• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One Class of the Least Congruences on Completely Regular Semigroups

    2021-09-07 06:30:46ZHANGJiangang張建剛SHENRan

    ZHANG Jiangang(張建剛), SHEN Ran(申 冉)

    1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

    2 College of Science, Donghua University, Shanghai 201620, China

    Abstract: Congruence is a very important aspect in the study of the semigroup theory. In general, the Kernel-trace characterizations, Green’s relations and subvarieties are main tools in the consideration of congruences on completely regular semigroups. In this paper, we give one class of congruences on completely regular semigroups with the representation of wreath product of translational hulls on completely simple semigroups. By this new way, the least Clifford semigroup congruences on completely regular semigroups are generalized.

    Key words: completely regular semigroup; Clifford congruence; translational hull; wreath product; orthogroup

    Introduction

    The class of completely regular semigroups coincides with the class of semigroups which are unions of groups. A semigroup is completely regular if and only if it is a semilattice of completely simple semigroups. And a completely simple semigroup is isomorphic to a Rees Matrix semigroup[1-2]. It is complicated to find how the higher semilattice classes act on the lower semilattice classes. To solve the problem, Petirch[3-4]considered the translational hull of a completely simple semigroup and gave it a wreath product representation. It was useful in the research of the structure of a completely regular semigroup. The authors further researched the wreath product representation and got the structures of some subclasses of completely regular semigroups[5-9]. Congruence is a very important aspect in the study of the semigroup theory. In general, the Kernel-trace characterizations, Green’s relations (L, R, H, D, J) and subvarieties are main tools in the consideration of congruences on completely regular semigroups[1-2, 10-16].

    In this paper, we get one class of congruences on completely regular semigroups by the representation of wreath product of the translational hull of a completely simple semigroup. This is a new way to study the congruences of completely regular semigroups. And we generalize the least Clifford semigroup congruences on completely regular semigroups.

    If Green’s relation H is a congruence on a completely regular semigroupS, thenSis called a cryptogroup. Furthermore, a cryptogroupSis a L-cryptogroup ifS/H belongs to the class L of bands. Denote the set of idempotents ofSbyE(S).Sis called an orthogroup ifE(S) is a subsemigroup ofS. An orthodox cryptogroup is an orthocryptogroup. Further,a semigroupSis called a Clifford semigroup if it is a (strong) semilatticeYof groups. It is obvious that a Clifford semigroupSis orthodox and cryptic, and Green relations H=J is the least semilattice congruence on it. LetSbe a completely regular semigroup. For anya∈S, denote the group inverse ofaand the identity ofHabya-1anda0respectively. A completely regular semigroupSis a cryptogroup if and only if (ab)0=(a0b0)0for anya,b∈S. For any binary relationθonS,θ*denotes the congruence generated byθ,i.e.,θ*is the least congruence containingθ.

    All the other terminologies and notations which are not explained can be found in Refs. [1-2,11].

    1 Some Preliminaries

    In this section, we recall the representation of wreath product of left, right translations and bitranslations of completely simple semigroups given by Petrich[3]. The representation of wreath product is one of important tools in the study of completey regular semigroups. By the representation, the authors investigated some properties of bitranslations of completely simple semigroups[5].

    LetSbe a semigroup andx,ybe arbitrary elements ofS. A mapσonS, written on the left, is a left translation ifσ(xy)=(σx)y; a mapρonS, written on the right, is a right translation if (xy)ρ=x(yρ); a left translation σ and a right translationρare linked ifx(σy)=(xρ)yin which the pair (σ,ρ) is a bitranslation. The setΣ(S) of all left translations ofSis a semigroup under the composition (σσ′)x=σ(σ′x); the setP(S) of all right translations ofSis a semigroup under the compositionx(ρρ′)=(xρ)ρ′; the subsemigroupΩ(S) ofΣ(S) ×P(S) consisting of all bitranslations is the translational hull ofS. Specially,σaandρaare linked obviously, whereσax=axandxρa=xa, for somea∈S.

