• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear Dynamical System over Finite Distributive Lattice

    2021-09-07 06:30:16DENGAiping鄧愛平GONGXiaoyue弓曉月MAHongcai馬紅彩

    DENG Aiping (鄧愛平), GONG Xiaoyue (弓曉月), MA Hongcai (馬紅彩)

    College of Science, Donghua University, Shanghai 201620, China

    Abstract: A finite dynamical system (FDS) over a lattice L is a pair (S(L), f), where S(L) is a left-L module and f is a mapping from S into itself. The phase space of (S(L), f) is a digraph whose vertex set is S(L) and there is an arc from x to y if y=f(x). Let L be a finite distributive lattice, A an n×n matrix over L, and f(x)=Ax. The structure of the phase space of the FDS (Ln, f) is discussed. The number of limit cycles in the phase space of (Ln, f) is described in M? bius function. The phase spaces of some invertible, nilpotent, and idempotent FDS (Ln, f)are characterized explicitly.

    Key words: finite distributive lattice; linear dynamical system; phase space; limit cycle; rooted in-tree

    Introduction

    LetLbe a finite lattice with the partial order ≤.For anya,b∈L, the least upper bound and the greatest lower bound ofaandbare denoted bya∨banda∧b, respectively. Let 1 be the greatest element and 0 the least element inL.The lattice (L, ∨, ∧, 1, 0) is a distributive lattice if for anya,b,c∈L, one of the following conditions holds[1-2]:

    a∧(b∨c)=(a∧b)∨(a∧c),

    a∨(b∧c)=(a∨b)∧(a∨c),

    (a∨b)∧c=a∨(b∧c).

    The set of allm×nmatrices overLis denoted byMm, n(L). LetLn=Mn, 1(L) andMn(L)=Mn, n(L). Ifaijis the (i,j)-entry ofA, we writeA=(aij). LetATbe the transpose ofA. Then×ndiagonal matrix with diagonal entries all 1sand the others all 0sis called the identity matrix, and denoted byIn. Ifnis clear from context, we simply writeIin place ofIn. SetA0=Ifor anyA∈Mn(L). ForA,B∈Mm, n(L),C∈Mn, l(L), andi=1, 2,...,m,j=1, 2,...,n, we define

    A≤Bifaij≤bij,

    A∨B=(aij∨bij),

    A∧B=(aij∧bij),

    aA=(a∧aij),a∈L.

    It is easy to check thatDIn=ImD=Dfor anyD∈Mm, n(L).

    A dynamical system over a latticeLis a pair (S(L),f), whereS(L) is a left-Lmodule andfis a mapping fromS(L) into itself. The dynamics of (S(L),f) is encoded by its phase spaceG(S(L), f), which is a digraph with vertex setS(L) and there is an arc fromxtoyify=f(x).Ifhandlare the smallest positive integers such thatfh+l(x)=fh(x), then the sequence {fh(x),fh+1(x),...,fh+l-1(x),fh+l(x)} forms a cycle of lengthl, which is called a limit cycle. Cycles of lengthlare calledl-cycles. A vertex in anl-cycle is called a periodic vertex with minimal positive periodl. The limit cycle containing vertexvis denoted byC(v).For each periodic vertexv, the set {v,f-1(v),f-2(v),...} forms an in-tree rooted atv, in notationT(v). In general, the phase spaceG(S(L), f)consists of limit cycles and in-trees attached to vertices of limit cycles.

    Dynamical systems over finite rings or fields have been widely studied and applied in engineering, computational biology,etc.[3-7]A basic problem in dynamical system theory is to characterize the system dynamics through the system description. An efficient way is to study the dynamics from its phase space but without enumerating all states and all phase transitions.

    It is natural to consider a dynamical system (Ln,f) over a latticeLand a mappingfthat mapsxintoAxforx∈LnandA∈Mn(L).Comparing with finite rings or finite fields, a finite lattice has not so good properties. Therefore, we focus on a finite distributive latticeLand a mappingf:xAx,A∈Mn(L).Thenfis a linear map[12]. Our aim is to characterize the structure of the phase spaceG(S(L), f), orG(A) for short. Even for a finite distributive latticeL,Lnis not a direct sum of the bijective part and the transient part off.Therefore, the phase space is no longer a product of cycles and trees, which is a fact for finite rings or fields. The non-zero in-degree of a vertex are different, which is determined by not only the matrix and the lattice but also the vertex itself. The in-degree of a vertexyinG(A), denoted byd-(y), is the number of directed edges going tov.Notice thatd-(y) is also the number of solutions to the equationAx=y. For any vertexxofT(v), the height ofxis denoted byh(x) which is the least non-negative integerhsatisfyingAhx=v.The maximum height of these trees is called the height of the graph, and it is denoted byhA.

    About the basic notions and results on lattice matrices one may refer to Ref.[13].The properties of matrices on distributive lattices have studied by many authors[14-16]. Some necessary and sufficient conditions for lattice matrices to be revertible or nilpotent were presented[14].The nilpotent matrices on a bounded distributive lattice were studied[17].

