• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear Dynamical System over Finite Distributive Lattice

    2021-09-07 06:30:16DENGAiping鄧愛平GONGXiaoyue弓曉月MAHongcai馬紅彩

    DENG Aiping (鄧愛平), GONG Xiaoyue (弓曉月), MA Hongcai (馬紅彩)

    College of Science, Donghua University, Shanghai 201620, China

    Abstract: A finite dynamical system (FDS) over a lattice L is a pair (S(L), f), where S(L) is a left-L module and f is a mapping from S into itself. The phase space of (S(L), f) is a digraph whose vertex set is S(L) and there is an arc from x to y if y=f(x). Let L be a finite distributive lattice, A an n×n matrix over L, and f(x)=Ax. The structure of the phase space of the FDS (Ln, f) is discussed. The number of limit cycles in the phase space of (Ln, f) is described in M? bius function. The phase spaces of some invertible, nilpotent, and idempotent FDS (Ln, f)are characterized explicitly.

    Key words: finite distributive lattice; linear dynamical system; phase space; limit cycle; rooted in-tree

    Introduction

    LetLbe a finite lattice with the partial order ≤.For anya,b∈L, the least upper bound and the greatest lower bound ofaandbare denoted bya∨banda∧b, respectively. Let 1 be the greatest element and 0 the least element inL.The lattice (L, ∨, ∧, 1, 0) is a distributive lattice if for anya,b,c∈L, one of the following conditions holds[1-2]:

    a∧(b∨c)=(a∧b)∨(a∧c),

    a∨(b∧c)=(a∨b)∧(a∨c),

    (a∨b)∧c=a∨(b∧c).

    The set of allm×nmatrices overLis denoted byMm, n(L). LetLn=Mn, 1(L) andMn(L)=Mn, n(L). Ifaijis the (i,j)-entry ofA, we writeA=(aij). LetATbe the transpose ofA. Then×ndiagonal matrix with diagonal entries all 1sand the others all 0sis called the identity matrix, and denoted byIn. Ifnis clear from context, we simply writeIin place ofIn. SetA0=Ifor anyA∈Mn(L). ForA,B∈Mm, n(L),C∈Mn, l(L), andi=1, 2,...,m,j=1, 2,...,n, we define

    A≤Bifaij≤bij,

    A∨B=(aij∨bij),

    A∧B=(aij∧bij),

    aA=(a∧aij),a∈L.

    It is easy to check thatDIn=ImD=Dfor anyD∈Mm, n(L).

    A dynamical system over a latticeLis a pair (S(L),f), whereS(L) is a left-Lmodule andfis a mapping fromS(L) into itself. The dynamics of (S(L),f) is encoded by its phase spaceG(S(L), f), which is a digraph with vertex setS(L) and there is an arc fromxtoyify=f(x).Ifhandlare the smallest positive integers such thatfh+l(x)=fh(x), then the sequence {fh(x),fh+1(x),...,fh+l-1(x),fh+l(x)} forms a cycle of lengthl, which is called a limit cycle. Cycles of lengthlare calledl-cycles. A vertex in anl-cycle is called a periodic vertex with minimal positive periodl. The limit cycle containing vertexvis denoted byC(v).For each periodic vertexv, the set {v,f-1(v),f-2(v),...} forms an in-tree rooted atv, in notationT(v). In general, the phase spaceG(S(L), f)consists of limit cycles and in-trees attached to vertices of limit cycles.

    Dynamical systems over finite rings or fields have been widely studied and applied in engineering, computational biology,etc.[3-7]A basic problem in dynamical system theory is to characterize the system dynamics through the system description. An efficient way is to study the dynamics from its phase space but without enumerating all states and all phase transitions.

    It is natural to consider a dynamical system (Ln,f) over a latticeLand a mappingfthat mapsxintoAxforx∈LnandA∈Mn(L).Comparing with finite rings or finite fields, a finite lattice has not so good properties. Therefore, we focus on a finite distributive latticeLand a mappingf:xAx,A∈Mn(L).Thenfis a linear map[12]. Our aim is to characterize the structure of the phase spaceG(S(L), f), orG(A) for short. Even for a finite distributive latticeL,Lnis not a direct sum of the bijective part and the transient part off.Therefore, the phase space is no longer a product of cycles and trees, which is a fact for finite rings or fields. The non-zero in-degree of a vertex are different, which is determined by not only the matrix and the lattice but also the vertex itself. The in-degree of a vertexyinG(A), denoted byd-(y), is the number of directed edges going tov.Notice thatd-(y) is also the number of solutions to the equationAx=y. For any vertexxofT(v), the height ofxis denoted byh(x) which is the least non-negative integerhsatisfyingAhx=v.The maximum height of these trees is called the height of the graph, and it is denoted byhA.

    About the basic notions and results on lattice matrices one may refer to Ref.[13].The properties of matrices on distributive lattices have studied by many authors[14-16]. Some necessary and sufficient conditions for lattice matrices to be revertible or nilpotent were presented[14].The nilpotent matrices on a bounded distributive lattice were studied[17].