    LetT=M(I,G, Λ;P) be a completely simple semigroup andσ∈Σ(T),ρ∈P(T).By the results[3], there existφ∈ζ(I),ψ∈ζ′(Λ) andu∈GI,v∈ΛGsuch that for any (i,g,λ)∈T,

    σ(i,g,λ)=(φi, (ui)g,λ), (i,g,λ)ρ=

    (i,g(λv),λψ),

    (1)

    where J(I)(J ′(Λ)) is the semigroup of all transformations on the setI(Λ), andGI(ΛG) denotes the semigroup of all functions fromI(Λ) intoGunder the compositions (u·u′)x=(ux)(u′x) for allu,u′∈GIandx∈Iandy(v·v′)=(yv)(yv′) for allv,v′∈ΛG,y∈Λ.

    Denote the set J(I) ×GIwith the multiplication (φ,u)(φ′,u′)=(φφ′,uφ′·u′) by J(I)wlG, where (uφ′)x=u(φ′x) for allx∈I. Dually, denote the setΛG× J ′(Λ) with the multiplication (v,ψ)(v′,ψ′)=(v·ψv′,ψψ′) byGwrJ ′(Λ), wherey(ψv′)=(yψ)v′ for ally∈Λ.

    → (φ, u) andχ

    are semigroup isomorphisms.

    (λv)p(λψ)i=pλ(φi)(ui), for anyi∈I,λ∈Λ.

    (2)

    If (φ,u) and (v,ψ) satisfy formula (2), we say that (φ,u) and (v,ψ) are linked. The set of all linked pairs in (J(I)wlG) × (GwrJ ′(Λ)) is denoted by Δ(T), and its element ((φ,u), (v,ψ)) is denoted by [φ,u,v,ψ].And the wreath product of Δ(T) is given by

    [φ,u,v,ψ][φ1,u1,v1,ψ1]=
    [φφ1,uφ1·u1,v·ψv1,ψψ1].

    [φ,u,v,ψ]

    is an isomorphism.

    We will consider the idempotents ofΩ(T) by the representation of wreath product in the next lemma.

    ProofIfω2=ω, thenσ2=σandρ2=ρ. By Lemma 1,σ2=σif and only if (φ2,uφ·u) =(φ,u) if and only ifφ2=φanduφ=〈ι〉, whereιis the identity of the groupG. By formula (2), for anyi,j∈I,λ∈Λ,

    then

    (3)

    We takej=φiin Eq. (3). Since (i,φi)∈Kerφfor anyi∈Ianduφ=〈ι〉, then

    2 Main Results

    The study of the congruences on semigroups is an important way to characterize their structures. The least inverse congruences on completely regular semigroups were discussed by various authors[1-2, 10]. In this section, one class of congruences on completely regular semigroups are given by the representation of wreath product of the translational hulls, and then we generalize the least Clifford semigroup congruences on completely regular semigroups.

    Suppose thatNis a normal subgroup of a groupGandg,h∈G. Ifgh-1∈N, we denoteg≡h(modN). SinceNis normal, it is easy to see ifg≡h(modN), thenh≡g(modN) and ifa≡b(modN),c≡d(modN), we can getac≡bd(modN) for anya,b,c,d∈G.

    From Lemma 5 to Lemma 8, we always suppose thatS=∪α∈YSαis a completely regular semigroup andα,β∈Ywithα≥β.

    ProofBy formula (2), for anyj∈Iβ, we have (1βva)p(1βψa)j=p1β(φaj)(uaj).So

    by the normality ofPβ. In particular,ua1β=(1βva)p(1βψa)1β=(1βva).And so

    uaj=ua1βp(1βψa)j,

    and henceuaj≡ua1β(modNβ). Similarly,μva≡ 1βva(modNβ) can be proved.

    As special cases, we have the following two lemmas.

    Lemma6For anyeiλ∈E(Sα),ueiλj≡ιβ(modNβ) andμveiλ≡ιβ(modNβ) for anyj∈Iβ,μ∈Λβ.

    ProofSinceeiλ∈E(S), then (σeiλ,ρeiλ)=(σeiλ,ρeiλ)2is a bitranslation ofSβ. By Lemma 4, we have for anyμ∈Λβ,

    and henceueiλj≡ιβ(modNβ) for anyj∈Iβ. Similarly, we can prove thatμveiλ≡ιβ(modNβ) for anyμ∈Λβ.

    Lemma7For anyh1α1α∈Sα, h∈Nα, uh1α1α j ≡ ιβ(mod Nβ) and μvh1α1α≡ιβ(modNβ) for anyj∈Iβ,μ∈Λβ.