    We discuss in this paper the length of limit cycles inG(A).The length of each cycle is a divisor of the largest length of all cycles. The relations of the number of cycles with different length can be represented by M?bius function. We characterize the in-tree part for some specific systems such thatfis invertible, nilpotent, or idempotent. The remainder of this paper is organized as follows.

    In section 1, we introduce some basic notions and results of the finite distributive lattices and lattice matrices.

    In section 2, we give a relationship between the numbers of the limit cycles with different length in M?bius function. We also characterize the phase space for some invertible, nilpotent and idempotent dynamical systems over the latticeL.

    In section 3, we summarize the results of this paper.

    1 Preliminaries

    We present in this section some definitions and preliminary lemmas. Some propositions are obtained for later use.

    Definition1[12]Let (L, ∨, ∧, 1, 0) be a finite distributive lattice. The elementb∈Lis called a complement ofa∈Lifa∧b=0 anda∨b=1.

    Lemma1[12]Any element with a complement in a distributive lattice has a unique complement.

    Definition2[14]A matrixA∈Mn(L) is said to be right invertible (left invertible) ifAB=I(BA=I) for someB∈Mn(L).In this case, the matrixBis called a right inverse (left inverse) ofA.IfAis both right and left invertible, then it is said to be invertible.

    i,j=1, 2, …,n.

    Lemma3[12]Let (L, ∨, ∧, 1, 0) be a lattice, and letA=(aij) be a matrix inMn(L).ThenAk+t=AkAtfor any non-negative integerskandt.

    Lemma4[18]Let (L, ∨, ∧, 1, 0) be a lattice. IfA=(aij) is a matrix inMn(L), then the following statements are equivalent.

    (1)Ais right invertible;

    (2)Ais left invertible;

    (3)Ais invertible;

    (4)AAT=I;

    (5)ATA=I;

    (6)AAT=ATA;

    (7)At=Ifor some positive integert.

    Lemma5[19]IfA,B∈Mn(L) andAB=I, thenB=ATandBA=I.

    The inverse matrix ofAis denoted byA-1.By Lemma 5, we know that ifAis invertible, then its inverse is unique andA-1=AT.

    Lemma6[14]Let (L, ∨, ∧, 1, 0) be a finite distributive lattice andA=(aij)∈Mn(L).Then the matrixAis invertible if and only if

    or equivalently,

    Here we give some results about invertible lattice matrices.

    Proposition1IfA∈M2(L) is an invertible matrix, thenAis a symmetric matrix.

    Then by Lemma 1, we obtaina12=a21. ThusA=AT.

    Proposition2Let(L, ∨, ∧, 1, 0) be a finite distributive lattice. IfA∈Mn(L) is an invertible matrix, thenAis symmetric if and only ifA2=I.

    ProofThe result comes directly from Lemma 5.

    2 Main Results

    In this section we study the phase spaceG(A)of the FDS (Ln,f), wheref(x)=Ax,A∈Mn(L).We give a relationship between the numbers of the limit cycles with different length in M?bius function. We also characterize the phase space for some specific systems such thatfis invertible, nilpotent or idempotent.

    2.1 Phase space G(A) for general A∈Mn(L)

    Letnidenote the number of limit cycles with lengthi.The set of vectors fixed byAiis denote byF(Ai), that is,F(A)i={x∈Ln|Aix=x}.An element inF(A) is a fixed point of the system. In the phase spaceG(A), a fixed point is a vertex in a 1-cycle. In a linear FDS (Ln,f), it’s clear that the zero vector is always a fixed point.

    The setf(Ln)={y∈Ln|?x∈L,y=f(x)} is called the image off.Here we also denote this image by ImA[12].

    Theorem1Let(L, ∨, ∧, 1, 0)be a finite distributive lattice. ForA=(aij)∈Mn(L), assume thath(≥0) andl(≥1) are the minimal integers satisfying the equationAh+l=Ah.Then in the phase spaceG(A),his the maximal height of the trees andlis the maximal length of the limit cycles. The length of each limit cycle is a divisor ofl.

    ProofFor any vertexx∈Ln, it holdsAh+lx=Ahx.Theny=AhxsatisfiesAly=y,i.e.,yis a periodic vertex. Thus the height of any vertexxis less than or equal toh.

    Sinceh(≥0) andl(≥1) are the minimal integers satisfying the equationAh+l=Ah, there exists a vertexx0∈Lnsuch thatAh+l(x0)=Ah(x0) butAh+l-1(x0)≠Ah(x0), and a vertexx1∈Lnsuch thatAh+l(x1)=Ah(x1) butAh+l-1(x1)≠Ah(x1). Hence the height ofx0ish, and the vertexAh(x1) is in a limit cycle of lengthl.Therefore we finish the proof thathis the maximal height of all trees inG(A), andlis the maximal length of all limit cycles.