    We discuss in this paper the length of limit cycles inG(A).The length of each cycle is a divisor of the largest length of all cycles. The relations of the number of cycles with different length can be represented by M?bius function. We characterize the in-tree part for some specific systems such thatfis invertible, nilpotent, or idempotent. The remainder of this paper is organized as follows.

    In section 1, we introduce some basic notions and results of the finite distributive lattices and lattice matrices.

    In section 2, we give a relationship between the numbers of the limit cycles with different length in M?bius function. We also characterize the phase space for some invertible, nilpotent and idempotent dynamical systems over the latticeL.

    In section 3, we summarize the results of this paper.

    1 Preliminaries

    We present in this section some definitions and preliminary lemmas. Some propositions are obtained for later use.

    Definition1[12]Let (L, ∨, ∧, 1, 0) be a finite distributive lattice. The elementb∈Lis called a complement ofa∈Lifa∧b=0 anda∨b=1.

    Lemma1[12]Any element with a complement in a distributive lattice has a unique complement.

    Definition2[14]A matrixA∈Mn(L) is said to be right invertible (left invertible) ifAB=I(BA=I) for someB∈Mn(L).In this case, the matrixBis called a right inverse (left inverse) ofA.IfAis both right and left invertible, then it is said to be invertible.

    i,j=1, 2, …,n.

    Lemma3[12]Let (L, ∨, ∧, 1, 0) be a lattice, and letA=(aij) be a matrix inMn(L).ThenAk+t=AkAtfor any non-negative integerskandt.

    Lemma4[18]Let (L, ∨, ∧, 1, 0) be a lattice. IfA=(aij) is a matrix inMn(L), then the following statements are equivalent.

    (1)Ais right invertible;

    (2)Ais left invertible;

    (3)Ais invertible;

    (4)AAT=I;

    (5)ATA=I;

    (6)AAT=ATA;

    (7)At=Ifor some positive integert.

    Lemma5[19]IfA,B∈Mn(L) andAB=I, thenB=ATandBA=I.

    The inverse matrix ofAis denoted byA-1.By Lemma 5, we know that ifAis invertible, then its inverse is unique andA-1=AT.

    Lemma6[14]Let (L, ∨, ∧, 1, 0) be a finite distributive lattice andA=(aij)∈Mn(L).Then the matrixAis invertible if and only if

    or equivalently,

    Here we give some results about invertible lattice matrices.

    Proposition1IfA∈M2(L) is an invertible matrix, thenAis a symmetric matrix.

    Then by Lemma 1, we obtaina12=a21. ThusA=AT.

    Proposition2Let(L, ∨, ∧, 1, 0) be a finite distributive lattice. IfA∈Mn(L) is an invertible matrix, thenAis symmetric if and only ifA2=I.

    ProofThe result comes directly from Lemma 5.

    2 Main Results

    In this section we study the phase spaceG(A)of the FDS (Ln,f), wheref(x)=Ax,A∈Mn(L).We give a relationship between the numbers of the limit cycles with different length in M?bius function. We also characterize the phase space for some specific systems such thatfis invertible, nilpotent or idempotent.

    2.1 Phase space G(A) for general A∈Mn(L)

    Letnidenote the number of limit cycles with lengthi.The set of vectors fixed byAiis denote byF(Ai), that is,F(A)i={x∈Ln|Aix=x}.An element inF(A) is a fixed point of the system. In the phase spaceG(A), a fixed point is a vertex in a 1-cycle. In a linear FDS (Ln,f), it’s clear that the zero vector is always a fixed point.

    The setf(Ln)={y∈Ln|?x∈L,y=f(x)} is called the image off.Here we also denote this image by ImA[12].

    Theorem1Let(L, ∨, ∧, 1, 0)be a finite distributive lattice. ForA=(aij)∈Mn(L), assume thath(≥0) andl(≥1) are the minimal integers satisfying the equationAh+l=Ah.Then in the phase spaceG(A),his the maximal height of the trees andlis the maximal length of the limit cycles. The length of each limit cycle is a divisor ofl.

    ProofFor any vertexx∈Ln, it holdsAh+lx=Ahx.Theny=AhxsatisfiesAly=y,i.e.,yis a periodic vertex. Thus the height of any vertexxis less than or equal toh.

    Sinceh(≥0) andl(≥1) are the minimal integers satisfying the equationAh+l=Ah, there exists a vertexx0∈Lnsuch thatAh+l(x0)=Ah(x0) butAh+l-1(x0)≠Ah(x0), and a vertexx1∈Lnsuch thatAh+l(x1)=Ah(x1) butAh+l-1(x1)≠Ah(x1). Hence the height ofx0ish, and the vertexAh(x1) is in a limit cycle of lengthl.Therefore we finish the proof thathis the maximal height of all trees inG(A), andlis the maximal length of all limit cycles.