    ProofFor anyi∈Iα,λ∈Λα, since (1α,pλi, 1α)=(1α,ια,λ)(i,ια, 1α)=e1αλei1α, by Lemma 1 and Lemma 6, for anyj∈Iβ,

    u(1α, pλi,1α)j=ue1αλei1αj=(ue1αλφei1α·uei1α)j=
    ue1αλ(φei1αj)uei1αj≡ιβ(modNβ).

    (4)

    (5)

    or

    a=(1α,g, 1α)(1α,pλi, 1α)(1α,g-1, 1α).

    By Eqs. (4)-(5), Lemma 5 and Lemma 6, for anyj∈Iβ,

    LetS=∪α∈YSαbe a completely regular semigroup. For anya=(i,g,λ),b=(j,h,μ)ofS,θis a congruence onSsatisfyingθ?D. Define a relationρonSby

    aρb?aθbandg≡h(modNα) for some
    α∈Y, ifa,b∈Sα.

    (6)

    By the above definition, we have the following result.

    ProofIfaρb, theng≡h(modNα). Suppose thath=ngfor somen∈Nα. Since

    On one hand, by Lemma 5 and Lemma 6,

    ua1β=uei1αg1α1αλ1β≡ (uei1α1β)(ug1α1α1β)(ue1αλ1β) ≡
    ug1α1α1β(modNβ).

    Similarly,ub1β≡uh1α1α1β(modNβ).

    On the other hand, by Lemma 7,

    uh1α1α1β=un1α1αg1α1α1β≡ (un1α1α1β)(ug1α1α1β) ≡
    ug1α1α1β(modNβ).

    And soua1β≡ub1β(modNβ). Similarly, 1βva≡ 1βvb(modNβ) can be proved.

    Now we give the main result of this paper.

    Theorem1LetS=∪α∈YSαbe a completely regular semigroup. Then the relationρdefined in formula (6) is a congruence onS.

    ProofIt is obvious thatνis an equivalence by the definition. Leta=(i,g,λ),b=(j,h,μ)∈Sαandaρb.Theng≡h(modNα). For anyc∈Sβ, suppose thatac=(k,l,ξ),bc=(k′,l′,ξ′)∈Sαβ.It is clear thatacθbc. Now we will show thatl≡l′(modNαβ).

    Since

    for anyt∈Iαβ.By Eq. (1) and Lemma 5 we have

    Similarly,l′ ≡ub(1αβ)uc(1αβ)(modNαβ). On the other hand,ua(1αβ) ≡ub(1αβ)(modNαβ) by Lemma 8, so we getl≡l′(modNαβ) andacρbc. Similarly, the right compatibility ofρcan be proved. And henceρis a congruence onS.

    Lemma9[2]LetT=M(I,G,Λ;P) be a completely simple semigroup. Assume thatPis normalized. LetNbe a normal subgroup ofG, andNcontains all entries ofP, then the relationξdefined onTby

    (i,g,λ)ξ(j,h,μ) ifgh-1∈N

    is a group congruence onT. Conversely, every group congruence onTcan be constructed.

    It is easy to see that ifNis the least normal subgroup ofGgenerated by the elements ofP, then the corresponding group congruence onTis the least one.

    At last, we consider some special cases of the congruencesθandρ. The following lemma describes the congruences onSgenerated by Green’s relations.

    Lemma10[2]LetSbe a completely regular semigroup. Then

    (1) H*is the least band congruence onS.

    (2) L*(R*) is the least right(left) regular band congruence onS.

    (3) L*∩ R*is the least regular band congruence onS.

    (4) L*∨ R*=D is the least semilattice congruence onS.

    Theorem2LetS=∪α∈YSαbe a completely regular semigroup.

    (1) Ifθ=H*, thenρis the least orthocryptogroup congruence onS.

    (2) Ifθ=L*(R*), thenρis the least right(left) regular orthocryptogroup congruence onS.

    (3) Ifθ=L*∩ R*, thenρis the least regular orthocryptogroup congruence onS.

    (4) Ifθ=L*∨ R*=D, thenρis the least Clifford congruence onS.