    From the above result we know that ImAhconsists of all periodic vertices. Assumeyis in a limit cycle of lengtht.Theny∈ImAh,Aty=yandAiy≠y(0

    Supposel=st+r, 0≤r≤t.Sincey∈ImAh, there exists a vertexxsuch thaty=Ah(x).

    Then

    It follows fromAiy≠y(0

    We usehAandlAto denote the integershandlin the above theorem.

    Theorem2The number of cycles of lengthtin theG(A) is

    (5)

    whereμis M?bius function.

    ProofNote that ifi|jthenF(Ai)?F(Aj).So we have

    which can be expressed as a matrix equation.

    (6)

    wherepiare different primes.

    Thus Eq.(5) is obtained.

    In a phase space of a linear FDS over a finite ring or field, the non-zero in-degree of each vertex can be characterized in the Kernel of the mapping[12].However, for a linear FDS over a general lattice the result does not exists any longer. That is because the fact that to a matrix equationAx=yover a lattice the number of solutions for eachymay also depend on the vectoryitself. The following is an example.

    Example1Consider the phase spaceG(A) of a linear FDS (L3,f) over a latticeL={0,a,b,c,d, 1}.The Hasse diagram ofLis depicted in Fig. 1. The mapping isf:xAx, where the matrix

    Fig. 1 Lattice L in Example 1

    Fig. 2 Component of G(A) in Example 1 with direction of arcs in the tree omitted

    One checks thatA4=A2, andA3≠A2.Thus we havehA=2,lA=2.In this phase spaceG(A),n1=10 andn2=4.Figure 2 illustrates a component ofG(A) consisting of a limit cycle of length 1 and the in-trees rooted on the cycle.

    Besides the component above there are 2 cyclesG(A).For instance, there is a 2-cycle (u,w,u), where

    One checks thatAu=wandAw=u.

    Now, we discuss the structure of the phase spaceG(A) of the linear FDS (Ln,f) such thatfis an invertible, nilpotent, or idempotent mapping.

    2.2 Invertible system

    IfAis an invertible matrix, thenf:Ln→,xAxis an invertible mapping. We call the corresponding system FDS (Ln,f) an invertible system. It is obvious that the phase spaceG(A) of an invertible system consists of limit cycles. We discuss the largest lengthlAof the limit cycles inG(A) in the casesAis symmetric or non-symmetric. At the end of this subsection we show that the system (Ln,f) is a fixed-point system if and only ifAis the identity matrix.

    First we consider the case thatAis both invertible and symmetric.

    Example2Consider the phase spaceG(A) of a linear FDS (L2,f) over the latticeL={0,a,b, 1}.The Hasse diagram ofLis depicted in Fig. 3. The mapping isf:xAx, where the matrix

    Fig. 3 LatticeLin Example 2

    Fig. 4 Phase space G(A) in Example 2

    Lemma7Let (L, ∨, ∧, 1, 0) be a finite distributive lattice andAan invertible matrix inMn(L).If the set of entries in each row ofAis the same, then the set of entries in each column ofAis the same, and vice versa.

    ProofWe only show the first part. By exchanging rows and columns in the proof then we prove the second part.

    Assume the first row ofAis (a1,a2, …,an) . By Eq. (2) in Lemma 6 the greatest lower bound of any two entries is 0. Thus any two nonzero entries in each row must be different. Without loss of generality we assume thata1,a2, …,asare nonzero andas+1=…=an=0 . LetR={a1,a2, …,as} . Then the nonzero entries of thejth column form a subsetCjofR. Next we show thatCj=R(j=1, 2, …,n) and therefore the proof is finished.

    Similar as above by Eq. (4) in Lemma 6 we know that any two nonzero entries in each column ofAare different. Since the set of entries in each row is the same and eachai∈Roccurs exactly once in each row, eachai∈Roccurs totallyntimes in the matrixA.If one of them, sayai, does not occur in some column, say thejth column, thenaimust occur more than once in another column. This contradicts to Eq. (4). ThusCj=R(j=1, 2,...,n).

    (7)

    Notice that

    (8)

    Corollary1Let(L, ∨, ∧, 1, 0)be a finite distributive lattice. LetA=(aij)∈Mn(L)be an invertible matrix with each row admitting the same set of entries and 0 occurs at most once in each row or column. Then the length of the largest cycle in the phase spaceG(A) islA=n.

    2.3 Nilpotent system

    In this subsection we consider the linear FDS (Ln,f) such thatfis nilpotent. LetAbe a nilpotent matrix inMn(L).Then there exists a minimal positive integerksuch thatAk=0.We callkthe nilpotent index ofA.

    Proposition4Let(L, ∨, ∧, 1, 0)be a finite distributive lattice,Aa nilpotent matrix inMn(L) with nilpotent indexk.ThenhA=kandlA=l.The phase spaceG(A) consists of a 1-cycle formed by the zero vector and an in-tree of heightkrooted at the zero vector.