    From the above result we know that ImAhconsists of all periodic vertices. Assumeyis in a limit cycle of lengtht.Theny∈ImAh,Aty=yandAiy≠y(0

    Supposel=st+r, 0≤r≤t.Sincey∈ImAh, there exists a vertexxsuch thaty=Ah(x).

    Then

    It follows fromAiy≠y(0

    We usehAandlAto denote the integershandlin the above theorem.

    Theorem2The number of cycles of lengthtin theG(A) is

    (5)

    whereμis M?bius function.

    ProofNote that ifi|jthenF(Ai)?F(Aj).So we have

    which can be expressed as a matrix equation.

    (6)

    wherepiare different primes.

    Thus Eq.(5) is obtained.

    In a phase space of a linear FDS over a finite ring or field, the non-zero in-degree of each vertex can be characterized in the Kernel of the mapping[12].However, for a linear FDS over a general lattice the result does not exists any longer. That is because the fact that to a matrix equationAx=yover a lattice the number of solutions for eachymay also depend on the vectoryitself. The following is an example.

    Example1Consider the phase spaceG(A) of a linear FDS (L3,f) over a latticeL={0,a,b,c,d, 1}.The Hasse diagram ofLis depicted in Fig. 1. The mapping isf:xAx, where the matrix

    Fig. 1 Lattice L in Example 1

    Fig. 2 Component of G(A) in Example 1 with direction of arcs in the tree omitted

    One checks thatA4=A2, andA3≠A2.Thus we havehA=2,lA=2.In this phase spaceG(A),n1=10 andn2=4.Figure 2 illustrates a component ofG(A) consisting of a limit cycle of length 1 and the in-trees rooted on the cycle.

    Besides the component above there are 2 cyclesG(A).For instance, there is a 2-cycle (u,w,u), where

    One checks thatAu=wandAw=u.

    Now, we discuss the structure of the phase spaceG(A) of the linear FDS (Ln,f) such thatfis an invertible, nilpotent, or idempotent mapping.

    2.2 Invertible system

    IfAis an invertible matrix, thenf:Ln→,xAxis an invertible mapping. We call the corresponding system FDS (Ln,f) an invertible system. It is obvious that the phase spaceG(A) of an invertible system consists of limit cycles. We discuss the largest lengthlAof the limit cycles inG(A) in the casesAis symmetric or non-symmetric. At the end of this subsection we show that the system (Ln,f) is a fixed-point system if and only ifAis the identity matrix.

    First we consider the case thatAis both invertible and symmetric.

    Example2Consider the phase spaceG(A) of a linear FDS (L2,f) over the latticeL={0,a,b, 1}.The Hasse diagram ofLis depicted in Fig. 3. The mapping isf:xAx, where the matrix

    Fig. 3 LatticeLin Example 2

    Fig. 4 Phase space G(A) in Example 2

    Lemma7Let (L, ∨, ∧, 1, 0) be a finite distributive lattice andAan invertible matrix inMn(L).If the set of entries in each row ofAis the same, then the set of entries in each column ofAis the same, and vice versa.

    ProofWe only show the first part. By exchanging rows and columns in the proof then we prove the second part.

    Assume the first row ofAis (a1,a2, …,an) . By Eq. (2) in Lemma 6 the greatest lower bound of any two entries is 0. Thus any two nonzero entries in each row must be different. Without loss of generality we assume thata1,a2, …,asare nonzero andas+1=…=an=0 . LetR={a1,a2, …,as} . Then the nonzero entries of thejth column form a subsetCjofR. Next we show thatCj=R(j=1, 2, …,n) and therefore the proof is finished.

    Similar as above by Eq. (4) in Lemma 6 we know that any two nonzero entries in each column ofAare different. Since the set of entries in each row is the same and eachai∈Roccurs exactly once in each row, eachai∈Roccurs totallyntimes in the matrixA.If one of them, sayai, does not occur in some column, say thejth column, thenaimust occur more than once in another column. This contradicts to Eq. (4). ThusCj=R(j=1, 2,...,n).

    (7)

    Notice that

    (8)

    Corollary1Let(L, ∨, ∧, 1, 0)be a finite distributive lattice. LetA=(aij)∈Mn(L)be an invertible matrix with each row admitting the same set of entries and 0 occurs at most once in each row or column. Then the length of the largest cycle in the phase spaceG(A) islA=n.

    2.3 Nilpotent system

    In this subsection we consider the linear FDS (Ln,f) such thatfis nilpotent. LetAbe a nilpotent matrix inMn(L).Then there exists a minimal positive integerksuch thatAk=0.We callkthe nilpotent index ofA.

    Proposition4Let(L, ∨, ∧, 1, 0)be a finite distributive lattice,Aa nilpotent matrix inMn(L) with nilpotent indexk.ThenhA=kandlA=l.The phase spaceG(A) consists of a 1-cycle formed by the zero vector and an in-tree of heightkrooted at the zero vector.