    ProofFor anyα∈Y, letθ=H*, since H?θ?D, it is easy to see that everyθ-class is a completely simple subsemigroup ofS. By Theorem 1 and Lemma 9, everyρ-class ofSis the maximum group homomorphism image of the correspondingθ-class ofS.

    Leta,b∈S. ThenaH*a0,bH*b0anda0b0H*abH*(ab)0. By the definition ofρ, we know that (aρ)0=a0ρ. We writeT=S/ρ, denote the Green relation H onTby HT. Then

    (a0b0)ρHT(ab)ρHT(ab)0ρ

    HenceTmust be orthodox, andTis an orthocryptogroup.

    By Lemma 9 and Lemma 10,ρis the least orthocryptogroup congruence onS. Similarly, the remainders can be proved.

    A completely simple and orthodox semigroup is called a rectangular group.

    Lemma11[2]LetT=M(I,G,Λ;P) be a completely simple semigroup. Then the following conditions onTare equivalent.

    (1)Tis orthodox.

    (2)T?I×G× Λ, whereIand Λ are given the multiplication of a left and a right zero semigroup, respectively.

    (3) IfPis normalized, thenpλi=efor alli∈Iandλ∈Λ, whereeis the identity of the groupG.

    LetSbe an orthogroup. Then it is a semilattice of rectangular groups. For anya=(i,g,λ),b=(j,h,μ)∈SandaDb,θis a congruence onSsatisfyingθ?D. Define a relationρonSby

    aρb?aθbandg=h.

    (7)

    Corollary1Let S be an orthogroup.

    (1) Ifθ=H*, thenρis the least orthocryptogroup congruence onS.

    (2) Ifθ=L*(R*), thenρis the least right(left) regular orthocryptogroup congruence onS.

    (3) Ifθ=L*∩ R*, thenρis the least regular orthocryptogroup congruence onS.

    (4) Ifθ=L*∨ R*=D, thenρis the least Clifford congruence onS.

    3 Conclusions

    The study of congruences on a semigroup is a very important tool in the theory of semigroups. One class of congruences on completely regular semigroups are given by the representation of wreath product of the translational hulls, and then we generalize the least Clifford semigroup congruences on completely regular semigroups in this paper.