    ProofBy the definition of the nilpotent indexkwe haveAk+1=0=AkandAk-1≠0=Ak.It follows thathA=kandlA=1.

    For any vertexx∈Ln,Akx=0∈Ln.This yields that inG(A) there is only one in-tree and the root of tree is the zero vector.

    Example3Consider the latticeL={0,a,b,c, 1}.The Hasse diagram ofLis depicted in Fig. 5.

    Fig. 5 Lattice L in Example 3

    Fig. 6 Phase space G(A) in Example 3

    2.4 Idempotent system

    In this subsection we consider the linear FDS (Ln,f) such thatfis idempotent.

    LetAbe a idempotent matrix inMn(L) such thatA2=A≠I.Then in the phase spaceG(A),hA=1 andlA=1.The phase spaceG(A) has |ImA| components, or equivalently |ImA| limit cycles, and each element in ImAis a fixed point of (Ln,f).

    We discuss explicitly the structure ofG(A) for some special idempotent matricesAover a distributive lattice, and general idempotent matrixAover a factor lattice.

    2.4.1Idempotentsystemoverafinitedistributivelattice

    Let (L, ∨, ∧, 1, 0) be a finite distributive lattice.

    We first consider the phase spaceG(A) such thatAhas only one nonzero column (a,a,...,a)T.

    Theorem4Let(L, ∨, ∧, 1, 0)be a finite distributive lattice. Assume the matrixA=(aij)∈Mn(L)has only one nonzero column(a,a,...,a)T.LetX={x∈L|x≤a}.Then in the phase spaceG(A), the number of the fixed points is |X|; and the number of preimages of eachy∈ImAisd-(y)=|X|×|L|n-1.

    ProofA direct computation shows thatA2=A.Assume the nonzero column ofAis thejth column ofA.

    For eachy∈ImA, there exists a vertexx=(x1,x2,...,xn)Tsuch thaty=Ax=(a∧xj,a∧xj,...a∧xj)T.Thus the vertexy∈ImAis of the form (b,b,...,b)Tsuch thatb=a∧xj.

    ConsideringA2=Awe havey=Ax=A2x=Ay.It follows thatb=a∧b, or equivalentlyb≤a.Thus we have |ImA|=|{x∈L|x≤a}|.

    This yields thatd-(y)=|X|×|L|n-1.

    ProofSinceai∧aj=0(i≠j), a direct computation shows thatA2=A.

    Conversely, for anyb∈Landy=(b,b,...,b)T,

    Thus |ImA|=|L|.

    2.4.2Idempotentsystemoverafactorlattice

    Consider a factor lattice (L, ∨, ∧, 1, 0) wherea∨b=lcm(a,b)(the least common multiple ofaandb),a∧b=gcd(a,b)(the greatest common divisor ofaandb). A finite factor lattice is a finite distributive lattice.

    Lemma8Let (L, ∨, ∧, 1, 0) be a factor lattice. For anyA∈Lassume the solutions toa∧x=0 are 0,x1,x2,...,xs(s≥1).Then forb(

    ProofFirst we show that eachyi=b∨xiis a solution toa∧y=b(i=1, 2,...,s).This follows from that

    a∧yi=a∧(b∨xi)=(a∧b)∨(a∧xi)=

    b∨0=b.

    Next we assumey0is a solution toa∧y=bandy0≠b.Then we show thaty0=b∨xifor somexi(i∈{1, 2,...,s}).The expressiona∧y0=bmeans thatb=gcd (a,y0).Thus there exists an elementk∈Lsuch thaty0=kb=k∨b, and elementsaandkare mutually prime,i.e.,a∧k=0.The assumptiony0≠bleads to thatk≠0.Therefore,kis a nonzero solution toa∧x=0.Letxi=kTheny0=b∨xi, ending the proof.

    Notice that ifa∧x=0 has only the trivial solution 0, then the result in the above lemma does not hold. See the following example.

    Example4Let (L, ∨, ∧, 1, 0) be a factor lattice, and it is presented in Fig. 7.

    Fig. 7 Factor lattice

    Consider the equations: 24∧x=1 and 24∧y=12.The first one has a unique solutionx=1,the zero inL.However, the second one has three solutions:y=108, 36 and 12.

    The following results come directly from Lemma 8.

    Theorem6Let (L, ∨, ∧, 1, 0) be a factor lattice. Assume the matrixA=(aij)∈Mn(L) has only one nonzero column (a,a,...,a)T.LetX={x∈L|x|a}.

    For the general nilpotent system, the number of preimages of each vertex in ImAmay not be the same. We give an example as follows.

    Fig. 8 Lattice L in Example 5

    Fig. 9 Phase space G(A) in Example 5

    3 Conclusions

    In this paper, we study the phase spaceG(A) of the FDS(Ln,f), wheref(x)=Ax,A∈Mn(L).We give a relationship between the numbers of the limit cycles with different length in M?bius function. We also characterize the phase space for some specific systems such thatfis invertible, nilpotent or idempotent.