    ProofBy the definition of the nilpotent indexkwe haveAk+1=0=AkandAk-1≠0=Ak.It follows thathA=kandlA=1.

    For any vertexx∈Ln,Akx=0∈Ln.This yields that inG(A) there is only one in-tree and the root of tree is the zero vector.

    Example3Consider the latticeL={0,a,b,c, 1}.The Hasse diagram ofLis depicted in Fig. 5.

    Fig. 5 Lattice L in Example 3

    Fig. 6 Phase space G(A) in Example 3

    2.4 Idempotent system

    In this subsection we consider the linear FDS (Ln,f) such thatfis idempotent.

    LetAbe a idempotent matrix inMn(L) such thatA2=A≠I.Then in the phase spaceG(A),hA=1 andlA=1.The phase spaceG(A) has |ImA| components, or equivalently |ImA| limit cycles, and each element in ImAis a fixed point of (Ln,f).

    We discuss explicitly the structure ofG(A) for some special idempotent matricesAover a distributive lattice, and general idempotent matrixAover a factor lattice.

    2.4.1Idempotentsystemoverafinitedistributivelattice

    Let (L, ∨, ∧, 1, 0) be a finite distributive lattice.

    We first consider the phase spaceG(A) such thatAhas only one nonzero column (a,a,...,a)T.

    Theorem4Let(L, ∨, ∧, 1, 0)be a finite distributive lattice. Assume the matrixA=(aij)∈Mn(L)has only one nonzero column(a,a,...,a)T.LetX={x∈L|x≤a}.Then in the phase spaceG(A), the number of the fixed points is |X|; and the number of preimages of eachy∈ImAisd-(y)=|X|×|L|n-1.

    ProofA direct computation shows thatA2=A.Assume the nonzero column ofAis thejth column ofA.

    For eachy∈ImA, there exists a vertexx=(x1,x2,...,xn)Tsuch thaty=Ax=(a∧xj,a∧xj,...a∧xj)T.Thus the vertexy∈ImAis of the form (b,b,...,b)Tsuch thatb=a∧xj.

    ConsideringA2=Awe havey=Ax=A2x=Ay.It follows thatb=a∧b, or equivalentlyb≤a.Thus we have |ImA|=|{x∈L|x≤a}|.

    This yields thatd-(y)=|X|×|L|n-1.

    ProofSinceai∧aj=0(i≠j), a direct computation shows thatA2=A.

    Conversely, for anyb∈Landy=(b,b,...,b)T,

    Thus |ImA|=|L|.

    2.4.2Idempotentsystemoverafactorlattice

    Consider a factor lattice (L, ∨, ∧, 1, 0) wherea∨b=lcm(a,b)(the least common multiple ofaandb),a∧b=gcd(a,b)(the greatest common divisor ofaandb). A finite factor lattice is a finite distributive lattice.

    Lemma8Let (L, ∨, ∧, 1, 0) be a factor lattice. For anyA∈Lassume the solutions toa∧x=0 are 0,x1,x2,...,xs(s≥1).Then forb(

    ProofFirst we show that eachyi=b∨xiis a solution toa∧y=b(i=1, 2,...,s).This follows from that

    a∧yi=a∧(b∨xi)=(a∧b)∨(a∧xi)=

    b∨0=b.

    Next we assumey0is a solution toa∧y=bandy0≠b.Then we show thaty0=b∨xifor somexi(i∈{1, 2,...,s}).The expressiona∧y0=bmeans thatb=gcd (a,y0).Thus there exists an elementk∈Lsuch thaty0=kb=k∨b, and elementsaandkare mutually prime,i.e.,a∧k=0.The assumptiony0≠bleads to thatk≠0.Therefore,kis a nonzero solution toa∧x=0.Letxi=kTheny0=b∨xi, ending the proof.

    Notice that ifa∧x=0 has only the trivial solution 0, then the result in the above lemma does not hold. See the following example.

    Example4Let (L, ∨, ∧, 1, 0) be a factor lattice, and it is presented in Fig. 7.

    Fig. 7 Factor lattice

    Consider the equations: 24∧x=1 and 24∧y=12.The first one has a unique solutionx=1,the zero inL.However, the second one has three solutions:y=108, 36 and 12.

    The following results come directly from Lemma 8.

    Theorem6Let (L, ∨, ∧, 1, 0) be a factor lattice. Assume the matrixA=(aij)∈Mn(L) has only one nonzero column (a,a,...,a)T.LetX={x∈L|x|a}.

    For the general nilpotent system, the number of preimages of each vertex in ImAmay not be the same. We give an example as follows.

    Fig. 8 Lattice L in Example 5

    Fig. 9 Phase space G(A) in Example 5

    3 Conclusions

    In this paper, we study the phase spaceG(A) of the FDS(Ln,f), wheref(x)=Ax,A∈Mn(L).We give a relationship between the numbers of the limit cycles with different length in M?bius function. We also characterize the phase space for some specific systems such thatfis invertible, nilpotent or idempotent.

