• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface Modification of Electrospun Poly(L-lactide)/Poly(?-caprolactone) Fibrous Membranes by Plasma Treatment and Gelatin Immobilization

    2021-09-07 02:52:28SHITongna史同娜SHIZhenjiang施鎮(zhèn)江ZHUBingjie朱冰潔WUWenhua吳文華
    關(guān)鍵詞:文華鎮(zhèn)江

    SHI Tongna(史同娜), SHI Zhenjiang(施鎮(zhèn)江), ZHU Bingjie(朱冰潔), WU Wenhua(吳文華)

    National Demonstration Center for Experimental Materials Science and Engineering Education, Donghua University, Shanghai 201620, China

    Abstract: Biopolymer fibers have great potential for technical applications in biomaterials. The surface properties of fibers are of importance in these applications. In this study, electrospun poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL) membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties. The morphologies of the fibers were observed by scanning electron microscopy (SEM). Atomic force microscopy (AFM) was employed to show the surface characteristics of the fibers. The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy (XPS). The surface wettability of the fibrous membrane was also characterized by water contact angle measurements. All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features. Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.

    Key words: surface property; modification; electrospun fiber; plasma treatment; chemical feature; morphology; wettability

    Introduction

    Tissue engineering is rapidly growing into an increasingly important field in regenerative medicine. One of the significant challenges for tissue engineering is to design and fabricate suitable biodegradable scaffolds that are suitable for cell adhesion, growth, proliferation and differentiation, and can guide process of tissue formation[1-2]. Polymer-based nanofibers are considered as a potential material applied in filtration, tissue engineering, and fuel cell[3]. Electrospinning is a well-established process for fabrication of polymeric nanofibers used in scaffolds with high surface areas, large volume-to-mass ratios, and high porosities[4-6]. Recently, polylactone-type biodegradable polymers, such as poly(L-lactide) (PLLA), poly(?-caprolactone) (PCL) and their copolymer poly(L-lactide-co-?-caprolactone) (PLLACL), have been extensively studied as scaffold materials[7-11], since polylactone-type biodegradable polymers possess good mechanical properties, non-toxicity, and adjustable degradation rates. However, the poor hydrophilicity of the polymers affects cells to attach and grow on them when the polymers are used as scaffold materials.

    Plasma treatment is a very promising and frequently used technique for the chemical and physical modification to increase hydrophilicity, which is suitable for most of the materials, especially polymers and polymer fibers[12-13]. Typical plasma treatments with oxygen, ammonia or air can generate carboxyl groups or amine groups on the surface[14-16]. In addition, a variety of extracellular matrix (ECM) protein components, such as gelatin, collagen, laminin and fibronectin, have been immobilized onto the plasma-treated surface to enhance cellular adhesion and proliferation[17-18]. Gelatin is a mixture of proteins which is obtained by hydrolysis of collagen, and it is widely used in tissue engineering due to its biocompatibility, biodegradability and easy availability[19-22]. Gelatin is nonimmunogenic compared with its precursor and can promote cell adhesion, migration, differentiation and proliferation[23-24].

    In this study, the PLLA/PCL (mass ratio was 70∶30) membrane was prepared by electrospinning. However, being synthetic biomaterials, PLLA/PCL membrane is not a good substrate for cell adhesion because of the hydrophobic surface and lacking of functional groups. Thus, Helium (He) plasma treatment was used to modify the electrospun PLLA/PCL membrane, and gelatin was coated onto the He-plasma-treated PLLA/PCL membrane. The fibrous membranes before and after modification were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements.