    For an invertible system with an invertible and symmetric matrixAwe present the largest lengthlAof the limit cycles inG(A) and the number of limit cycles of different length. For an invertible FDS (Ln,f)associated with a nonsymmetric matrixAwe give a sufficient condition such that the largest length isn.

    For a nilpotent system we characterize the structure of the phase space. For some idempotent systems we investigate the number of the fixed points and the number of preimages of each fixed point.

    An elementxof a setSis called a Garden of Eden ifx≠f(y) for anyy∈S. The Garden of Eden of a dynamical system (S,f) is the set of its Garden of Eden. In the idempotent systems (Ln,f) we consider in Subsection 2.4 each non-fixed point is a Garden of Eden. Then the size of the Garden of Eden is clear for the system (Ln,f) in Theorems 4, 5, 6 and 7.

    国产成人一区二区三区免费视频网站 | 色网站视频免费| 国产成人精品久久二区二区91| 又大又爽又粗| 午夜激情久久久久久久| 亚洲一区中文字幕在线| 97在线人人人人妻| 女人久久www免费人成看片| 91国产中文字幕| 国产精品欧美亚洲77777| 亚洲成国产人片在线观看| 精品第一国产精品| 超碰97精品在线观看| 少妇被粗大的猛进出69影院| 亚洲黑人精品在线| 啦啦啦在线观看免费高清www| 色播在线永久视频| 国产无遮挡羞羞视频在线观看| 欧美 日韩 精品 国产| 女人高潮潮喷娇喘18禁视频| 亚洲av片天天在线观看| 国产精品一区二区免费欧美 | 国产成人啪精品午夜网站| 啦啦啦在线观看免费高清www| 免费久久久久久久精品成人欧美视频| 美女扒开内裤让男人捅视频| 2018国产大陆天天弄谢| 爱豆传媒免费全集在线观看| 十分钟在线观看高清视频www| av又黄又爽大尺度在线免费看| 男女国产视频网站| 精品福利观看| 男人添女人高潮全过程视频| 国产成人精品无人区| 亚洲伊人久久精品综合| 日韩免费高清中文字幕av| 嫩草影视91久久| 成年人免费黄色播放视频| 国产精品成人在线| 久久久精品94久久精品| 91精品国产国语对白视频| 侵犯人妻中文字幕一二三四区| 欧美日韩黄片免| 欧美日韩亚洲高清精品| 国产亚洲av片在线观看秒播厂| 国产亚洲av片在线观看秒播厂| 欧美av亚洲av综合av国产av| 男人添女人高潮全过程视频| 亚洲男人天堂网一区| 91精品三级在线观看| 久久久久精品人妻al黑| 色网站视频免费| 纵有疾风起免费观看全集完整版| a级毛片在线看网站| 亚洲av欧美aⅴ国产| 欧美精品一区二区大全| 久久精品亚洲av国产电影网| 亚洲天堂av无毛| 成人国产av品久久久| e午夜精品久久久久久久| 午夜福利视频精品| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 男女高潮啪啪啪动态图| 免费看av在线观看网站| 免费高清在线观看日韩| 日韩中文字幕视频在线看片| 九色亚洲精品在线播放| 国产精品二区激情视频| 亚洲欧洲国产日韩| 天天躁日日躁夜夜躁夜夜| 亚洲伊人色综图| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 男人舔女人的私密视频| 欧美激情高清一区二区三区| 最新在线观看一区二区三区 | 成年人免费黄色播放视频| av福利片在线| av电影中文网址| 一个人免费看片子| 最新的欧美精品一区二区| 久久ye,这里只有精品| 久久人人爽人人片av| 久久天堂一区二区三区四区| 青草久久国产| 精品高清国产在线一区| 波多野结衣av一区二区av| 你懂的网址亚洲精品在线观看| 成人国产av品久久久| 黄片播放在线免费| 日韩制服丝袜自拍偷拍| 亚洲欧美精品自产自拍| 中国国产av一级| 国产一级毛片在线| 国产有黄有色有爽视频| 国产精品 欧美亚洲| 一级a爱视频在线免费观看| 国产精品久久久人人做人人爽| 久久天躁狠狠躁夜夜2o2o | 国产精品.久久久| 午夜老司机福利片| 老司机亚洲免费影院| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 国产高清国产精品国产三级| 热re99久久精品国产66热6| 91精品三级在线观看| 99精品久久久久人妻精品| 啦啦啦中文免费视频观看日本| 下体分泌物呈黄色| 国产又爽黄色视频| 亚洲av国产av综合av卡| 国产一区二区在线观看av| 黄色毛片三级朝国网站| 亚洲国产看品久久| 1024视频免费在线观看| 日日摸夜夜添夜夜爱| www.