    For an invertible system with an invertible and symmetric matrixAwe present the largest lengthlAof the limit cycles inG(A) and the number of limit cycles of different length. For an invertible FDS (Ln,f)associated with a nonsymmetric matrixAwe give a sufficient condition such that the largest length isn.

    For a nilpotent system we characterize the structure of the phase space. For some idempotent systems we investigate the number of the fixed points and the number of preimages of each fixed point.

    An elementxof a setSis called a Garden of Eden ifx≠f(y) for anyy∈S. The Garden of Eden of a dynamical system (S,f) is the set of its Garden of Eden. In the idempotent systems (Ln,f) we consider in Subsection 2.4 each non-fixed point is a Garden of Eden. Then the size of the Garden of Eden is clear for the system (Ln,f) in Theorems 4, 5, 6 and 7.

    欧美日韩中文字幕国产精品一区二区三区 | 成熟少妇高潮喷水视频| 人人澡人人妻人| netflix在线观看网站| 亚洲精品在线美女| 国产精品香港三级国产av潘金莲| 亚洲九九香蕉| 日本vs欧美在线观看视频| av国产精品久久久久影院| 亚洲熟女毛片儿| 久久精品熟女亚洲av麻豆精品| 叶爱在线成人免费视频播放| 成人国语在线视频| 久久精品亚洲熟妇少妇任你| 一级a爱片免费观看的视频| 美女高潮到喷水免费观看| 成人手机av| 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看| 国产xxxxx性猛交| 国产精品av久久久久免费| 免费在线观看黄色视频的| 9色porny在线观看| 午夜视频精品福利| 日韩熟女老妇一区二区性免费视频| 制服诱惑二区| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 欧美老熟妇乱子伦牲交| 欧美精品人与动牲交sv欧美| www.熟女人妻精品国产| 老司机在亚洲福利影院| 80岁老熟妇乱子伦牲交| 十八禁人妻一区二区| 多毛熟女@视频| 老司机亚洲免费影院| 亚洲美女黄片视频| 国产精品久久久久久人妻精品电影| 少妇的丰满在线观看| 韩国av一区二区三区四区| 嫩草影视91久久| 日韩三级视频一区二区三区| 中文字幕人妻熟女乱码| 亚洲精品久久午夜乱码| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区| 国产成人av教育| 一级毛片女人18水好多| 伊人久久大香线蕉亚洲五| 日韩三级视频一区二区三区| 免费在线观看黄色视频的| 国产1区2区3区精品| 12—13女人毛片做爰片一| 中文字幕人妻丝袜一区二区| 国产熟女午夜一区二区三区| 久久青草综合色| 婷婷成人精品国产| 啦啦啦 在线观看视频| 亚洲熟女精品中文字幕| 男女免费视频国产| 免费av中文字幕在线| 老司机在亚洲福利影院| 一本一本久久a久久精品综合妖精| 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费 | 一进一出抽搐gif免费好疼 | 操美女的视频在线观看| 国产精品乱码一区二三区的特点 | 日韩制服丝袜自拍偷拍| 人人妻人人澡人人爽人人夜夜| 日韩有码中文字幕| 欧美性长视频在线观看| 日韩欧美一区视频在线观看| 高清毛片免费观看视频网站 | 欧美中文综合在线视频| 女同久久另类99精品国产91| 99精品欧美一区二区三区四区| 91国产中文字幕| 久久人人爽av亚洲精品天堂| 日韩免费av在线播放| av有码第一页| 久久精品国产99精品国产亚洲性色 | 69av精品久久久久久| 老司机午夜福利在线观看视频| 无限看片的www在线观看| tube8黄色片| 日本a在线网址| 99久久综合精品五月天人人| 黄色毛片三级朝国网站| 一区二区三区国产精品乱码| 亚洲 欧美一区二区三区| xxx96com| 一级毛片精品| 国产1区2区3区精品| 看黄色毛片网站| a级毛片黄视频| 少妇粗大呻吟视频| 99re在线观看精品视频| 19禁男女啪啪无遮挡网站| av网站免费在线观看视频| 免费观看a级毛片全部| 精品午夜福利视频在线观看一区| 丁香六月欧美| 亚洲va日本ⅴa欧美va伊人久久| 欧美 日韩 精品 国产| 欧美黑人精品巨大| 丝袜美腿诱惑在线| 国产精品久久视频播放| 