    黄色欧美视频在线观看| 只有这里有精品99| 日韩欧美三级三区| 成人无遮挡网站| 成人亚洲精品av一区二区| 国产欧美日韩精品一区二区| 中文天堂在线官网| 亚洲精品乱久久久久久| 午夜精品在线福利| 欧美97在线视频| 久久久久免费精品人妻一区二区| 人人妻人人澡欧美一区二区| 欧美性感艳星| 日韩一区二区三区影片| 午夜免费男女啪啪视频观看| 国产免费福利视频在线观看| 久久久国产一区二区| 精品久久久久久久末码| 日本免费a在线| 国产老妇伦熟女老妇高清| 日韩欧美国产在线观看| 高清午夜精品一区二区三区| 日韩大片免费观看网站| 午夜精品在线福利| 国产激情偷乱视频一区二区| 久久精品人妻少妇| 亚洲av电影在线观看一区二区三区 | 国产精品一区二区性色av| 精品久久久久久久久亚洲| 一级毛片久久久久久久久女| 久久久久网色| 禁无遮挡网站| 中文天堂在线官网| 亚洲电影在线观看av| 高清午夜精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产在视频线精品| 午夜精品一区二区三区免费看| 欧美三级亚洲精品| 一边亲一边摸免费视频| 51国产日韩欧美| 国产探花在线观看一区二区| 亚洲精品乱码久久久久久按摩| 精品久久国产蜜桃| 三级国产精品片| 人人妻人人看人人澡| 日韩精品青青久久久久久| 精品久久久久久久久av| 99热6这里只有精品| 亚洲av中文字字幕乱码综合| av播播在线观看一区| 狂野欧美激情性xxxx在线观看| 水蜜桃什么品种好| av线在线观看网站| 国产日韩欧美在线精品| 女人久久www免费人成看片| 日本午夜av视频| 一夜夜www| 晚上一个人看的免费电影| 伦精品一区二区三区| 国产精品福利在线免费观看| 国产av国产精品国产| 一级av片app| 特级一级黄色大片| 久久精品夜夜夜夜夜久久蜜豆| 国产av国产精品国产| 久久久久久久国产电影| 插逼视频在线观看| 床上黄色一级片| 久久久久精品性色| 国产午夜精品论理片| 人人妻人人澡欧美一区二区| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 久久久久久久久久人人人人人人| 最近最新中文字幕免费大全7| 一本久久精品| 秋霞伦理黄片| 久久99蜜桃精品久久| 深爱激情五月婷婷| 内地一区二区视频在线| 永久网站在线| 久久久精品欧美日韩精品| 一级黄片播放器| 91精品一卡2卡3卡4卡| 国产精品福利在线免费观看| 亚洲婷婷狠狠爱综合网| 国产免费又黄又爽又色| 国产av在哪里看| 18禁在线播放成人免费| 蜜桃久久精品国产亚洲av| 精品不卡国产一区二区三区| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 人妻一区二区av| 日韩欧美精品v在线| 嫩草影院新地址| 久久久久久久国产电影| 老司机影院毛片| 国产 亚洲一区二区三区 | 我要看日韩黄色一级片| 亚洲精品456在线播放app| 国产精品.久久久| 久久99热这里只有精品18| 日韩欧美精品免费久久| 精品久久久久久久人妻蜜臀av| 国产黄色免费在线视频| 两个人视频免费观看高清| 成年av动漫网址| av天堂中文字幕网| 精品久久久久久久久av| 特大巨黑吊av在线直播| 一级毛片黄色毛片免费观看视频| 白带黄色成豆腐渣| 26uuu在线亚洲综合色| 激情五月婷婷亚洲| 2021少妇久久久久久久久久久| 99久国产av精品| 白带黄色成豆腐渣| av又黄又爽大尺度在线免费看| 老司机影院成人| 成人综合一区亚洲| 欧美最新免费一区二区三区| 深夜a级毛片| 欧美zozozo另类| 亚洲国产精品国产精品| 全区人妻精品视频| 国产视频首页在线观看| 亚洲久久久久久中文字幕| 精品国产露脸久久av麻豆 | 国产精品蜜桃在线观看| 夜夜看夜夜爽夜夜摸| 精品久久国产蜜桃| 干丝袜人妻中文字幕| 欧美不卡视频在线免费观看| 97超视频在线观看视频| 美女高潮的动态| 免费无遮挡裸体视频| 日韩大片免费观看网站| 韩国高清视频一区二区三区| 插逼视频在线观看| 免费大片18禁| 中文在线观看免费www的网站| 日韩欧美 国产精品| 淫秽高清视频在线观看| 亚洲图色成人| 亚洲精品久久久久久婷婷小说| 久久精品久久精品一区二区三区| 亚洲三级黄色毛片| 欧美bdsm另类| 乱系列少妇在线播放| 亚洲在久久综合| 日本wwww免费看| 禁无遮挡网站| 亚洲欧美日韩东京热| 只有这里有精品99| 国产高清国产精品国产三级 | 国国产精品蜜臀av免费| 久久午夜福利片| 欧美3d第一页| 国产色爽女视频免费观看| 老司机影院毛片| 成人毛片a级毛片在线播放| 