自偷自拍.com| 天堂中文最新版在线下载| www.精华液| 韩国高清视频一区二区三区| 午夜福利在线免费观看网站| xxx大片免费视频| 9热在线视频观看99| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 精品久久久精品久久久| 欧美黑人精品巨大| 在线观看免费日韩欧美大片| 免费女性裸体啪啪无遮挡网站| 国产精品人妻久久久影院| a 毛片基地| 久久久欧美国产精品| 最新的欧美精品一区二区| 看免费av毛片| 青春草视频在线免费观看| 日韩大码丰满熟妇| 精品卡一卡二卡四卡免费| 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| 国产日韩一区二区三区精品不卡| 亚洲成人免费电影在线观看 | 亚洲天堂av无毛| 亚洲男人天堂网一区| 国产一区二区激情短视频 | 狠狠婷婷综合久久久久久88av| 亚洲色图 男人天堂 中文字幕| 精品欧美一区二区三区在线| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 五月开心婷婷网| 午夜av观看不卡| av国产精品久久久久影院| 免费看av在线观看网站| 在线精品无人区一区二区三| 永久免费av网站大全| 久久久久国产一级毛片高清牌| 老司机深夜福利视频在线观看 | 国产午夜精品一二区理论片| 老鸭窝网址在线观看| 午夜久久久在线观看| 亚洲自偷自拍图片 自拍| 中文字幕制服av| 午夜免费男女啪啪视频观看| 日韩av在线免费看完整版不卡| 大片电影免费在线观看免费| 亚洲国产精品成人久久小说| 久久精品aⅴ一区二区三区四区| 男的添女的下面高潮视频| 美女扒开内裤让男人捅视频| 久久精品亚洲熟妇少妇任你| 久久狼人影院| 国产熟女欧美一区二区| 亚洲免费av在线视频| 色播在线永久视频| 一个人免费看片子| 亚洲七黄色美女视频| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 天堂俺去俺来也www色官网| 亚洲第一青青草原| 嫁个100分男人电影在线观看 | 精品一品国产午夜福利视频| 老司机影院毛片| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 不卡av一区二区三区| 亚洲精品在线美女| 国产91精品成人一区二区三区 | 一本大道久久a久久精品| 777久久人妻少妇嫩草av网站| av天堂在线播放| 日韩欧美一区视频在线观看| 久久亚洲精品不卡| 国产三级黄色录像| 黑丝袜美女国产一区| 欧美xxⅹ黑人| 两性夫妻黄色片| 99久久精品国产亚洲精品| 欧美另类一区| 国产1区2区3区精品| 狠狠精品人妻久久久久久综合| 国产xxxxx性猛交| 1024香蕉在线观看| 国产成人精品在线电影| 香蕉国产在线看| 天堂8中文在线网| 亚洲熟女毛片儿| 赤兔流量卡办理| 国产成人影院久久av| 在线av久久热| 中文精品一卡2卡3卡4更新| 少妇猛男粗大的猛烈进出视频| 热re99久久精品国产66热6| 亚洲精品久久成人aⅴ小说| 成年美女黄网站色视频大全免费| 大码成人一级视频| 午夜福利影视在线免费观看| 欧美成人午夜精品| 中文字幕制服av| 男女床上黄色一级片免费看| 又大又爽又粗| 国产精品免费大片| 一本综合久久免费| 国产爽快片一区二区三区| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 99久久综合免费| 国产成人系列免费观看| 久久免费观看电影| 久久久久久久久免费视频了| 9热在线视频观看99| 欧美成人精品欧美一级黄| 国产午夜精品一二区理论片| 欧美精品一区二区免费开放| 十分钟在线观看高清视频www| 免费在线观看日本一区| 好男人电影高清在线观看| videosex国产| 免费观看a级毛片全部| 大片免费播放器 马上看| 国产一区有黄有色的免费视频| 性色av乱码一区二区三区2| 国产成人免费观看mmmm| av国产久精品久网站免费入址| 在线观看人妻少妇| 美女脱内裤让男人舔精品视频| 亚洲欧洲国产日韩| 99国产精品99久久久久| 老司机在亚洲福利影院| av在线app专区| av天堂在线播放| 国产精品久久久人人做人人爽| 一级毛片黄色毛片免费观看视频| 久久精品久久久久久噜噜老黄| 久久热在线av| 超碰97精品在线观看| 少妇被粗大的猛进出69影院| 日韩大码丰满熟妇| 久久久久久久久免费视频了| 9热在线视频观看99| 青春草视频在线免费观看| 国产成人精品在线电影| 亚洲美女黄色视频免费看| 欧美大码av| 亚洲午夜精品一区,二区,三区| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 咕卡用的链子| 新久久久久国产一级毛片| 久久女婷五月综合色啪小说| 操美女的视频在线观看| 超碰成人久久| 国产亚洲av片在线观看秒播厂| 99国产精品一区二区蜜桃av | 亚洲免费av在线视频| 亚洲欧美清纯卡通| 日韩精品免费视频一区二区三区| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 