三级毛片av免费| 亚洲精品国产色婷婷电影| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕在线视频| 精品国产一区二区三区四区第35| 日韩三级视频一区二区三区| 黄片大片在线免费观看| 国内久久婷婷六月综合欲色啪| 咕卡用的链子| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产亚洲av香蕉五月 | 中文字幕av电影在线播放| 国产精品亚洲一级av第二区| avwww免费| 超色免费av| 高潮久久久久久久久久久不卡| 亚洲国产欧美日韩在线播放| 午夜亚洲福利在线播放| 中文字幕最新亚洲高清| 老熟女久久久| 一夜夜www| 国产男女内射视频| 激情视频va一区二区三区| 亚洲av成人av| 狂野欧美激情性xxxx| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 三上悠亚av全集在线观看| 久久国产精品大桥未久av| 久久草成人影院| 国产乱人伦免费视频| 欧美激情 高清一区二区三区| 日韩有码中文字幕| 777久久人妻少妇嫩草av网站| 一本一本久久a久久精品综合妖精| 99久久国产精品久久久| 国产免费男女视频| 另类亚洲欧美激情| 欧美乱妇无乱码| 一区二区三区国产精品乱码| 午夜福利一区二区在线看| 欧美乱妇无乱码| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产 | 久久青草综合色| 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| svipshipincom国产片| 动漫黄色视频在线观看| 91av网站免费观看| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 亚洲黑人精品在线| 亚洲欧美日韩高清在线视频| 精品亚洲成国产av| 国产精品av久久久久免费| 免费av中文字幕在线| 成人av一区二区三区在线看| a级毛片在线看网站| xxx96com| 999久久久国产精品视频| 99精国产麻豆久久婷婷| 国产精品秋霞免费鲁丝片| 91九色精品人成在线观看| 美女午夜性视频免费| 国产成人影院久久av| 啦啦啦在线免费观看视频4| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 免费一级毛片在线播放高清视频 | 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 欧美黄色淫秽网站| 看免费av毛片| 丁香六月欧美| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区黑人| 十分钟在线观看高清视频www| 欧美成人免费av一区二区三区 | av福利片在线| 自拍欧美九色日韩亚洲蝌蚪91| 少妇猛男粗大的猛烈进出视频| 亚洲国产欧美网| 久久国产精品影院| 国产野战对白在线观看| 精品国产一区二区三区久久久樱花| 国产麻豆69| 免费一级毛片在线播放高清视频 | 两人在一起打扑克的视频| 99精品在免费线老司机午夜| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 国产成人av激情在线播放| 黄色 视频免费看| 亚洲熟妇中文字幕五十中出 | 可以免费在线观看a视频的电影网站| 中文亚洲av片在线观看爽 | 亚洲午夜精品一区,二区,三区| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索| 国产成人欧美| 亚洲精华国产精华精| 欧美最黄视频在线播放免费 | 99在线人妻在线中文字幕 | 免费在线观看完整版高清| aaaaa片日本免费| 九色亚洲精品在线播放| 国产亚洲欧美在线一区二区| 亚洲欧洲精品一区二区精品久久久| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 99久久综合精品五月天人人| 中文字幕制服av| 国产精品 国内视频| 91精品国产国语对白视频| 亚洲国产精品sss在线观看 | 午夜福利在线免费观看网站| 久久久久国内视频| av片东京热男人的天堂| 制服人妻中文乱码| 一本综合久久免费| 黑人巨大精品欧美一区二区蜜桃| 热99久久久久精品小说推荐| 亚洲国产欧美一区二区综合| 在线播放国产精品三级| 成人特级黄色片久久久久久久| a级片在线免费高清观看视频| 欧美亚洲 丝袜 人妻 在线| 中文字幕最新亚洲高清| 久热爱精品视频在线9| 午夜福利一区二区在线看| cao死你这个sao货| 亚洲精品乱久久久久久| 不卡av一区二区三区| 一区福利在线观看| av网站免费在线观看视频| 黑人欧美特级aaaaaa片| 建设人人有责人人尽责人人享有的| 天堂√8在线中文| 在线观看日韩欧美| 日本黄色视频三级网站网址 | 欧美性长视频在线观看| 岛国毛片在线播放| 9色porny在线观看| 久久天堂一区二区三区四区| av网站在线播放免费| 丝瓜视频免费看黄片| 黄片大片在线免费观看| 中文字幕精品免费在线观看视频| 成人免费观看视频高清| 黄色怎么调成土黄色| 国产xxxxx性猛交| 国产成人av教育| 久久久精品区二区三区| 18在线观看网站| 亚洲自偷自拍图片 自拍| 大香蕉久久网| 