久久久久精品久久久久真实原创| 激情 狠狠 欧美| 人妻少妇偷人精品九色| 亚洲精品乱码久久久v下载方式| 欧美 日韩 精品 国产| 三级经典国产精品| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 联通29元200g的流量卡| 欧美三级亚洲精品| 国产亚洲午夜精品一区二区久久 | 97精品久久久久久久久久精品| 成人美女网站在线观看视频| av在线亚洲专区| 黄片wwwwww| 性插视频无遮挡在线免费观看| 午夜福利成人在线免费观看| 精品酒店卫生间| 美女国产视频在线观看| 性色avwww在线观看| 亚洲图色成人| 成年版毛片免费区| 亚洲综合色惰| 麻豆成人午夜福利视频| 日韩欧美一区视频在线观看 | 在线免费观看的www视频| 日本欧美国产在线视频| a级一级毛片免费在线观看| 免费高清在线观看视频在线观看| 亚洲av成人av| 国产精品熟女久久久久浪| 国产欧美日韩精品一区二区| 只有这里有精品99| 在线观看免费高清a一片| 简卡轻食公司| 欧美+日韩+精品| 国产成人精品福利久久| 精品人妻视频免费看| 久久久久久国产a免费观看| 99久久精品国产国产毛片| 久久久精品免费免费高清| 成人毛片a级毛片在线播放| 偷拍熟女少妇极品色| 精品99又大又爽又粗少妇毛片| 欧美日韩综合久久久久久| 最近最新中文字幕免费大全7| 成人无遮挡网站| 如何舔出高潮| 国产探花在线观看一区二区| 亚洲欧美精品专区久久| 亚洲综合色惰| 乱系列少妇在线播放| 日韩在线高清观看一区二区三区| 纵有疾风起免费观看全集完整版 | 亚洲久久久久久中文字幕| 免费观看av网站的网址| 亚洲av福利一区| 国产在视频线精品| 国产精品久久久久久久久免| 国产精品.久久久| 日韩三级伦理在线观看| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看 | 水蜜桃什么品种好| 亚洲国产精品国产精品| 亚洲精华国产精华液的使用体验| 精品人妻偷拍中文字幕| 我的女老师完整版在线观看| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久久久久久久| 亚洲无线观看免费| 神马国产精品三级电影在线观看| 高清午夜精品一区二区三区| 日韩中字成人| 欧美日韩国产mv在线观看视频 | 成人一区二区视频在线观看| 少妇丰满av| 国产黄色视频一区二区在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久黄片| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说| 插阴视频在线观看视频| 色综合色国产| 搡老妇女老女人老熟妇| 日日摸夜夜添夜夜添av毛片| 国产精品三级大全| 欧美一级a爱片免费观看看| 欧美bdsm另类| 韩国av在线不卡| 插逼视频在线观看| 大片免费播放器 马上看| 国产成人午夜福利电影在线观看| 亚洲av成人av| 一级爰片在线观看| 精品一区二区免费观看| 亚洲人成网站在线播| 日产精品乱码卡一卡2卡三| 婷婷色综合www| 欧美激情久久久久久爽电影| 亚洲精品国产成人久久av| 国产在视频线在精品| 国产精品无大码| 久99久视频精品免费| 成人亚洲欧美一区二区av| 日本免费a在线| 秋霞伦理黄片| 少妇的逼好多水| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 简卡轻食公司| 我的老师免费观看完整版| 国产免费视频播放在线视频 | videossex国产| 久久精品国产亚洲av涩爱| 国产av不卡久久| 成人亚洲精品av一区二区| 亚洲精品久久久久久婷婷小说| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 男女视频在线观看网站免费| 国产成人一区二区在线| 一级二级三级毛片免费看| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 99热这里只有是精品50| 一级毛片 在线播放| 欧美日韩亚洲高清精品| 亚洲自拍偷在线| 亚洲人与动物交配视频| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| 中文天堂在线官网| 成人性生交大片免费视频hd| 夜夜看夜夜爽夜夜摸| 天天躁日日操中文字幕| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 亚洲精品国产成人久久av| 日韩视频在线欧美| 国产亚洲91精品色在线| 