    1 Experiments

    1.1 Materials preparation

    PLLA (Mn=150 000) and PCL (Mn=50 000) were obtained from Sigma-Aldrich Company, Shanghai, China. The polymer solution concentration of 3% (mass percentage) was prepared by dissolving the polymers (the mass ratio of PLLA to PCL was 70∶30) in chloroform. The solution was spun from a 10 mL syringe with a needle of 0.7 mm in diameter. Upon applying a high voltage (10 kV), a fluid jet was ejected from the capillary. As the jet accelerated towards a grounded collector, the solvent evaporated and sub-micron fibers were deposited on an aluminium foil. The distance between the needle and the grounded collector was 20 cm. The PLLA/PCL membrane was dried in a vacuum oven at 37 ℃ for 24 h to remove the residual solvent.

    1.2 Surface modification

    Plasmas were excited with a capacitively coupled 13.56 MHz radio frequency generator capable of delivering a continuously varying power output from 0 to 500 W. The base pressure of the plasma chamber was down to 0 Pa, and the He gas was fed to the chamber until the pressure reached the working pressure of 20 Pa. The electrospun PLLA/PCL fibers were treated at 45 W with He plasma for 2 min. The plasma treated sample was further exposed to the air for 10 min before coating gelatin.

    Anchorage of gelatin was performed by immersing the He-plasma-treated PLLA/PCL sample in 10% (mass percentage) gelatin solution for 12 h at 37 ℃. Then the gelatin-PLLA/PCL sample was washed by distilled water for three times and dried overnight in a vacuum oven. And then it was stored in a desiccator for 12 h at 37 ℃.

    1.3 Morphology observation by SEM

    The original and surface-modified fibrous membranes were characterized by a JSM-5600LV SEM (JEOL, Japan). Prior to SEM examination, a conductive thin gold film was deposited on the specimen surface.

    1.4 Surface structure tested by AFM

    All AFM images were obtained in ambient atmosphere at room temperature with a Nanoscope Ⅳ(Veeco, USA) microscope. The scanning was carried out in contact mode AFM. Each fiber sample was mounted to double-sided tape on magnetic AFM sample stubs.

    1.5 Elemental analysis by XPS

    Changes of the chemical bond environment of the treated samples were examined using the ESCALAB 200R XPS system (V.G Scientific Co., U.K.). Al Kα line (300 W) was used as a source of excitation. The XPS measurements used an Al Kα X-ray source with an optimum energy resolution 0.47 eV. The pressure in the analysis chamber was maintained at 5×10-6Pa.

    1.6 Water contact angle measurement

    The contact angle between water droplets and the surface was measured using a contact anglemeter (Dataphysics Co., Germany) at room temperature. The water droplets made of 3 μL distilled water were dropped at six different spots on each sample, and the average value was adopted.

    2 Results and Discussion

    2.1 Surface morphologies of original and modified PLLA/PCL membranes

    Surface morphology of various PLLA/PCL membranes was observed by SEM technique as shown in Fig. 1. In Figs. 1(a) - (b), it can be seen that the fiber surfaces of original PLLA/PCL film are smooth. However, He-plasma-treated sample presents the formation of groove-like structures on the fiber surfaces as exhibited in Figs. 1(c) - (d). The surface roughness of the fibers is greatly increased by He plasma treatment compared with the surface roughness of untreated ones. This can be attributed to the etching effect of the He plasma treatment. As shown in Figs. 1(e)-(f), distribution of gelatin is much even on the surface of fibers after the PLLA/PCL film is pretreated by He plasma, and the gelatin exhibits as mesh-like structures because of the rough surface of the He-plasma-treated film and subsequent gelatin anchoring process.