黄色毛片三级朝国网站| 日韩制服丝袜自拍偷拍| 亚洲人成77777在线视频| 一级毛片 在线播放| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 国产福利在线免费观看视频| 七月丁香在线播放| 不卡av一区二区三区| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 亚洲伊人色综图| 国产精品国产三级专区第一集| 亚洲成人手机| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 亚洲中文日韩欧美视频| 日本五十路高清| 日韩人妻精品一区2区三区| 黄片播放在线免费| 久久人人97超碰香蕉20202| 夫妻性生交免费视频一级片| 国产亚洲欧美精品永久| 亚洲自偷自拍图片 自拍| videos熟女内射| 午夜福利在线免费观看网站| 欧美黄色淫秽网站| 99久久99久久久精品蜜桃| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 一区二区三区乱码不卡18| 精品视频人人做人人爽| 精品国产一区二区三区久久久樱花| 欧美另类一区| 亚洲欧美一区二区三区国产| 国产精品.久久久| 久久久久精品国产欧美久久久 | 久久精品久久精品一区二区三区| 午夜福利视频在线观看免费| 欧美xxⅹ黑人| 亚洲情色 制服丝袜| www.自偷自拍.com| 欧美在线一区亚洲| 91老司机精品| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 极品人妻少妇av视频| 99国产精品一区二区三区| 少妇被粗大的猛进出69影院| 麻豆av在线久日| 婷婷色综合www| av欧美777| 欧美人与性动交α欧美精品济南到| xxxhd国产人妻xxx| 亚洲精品一区蜜桃| 最新的欧美精品一区二区| 99久久综合免费| 亚洲精品一二三| 大码成人一级视频| 亚洲熟女毛片儿| 性高湖久久久久久久久免费观看| 国产精品人妻久久久影院| 亚洲熟女毛片儿| 99国产综合亚洲精品| 日韩av免费高清视频| 亚洲五月色婷婷综合| 国产av精品麻豆| 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 久9热在线精品视频| 欧美精品啪啪一区二区三区 | 十八禁高潮呻吟视频| 久久九九热精品免费| 五月天丁香电影| 亚洲av日韩精品久久久久久密 | 国产欧美日韩一区二区三区在线| 中国美女看黄片| 中文字幕精品免费在线观看视频| www.av在线官网国产| 久久久国产一区二区| 三上悠亚av全集在线观看| 一级片免费观看大全| 老司机深夜福利视频在线观看 | 国产在线视频一区二区| 亚洲综合色网址| 悠悠久久av| 久久女婷五月综合色啪小说| 又粗又硬又长又爽又黄的视频| 激情视频va一区二区三区| 美女脱内裤让男人舔精品视频| 国产精品三级大全| 午夜精品国产一区二区电影| 男女免费视频国产| 国产99久久九九免费精品| 1024香蕉在线观看| 精品欧美一区二区三区在线| 丝袜在线中文字幕| 久久精品成人免费网站| 午夜日韩欧美国产| 尾随美女入室| 精品久久久久久电影网| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 搡老乐熟女国产| 亚洲专区中文字幕在线| 性高湖久久久久久久久免费观看| 亚洲色图 男人天堂 中文字幕| 黑人猛操日本美女一级片| 一区二区三区乱码不卡18| 免费黄频网站在线观看国产| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 亚洲精品国产av成人精品| 波多野结衣av一区二区av| 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 欧美性长视频在线观看| 丝袜喷水一区| a级毛片在线看网站| 亚洲国产精品一区三区| 激情视频va一区二区三区| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 国产一区有黄有色的免费视频| 国产成人av教育| 亚洲国产精品成人久久小说| 亚洲中文av在线| 9色porny在线观看| 国产淫语在线视频| 最新在线观看一区二区三区 | 人人妻,人人澡人人爽秒播 | 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 亚洲七黄色美女视频| 国精品久久久久久国模美| 国产精品香港三级国产av潘金莲 | 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 国产一区二区三区av在线| 欧美性长视频在线观看| 久久久久精品人妻al黑| 一本色道久久久久久精品综合| 老汉色∧v一级毛片| 母亲3免费完整高清在线观看| 精品国产国语对白av| 亚洲成av片中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 飞空精品影院首页| 两人在一起打扑克的视频| 好男人电影高清在线观看| 最新在线观看一区二区三区 | 最黄视频免费看| 亚洲伊人色综图| 国产男人的电影天堂91| 另类亚洲欧美激情| 亚洲色图综合在线观看| 中文字幕另类日韩欧美亚洲嫩草| 手机成人av网站| 婷婷色麻豆天堂久久| 另类精品久久| 亚洲国产av影院在线观看| 亚洲第一av免费看| 国产日韩一区二区三区精品不卡| 91精品三级在线观看| 亚洲国产精品一区三区| 国产午夜精品一二区理论片| 熟女少妇亚洲综合色aaa.