久久av| 国产一区二区三区视频了| 久9热在线精品视频| 欧美+亚洲+日韩+国产| 欧美丝袜亚洲另类 | 亚洲色图av天堂| 免费看十八禁软件| 欧美日韩黄片免| 好男人在线观看高清免费视频 | 婷婷精品国产亚洲av在线| 亚洲一区高清亚洲精品| 久久狼人影院| 午夜久久久久精精品| 国产欧美日韩精品亚洲av| 热re99久久国产66热| 91av网站免费观看| 色老头精品视频在线观看| 久久精品成人免费网站| 国产一级毛片七仙女欲春2 | 无人区码免费观看不卡| av天堂在线播放| 久久久国产成人精品二区| 久久狼人影院| 国产日韩一区二区三区精品不卡| 亚洲av成人av| 亚洲国产欧美网| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 日韩大码丰满熟妇| 国产精品综合久久久久久久免费 | 精品卡一卡二卡四卡免费| 露出奶头的视频| 亚洲自偷自拍图片 自拍| 1024视频免费在线观看| 老司机靠b影院| 人人妻人人澡人人看| 亚洲国产精品999在线| 正在播放国产对白刺激| 国产欧美日韩精品亚洲av| 亚洲av成人一区二区三| 51午夜福利影视在线观看| 国产视频一区二区在线看|