观看免费一级毛片| 亚洲精品乱久久久久久| 亚洲天堂国产精品一区在线| 日韩制服骚丝袜av| 高清毛片免费看| 亚洲精品成人久久久久久| 久久99热6这里只有精品| 22中文网久久字幕| 久久久色成人| 1000部很黄的大片| 午夜精品在线福利| 精品熟女少妇av免费看| 久久久久九九精品影院| 欧美区成人在线视频| 久久97久久精品| 中文资源天堂在线| 免费大片18禁| 一个人看视频在线观看www免费| 久久精品夜夜夜夜夜久久蜜豆| 99久国产av精品国产电影| 黄色日韩在线| 听说在线观看完整版免费高清| 午夜精品国产一区二区电影 | 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| 亚洲美女视频黄频| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 久久久久久久大尺度免费视频| 国产真实伦视频高清在线观看| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 成人av在线播放网站| 身体一侧抽搐| 性色avwww在线观看| 老司机影院毛片| 性插视频无遮挡在线免费观看| 欧美激情久久久久久爽电影| 91精品伊人久久大香线蕉| 伦理电影大哥的女人| 国精品久久久久久国模美| 伦精品一区二区三区| 青春草亚洲视频在线观看| 久久精品熟女亚洲av麻豆精品 | 国产乱人偷精品视频| 少妇丰满av| 午夜福利成人在线免费观看| 亚洲av成人精品一二三区| 精品99又大又爽又粗少妇毛片| 少妇被粗大猛烈的视频| 国产久久久一区二区三区| 男人舔女人下体高潮全视频| 色尼玛亚洲综合影院| 草草在线视频免费看| 蜜桃久久精品国产亚洲av| 少妇丰满av| 精品99又大又爽又粗少妇毛片| 国产不卡一卡二| 午夜福利成人在线免费观看| 亚洲怡红院男人天堂| 99久久人妻综合| www.色视频.com| 别揉我奶头 嗯啊视频| 亚洲美女视频黄频| 在线观看人妻少妇| 国产欧美另类精品又又久久亚洲欧美| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美在线一区| 国产激情偷乱视频一区二区| 欧美另类一区| 高清视频免费观看一区二区 | 精品国产露脸久久av麻豆 | 成年版毛片免费区| 性色avwww在线观看| 全区人妻精品视频| av女优亚洲男人天堂| 久久热精品热| 成年免费大片在线观看| eeuss影院久久| 欧美高清性xxxxhd video| 日韩制服骚丝袜av| 一级爰片在线观看| 97在线视频观看| 欧美高清成人免费视频www| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 日韩av在线大香蕉| 美女脱内裤让男人舔精品视频| 春色校园在线视频观看| 国产精品综合久久久久久久免费| 国产精品国产三级国产专区5o| freevideosex欧美| 极品教师在线视频| 国产精品久久久久久精品电影| 老师上课跳d突然被开到最大视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久人妻蜜臀av| 国产视频首页在线观看| 免费看光身美女| 久久韩国三级中文字幕| 美女脱内裤让男人舔精品视频| 春色校园在线视频观看| 男的添女的下面高潮视频| 97精品久久久久久久久久精品| 亚洲真实伦在线观看| 久久人人爽人人片av| 欧美日韩在线观看h| 国产一级毛片在线| 色综合亚洲欧美另类图片| 十八禁国产超污无遮挡网站| 国产成人精品久久久久久| 五月天丁香电影| 男女啪啪激烈高潮av片| 免费看av在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 精品人妻一区二区三区麻豆| 亚洲av福利一区| 国产在线男女| 青青草视频在线视频观看| 黄色一级大片看看| 99久久精品国产国产毛片| av网站免费在线观看视频 | 日韩欧美 国产精品| 国产中年淑女户外野战色| 日韩欧美精品v在线| 成年av动漫网址| 99久久中文字幕三级久久日本| 夜夜爽夜夜爽视频| 久久久精品欧美日韩精品| 国产成人freesex在线| 大片免费播放器 马上看| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 街头女战士在线观看网站| 午夜精品国产一区二区电影 | 激情 狠狠 欧美| 天天一区二区日本电影三级| 国语对白做爰xxxⅹ性视频网站| av在线蜜桃| 亚洲精品成人av观看孕妇| 日本色播在线视频| 高清在线视频一区二区三区| 麻豆国产97在线/欧美| 91狼人影院| 