成人影院久久| 久久婷婷成人综合色麻豆| 久久久久久久精品吃奶| 欧美精品啪啪一区二区三区| 国产伦人伦偷精品视频| 搡老熟女国产l中国老女人| 国产精品二区激情视频| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 精品国产一区二区久久| 午夜视频精品福利| 久久香蕉激情| 精品国产超薄肉色丝袜足j| 精品福利永久在线观看| a级毛片黄视频| 俄罗斯特黄特色一大片| 久久精品国产综合久久久| 人妻一区二区av| √禁漫天堂资源中文www| 十八禁高潮呻吟视频| 欧美成狂野欧美在线观看| 手机成人av网站| 91av网站免费观看| 亚洲专区字幕在线| 久久国产精品大桥未久av| 脱女人内裤的视频| 人人妻人人爽人人添夜夜欢视频| 成人18禁高潮啪啪吃奶动态图| 免费少妇av软件| 午夜老司机福利片| 国产高清视频在线播放一区| 久久午夜亚洲精品久久| 日韩中文字幕欧美一区二区| 男人的好看免费观看在线视频 | 国产一区在线观看成人免费| 首页视频小说图片口味搜索| 久久久国产欧美日韩av| 免费不卡黄色视频| 乱人伦中国视频| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| av网站免费在线观看视频| 精品国产国语对白av| 国产欧美日韩精品亚洲av| av一本久久久久| 久久狼人影院| www.精华液| 美女午夜性视频免费| 日本vs欧美在线观看视频| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 咕卡用的链子| 91av网站免费观看| 不卡av一区二区三区| 久久中文字幕人妻熟女| 亚洲专区字幕在线| 天天添夜夜摸| 亚洲国产欧美网| 久久久久久久午夜电影 | 涩涩av久久男人的天堂| 国产成人av教育| 午夜视频精品福利| 黄色片一级片一级黄色片| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩综合在线一区二区| 久久久久久人人人人人| 久久久国产成人免费| 婷婷成人精品国产| 亚洲人成电影免费在线| 嫩草影视91久久| 国产精品美女特级片免费视频播放器 | 高清在线国产一区| av视频免费观看在线观看| 精品午夜福利视频在线观看一区| 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 91成人精品电影| 久久久精品国产亚洲av高清涩受| www.自偷自拍.com| 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 欧美人与性动交α欧美精品济南到| 妹子高潮喷水视频| 制服诱惑二区| 国产欧美日韩一区二区三区在线| 久99久视频精品免费| 欧美 日韩 精品 国产| 欧美色视频一区免费| 国产亚洲一区二区精品| 国产色视频综合| 麻豆乱淫一区二区| 桃红色精品国产亚洲av| 国产成人欧美| 人人妻人人澡人人看| 国产精品综合久久久久久久免费 | 女性生殖器流出的白浆| 精品卡一卡二卡四卡免费| 国产精品.久久久| 在线观看免费高清a一片| 久久久久久久午夜电影 | av中文乱码字幕在线| 日本撒尿小便嘘嘘汇集6| 丝瓜视频免费看黄片| 日本wwww免费看| 91字幕亚洲| 日本wwww免费看| 国产精品影院久久| 国产97色在线日韩免费| 欧美av亚洲av综合av国产av| 亚洲精品国产一区二区精华液| avwww免费| 夫妻午夜视频| 免费在线观看完整版高清| 久久久久久久久免费视频了| 大香蕉久久网| 美国免费a级毛片| 狠狠婷婷综合久久久久久88av| 91九色精品人成在线观看| 国内毛片毛片毛片毛片毛片| 超碰成人久久| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 国产精品成人在线| 18禁观看日本| 亚洲一区高清亚洲精品| 午夜福利视频在线观看免费| 国产精品久久电影中文字幕 | 精品午夜福利视频在线观看一区| 80岁老熟妇乱子伦牲交| 91老司机精品| 在线天堂中文资源库| 真人做人爱边吃奶动态| 91av网站免费观看| 水蜜桃什么品种好| 两性夫妻黄色片| 国产高清视频在线播放一区| 99热网站在线观看| 在线观看一区二区三区激情| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| av国产精品久久久久影院| 欧美日韩中文字幕国产精品一区二区三区 | 一夜夜www| 亚洲午夜精品一区,二区,三区| 电影成人av| 久热爱精品视频在线9| 大香蕉久久成人网| 黄色 视频免费看| 无人区码免费观看不卡| 在线观看一区二区三区激情| 黄色丝袜av网址大全| 午夜免费观看网址| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 757午夜福利合集在线观看| 亚洲精华国产精华精| 成人特级黄色片久久久久久久| 免费观看a级毛片全部| 老熟女久久久| 国产亚洲欧美精品永久| 午夜福利,免费看| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 欧美性长视频在线观看| 国产成人影院久久av| 悠悠久久av| 性少妇av在线| 日本欧美视频一区| 久久久久精品国产欧美久久久| a级片在线免费高清观看视频| 一级毛片女人18水好多| 