| 精品亚洲成国产av| 欧美日韩福利视频一区二区| 亚洲欧美激情在线| 伊人亚洲综合成人网| a级毛片黄视频| 高清黄色对白视频在线免费看| 咕卡用的链子| 欧美激情极品国产一区二区三区| 伦理电影免费视频| 免费黄频网站在线观看国产| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| 国产三级黄色录像| 久久人人爽av亚洲精品天堂| 美女午夜性视频免费| 久久精品久久久久久噜噜老黄| 亚洲专区国产一区二区| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 精品人妻在线不人妻| av又黄又爽大尺度在线免费看| 老汉色∧v一级毛片| av网站免费在线观看视频| 丝袜美足系列| 在线精品无人区一区二区三| 欧美精品av麻豆av| 国产日韩欧美视频二区| 亚洲av国产av综合av卡| 丝袜脚勾引网站| 日本av免费视频播放| 精品人妻一区二区三区麻豆| 男女国产视频网站| 午夜福利免费观看在线| 国产片特级美女逼逼视频| 国产一区二区三区av在线| 男女午夜视频在线观看| 久久ye,这里只有精品| 看十八女毛片水多多多| 亚洲欧美中文字幕日韩二区| 欧美日韩视频精品一区| 国产精品久久久av美女十八| 亚洲欧洲精品一区二区精品久久久| 国产一区二区激情短视频 | 国产成人系列免费观看| 久久热在线av| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美精品综合一区二区三区| 国产熟女午夜一区二区三区| 亚洲第一av免费看| 日本av手机在线免费观看| 欧美日韩综合久久久久久| 9热在线视频观看99| 69精品国产乱码久久久| 精品国产一区二区三区四区第35| 高潮久久久久久久久久久不卡| 夫妻性生交免费视频一级片| 少妇 在线观看| 少妇人妻 视频| 午夜福利乱码中文字幕| 久久国产亚洲av麻豆专区| 亚洲欧美精品自产自拍| 美女视频免费永久观看网站| 777米奇影视久久| 99国产精品免费福利视频| 亚洲自偷自拍图片 自拍| 国产精品成人在线| 欧美av亚洲av综合av国产av| 欧美日韩视频高清一区二区三区二| 香蕉丝袜av| 天堂俺去俺来也www色官网| 女人精品久久久久毛片| 黄片小视频在线播放| 一级毛片我不卡| 视频在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 国产精品三级大全| 国产免费现黄频在线看| 亚洲欧美日韩另类电影网站| 免费不卡黄色视频| 国产精品国产av在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品国产三级专区第一集| 女人高潮潮喷娇喘18禁视频| 久久国产精品人妻蜜桃| 免费观看av网站的网址| 老汉色∧v一级毛片| 婷婷丁香在线五月| 九草在线视频观看| 97人妻天天添夜夜摸| 精品国产乱码久久久久久小说| avwww免费| 午夜福利视频精品| 一级片免费观看大全| 亚洲av成人不卡在线观看播放网 | 亚洲成人免费电影在线观看 | 欧美激情 高清一区二区三区| 国产在视频线精品| 欧美日韩视频精品一区| 久久狼人影院| 精品高清国产在线一区| 国产成人影院久久av| 精品亚洲成国产av| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| 午夜精品国产一区二区电影| svipshipincom国产片| 亚洲熟女毛片儿| 最新在线观看一区二区三区 | 一级毛片电影观看| 99国产综合亚洲精品| 啦啦啦啦在线视频资源| 久久久久视频综合| 国产欧美日韩精品亚洲av| 下体分泌物呈黄色| 老司机午夜十八禁免费视频| kizo精华| 日本欧美国产在线视频| 国产欧美日韩综合在线一区二区| 午夜福利乱码中文字幕| 午夜91福利影院| 国产一区二区三区av在线| 久久狼人影院| 亚洲av片天天在线观看| 成人手机av| 国产淫语在线视频| 精品国产国语对白av| 成人手机av| 日韩精品免费视频一区二区三区| 亚洲av片天天在线观看| 两性夫妻黄色片| 男女无遮挡免费网站观看| 午夜日韩欧美国产| 欧美精品一区二区免费开放| 日韩精品免费视频一区二区三区| 亚洲国产欧美网| 嫁个100分男人电影在线观看 | 黄色a级毛片大全视频| 男女下面插进去视频免费观看| 嫩草影视91久久| 黑人欧美特级aaaaaa片| cao死你这个sao货| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩高清在线视频 | 久久人妻熟女aⅴ| 免费在线观看影片大全网站 | 欧美av亚洲av综合av国产av| 国产av国产精品国产| 亚洲av国产av综合av卡| 国产日韩欧美在线精品| 中文字幕高清在线视频| 汤姆久久久久久久影院中文字幕| 亚洲欧美色中文字幕在线| 99国产精品99久久久久| 91国产中文字幕| 精品一品国产午夜福利视频| 人妻人人澡人人爽人人| 欧美日韩福利视频一区二区| 国产91精品成人一区二区三区 | 咕卡用的链子| 别揉我奶头~嗯~啊~动态视频 |