国产成人a∨麻豆精品| 熟女电影av网| 亚洲精品成人av观看孕妇| 亚洲成人中文字幕在线播放| videos熟女内射| 免费观看无遮挡的男女| 伊人久久精品亚洲午夜| 欧美日韩国产mv在线观看视频 | 高清午夜精品一区二区三区| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| 精品久久久久久久人妻蜜臀av| 天美传媒精品一区二区| 国产av码专区亚洲av| 亚洲国产精品成人久久小说| 久久国产乱子免费精品| 免费黄频网站在线观看国产| 欧美另类一区| 国产精品一区二区三区四区免费观看| 国内精品宾馆在线| 亚洲乱码一区二区免费版| 亚洲不卡免费看| 午夜激情久久久久久久| 欧美激情国产日韩精品一区| 亚洲高清免费不卡视频| 纵有疾风起免费观看全集完整版 | 日韩一本色道免费dvd| 亚洲一区高清亚洲精品| 国产成人免费观看mmmm| 欧美变态另类bdsm刘玥| 少妇猛男粗大的猛烈进出视频 | 床上黄色一级片| 欧美人与善性xxx| 午夜老司机福利剧场| 日韩一本色道免费dvd| 欧美 日韩 精品 国产| 亚洲一级一片aⅴ在线观看| 国产成人午夜福利电影在线观看| 91精品伊人久久大香线蕉| 国产免费一级a男人的天堂| 国产视频内射| 99久久精品热视频| 国产在线男女| 国产精品久久久久久av不卡| 国内少妇人妻偷人精品xxx网站| 嘟嘟电影网在线观看| 免费不卡的大黄色大毛片视频在线观看 | 七月丁香在线播放| 18+在线观看网站| 午夜福利视频精品| 日韩人妻高清精品专区| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 亚洲欧美日韩东京热| 国内精品宾馆在线| 国产一区二区三区av在线| 免费黄频网站在线观看国产| 欧美性感艳星| 在线天堂最新版资源| a级毛色黄片| 亚洲综合色惰| 在线播放无遮挡| av国产久精品久网站免费入址| 日韩av不卡免费在线播放| 精品久久久久久成人av| 色哟哟·www| 大香蕉久久网| 亚洲欧美中文字幕日韩二区| 26uuu在线亚洲综合色| 日韩电影二区| 一二三四中文在线观看免费高清| 男的添女的下面高潮视频| 午夜福利成人在线免费观看| 国产黄a三级三级三级人| 九草在线视频观看| 国产精品一区www在线观看| eeuss影院久久| 日韩电影二区| 色播亚洲综合网| 22中文网久久字幕| 久久精品国产亚洲av天美| 久久久久久国产a免费观看| 白带黄色成豆腐渣| 三级毛片av免费| 九九久久精品国产亚洲av麻豆| 午夜视频国产福利| 97热精品久久久久久| 亚洲av国产av综合av卡| 日韩欧美国产在线观看| 久久综合国产亚洲精品| 日本免费在线观看一区| 亚洲精品中文字幕在线视频 | 乱码一卡2卡4卡精品| 成人漫画全彩无遮挡| 精品不卡国产一区二区三区| 天堂俺去俺来也www色官网 | 亚洲不卡免费看| 男女国产视频网站| 成人亚洲欧美一区二区av| a级毛色黄片| 久久久久久久久久黄片| 天天一区二区日本电影三级| 人妻少妇偷人精品九色| 亚洲国产av新网站| 日韩成人伦理影院| 国内精品宾馆在线| 看非洲黑人一级黄片| av专区在线播放| 亚洲高清免费不卡视频| av在线观看视频网站免费| 亚洲天堂国产精品一区在线| 免费大片18禁| 成人毛片60女人毛片免费| 国产91av在线免费观看| 国产视频首页在线观看| 日本免费在线观看一区| 国产精品蜜桃在线观看| 色综合站精品国产| 在线天堂最新版资源| 一级av片app| 精品久久国产蜜桃| 精品不卡国产一区二区三区| 女人被狂操c到高潮| 日韩av免费高清视频| 黄色日韩在线| 久久精品久久久久久久性| 又粗又硬又长又爽又黄的视频| 免费无遮挡裸体视频| 久久久久性生活片| 亚洲自偷自拍三级| 久久鲁丝午夜福利片| 51国产日韩欧美| 最近最新中文字幕免费大全7| 日韩国内少妇激情av| 成年人午夜在线观看视频 | 国产单亲对白刺激| 麻豆国产97在线/欧美| 大陆偷拍与自拍| 国产一级毛片在线| 色综合站精品国产| 欧美日韩一区二区视频在线观看视频在线 | 日韩 亚洲 欧美在线| 国产精品一及| 日韩,欧美,国产一区二区三区| 国产美女午夜福利| 久久久久久伊人网av| 不卡视频在线观看欧美| 狂野欧美白嫩少妇大欣赏| 国产精品国产三级国产av玫瑰| 人妻制服诱惑在线中文字幕| 午夜激情福利司机影院| av免费在线看不卡| 九草在线视频观看| 日韩一区二区三区影片| 中文精品一卡2卡3卡4更新| 国产精品一区二区在线观看99 | 国产爱豆传媒在线观看| 久久精品国产鲁丝片午夜精品| 天美传媒精品一区二区| 男女啪啪激烈高潮av片| 一级爰片在线观看| 六月丁香七月|