丝袜美腿诱惑在线| 一二三四在线观看免费中文在| 成人手机av| 亚洲 国产 在线| 18禁裸乳无遮挡动漫免费视频| 99re在线观看精品视频| 亚洲情色 制服丝袜| 国产一区二区三区综合在线观看| 美国免费a级毛片| 免费人成视频x8x8入口观看| 午夜两性在线视频| 大香蕉久久成人网| 久久久精品区二区三区| 这个男人来自地球电影免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 91大片在线观看| 国产深夜福利视频在线观看| 99riav亚洲国产免费| 9热在线视频观看99| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 久久中文看片网| 午夜久久久在线观看| 亚洲成人免费av在线播放| 18禁裸乳无遮挡动漫免费视频| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 色老头精品视频在线观看| 欧美日韩乱码在线| 一级毛片高清免费大全| 国产精品久久久人人做人人爽| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 欧美日韩成人在线一区二区| 777久久人妻少妇嫩草av网站| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全电影3 | 少妇猛男粗大的猛烈进出视频| 精品国产美女av久久久久小说| 人妻久久中文字幕网| 国产一区在线观看成人免费| 三级毛片av免费| 激情视频va一区二区三区| 久9热在线精品视频| 嫩草影视91久久| 国产成人免费观看mmmm| 村上凉子中文字幕在线| 老司机福利观看| 精品一区二区三卡| 成人三级做爰电影| 一区二区日韩欧美中文字幕| 国产男女内射视频| 久久人妻熟女aⅴ| 每晚都被弄得嗷嗷叫到高潮| 激情在线观看视频在线高清 | 精品久久久久久,| 性少妇av在线| 国产精品国产高清国产av | 黄色成人免费大全| 交换朋友夫妻互换小说| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 国产欧美日韩一区二区精品| 涩涩av久久男人的天堂| 女人被狂操c到高潮| 在线视频色国产色| 成人影院久久| 美女高潮到喷水免费观看| 黑人操中国人逼视频| 狠狠狠狠99中文字幕| 欧美日韩av久久| 超色免费av| 亚洲专区中文字幕在线| 91麻豆av在线| 午夜福利,免费看| 亚洲中文日韩欧美视频| 久久久久久久精品吃奶| 亚洲中文字幕日韩| 精品一区二区三区四区五区乱码| 国产又色又爽无遮挡免费看| 亚洲在线自拍视频| 99国产综合亚洲精品| 亚洲专区国产一区二区| 99热国产这里只有精品6| 亚洲欧美色中文字幕在线| 正在播放国产对白刺激| 女性生殖器流出的白浆| 色老头精品视频在线观看| 久久性视频一级片| av天堂在线播放| 国产成人啪精品午夜网站| www.999成人在线观看| 香蕉久久夜色| 日韩大码丰满熟妇| 99久久人妻综合| 欧美中文综合在线视频| 国产99白浆流出| 很黄的视频免费| 午夜福利乱码中文字幕| 99精品在免费线老司机午夜| 18禁美女被吸乳视频| 日韩中文字幕欧美一区二区| 国产亚洲欧美98| 丰满的人妻完整版| 久久精品国产综合久久久| 久久久久久久久久久久大奶| 一进一出抽搐gif免费好疼 | 欧美国产精品va在线观看不卡| 亚洲精品自拍成人| 伊人久久大香线蕉亚洲五| 大片电影免费在线观看免费| 亚洲熟妇中文字幕五十中出 | 精品亚洲成a人片在线观看| 夫妻午夜视频| 国产精品.久久久| 一边摸一边抽搐一进一出视频| 久久午夜亚洲精品久久| 久久国产乱子伦精品免费另类| av天堂久久9| 天天添夜夜摸| 精品少妇一区二区三区视频日本电影| 人人妻人人澡人人看| 精品一品国产午夜福利视频| 午夜免费鲁丝| 18禁美女被吸乳视频| 悠悠久久av| 亚洲综合色网址| 捣出白浆h1v1| 又黄又粗又硬又大视频| 久久九九热精品免费| 波多野结衣av一区二区av| 黑人欧美特级aaaaaa片| 中文字幕另类日韩欧美亚洲嫩草| 黄网站色视频无遮挡免费观看| 日本撒尿小便嘘嘘汇集6| 精品国产美女av久久久久小说| 亚洲中文日韩欧美视频| 性色av乱码一区二区三区2| 丰满饥渴人妻一区二区三| 女人精品久久久久毛片| 99re6热这里在线精品视频| www日本在线高清视频| 欧美色视频一区免费| 国产xxxxx性猛交| 精品国内亚洲2022精品成人 | 午夜日韩欧美国产| 久久天躁狠狠躁夜夜2o2o| 99久久人妻综合| 欧美久久黑人一区二区| 午夜亚洲福利在线播放| 婷婷成人精品国产| 久久久久视频综合| 国产精品九九99| 国产精品99久久99久久久不卡| 美女 人体艺术 gogo| 一进一出好大好爽视频| 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 精品久久久久久,| 国精品久久久久久国模美| 久久天躁狠狠躁夜夜2o2o| 91成人精品电影| 我的亚洲天堂| 高清黄色对白视频在线免费看| 午夜视频精品福利| 午夜成年电影在线免费观看| 成人亚洲精品一区在线观看| 亚洲中文字幕日韩| 成人三级做爰电影| 女人久久www免费人成看片| 久热爱精品视频在线9| 99久久精品国产亚洲精品| 欧美激情 高清一区二区三区| 中文字幕精品免费在线观看视频|