    Fig.1 SEM observation of surface morphology of various fibrous membranes: (a) original PLLA/PCL membrane (×1 000); (b) original PLLA/PCL membrane (×5 000); (c) He-plasma-treated PLLA/PCL membrane (×1 000); (d) He-plasma-treated PLLA/PCL membrane (×5 000); (e) gelatin-PLLA/PCL membrane (×1 000); (f) gelatin-PLLA/PCL membrane (×5 000)

    2.2 Surface roughness of original and modified PLLA/PCL fibers

    Topographical examination by AFM indicates the changes in the surface morphology of electrospun PLLA/PCL fibers before and after modification, as shown in Fig. 2. The AFM image in Fig. 2(a) illustrates that the original fiber with diameter ranging from 500 nm to 1 000 nm has relative smooth surface. The image also reveals that the diameter is uneven along an individual fiber. The sample treated by He plasma at 45 W for 2 min in Fig. 2(b) presents nanosize pores and aggregates on the fiber surface, and also there are some protruding particles like dots on the surface. In Fig. 2(c), gelatin distributing on the surface of He-plasma-treated sample results in the formation of groove-like structures on the fiber surface. All these AFM results show the changes on the surface roughness in detail and are consistent with the SEM analysis in Fig. 1.

    Fig. 2 AFM images of original and modified PLLA/PCL fibers:(a) original PLLA/PCL fiber; (b) He-plasma-treated PLLA/PCL fiber; (c) gelatin-PLLA/PCL fiber

    2.3 Surface composition of untreated and treated PLLA/PCL fibrous membranes

    To confirm changes of surface compositions and introduction of additional functional groups, XPS analysis was carried out. XPS is the leading analytical technique for characterizing various chemical/physical forms of elements in surface structures. XPS is especially attractive since additional chemical information can be derived from the line positions of the corresponding peaks[25-26]. Figure 3 shows survey scan spectra and C1s spectra of pristine PLLA/PCL membrane, He-plasma-treated PLLA/PCL membrane and gelatin-PLLA/PCL membrane.

    As can be seen from Fig. 3(a), all XPS spectra have two separated peaks which correspond to C1s (about 285 eV) and O1s (about 532 eV). A distinct N1s peak at 420 eV in the He-plasma-treated PLLA/PCL membrane indicated that a very small amount of nitrogen was introduced on the surface after the plasma-treated sample exposing to air. And the N1s peak in the gelatin-PLLA/PCL membrane spectrum indicated that gelatin had been successfully introduced onto the fiber surface. In addition, all the peaks on the spectra moved to lower-binding energy from curve A to curve C in Fig. 3(a).

    Fig.3 XPS survey scan spectra and C1s spectra of various PLLA/PCL membranes: (a) full spectra; (b) C1s spectra

    Table 1 Surface composition of various samples measured by XPS

    2.4 Water contact angle analysis for untreated and treated PLLA/PCL membranes

    The effect of plasma treatment and coating gelatin on the hydrophilicity of the PLLA/PCL membrane was shown in Fig. 4. As seen in Fig. 4, the water contact angle of the original PLLA/PCL membrane is found to be about 133°. After He plasma treatment, it appears that the water contact angles of the surface decease from 130° to 0° in 40 s. This can be attributed to the polar groups of the fibers and the rough surfaces. It is evident that He plasma treatment considerably reduces the water contact angle on the membrane surface. He plasma treatment is an effective method to introduce oxygen containing groups (such as carboxyl and hydroxyl groups) onto polymer surfaces. This simple method was used in this work to improve the hydrophilicity and introduce carboxyl groups onto the PLLA/PCL membrane surface for the possibility of gelatin grafting in aqueous solution. After gelatin was attached to the He-plasma-treated surface, the water contact angles dropped rapidly from 105° to 0° in 12 s, which further indicated the carboxyl groups generated on the plasma-treated surface conjugated with gelatin.

    Fig. 4 Water contact angles of (a) original PLLA/PCL membrane; (b) He-plasma-treated PLLA/PCL membrane; (c) gelatin-PLLA/PCL membrane

    3 Conclusions

    This study has explored the effects of plasma treatment and gelatin coated on PLLA/PCL membranes. It has shown that plasma treatment can have profound effects on the surface properties of fibrous membrane by changing their surface physical and chemical features. Furthermore, gelatin was successfully anchored on the surface of electrospun PLLA/PCL membrane by He plasma treatment, as evident from a detailed physical and chemical characterization of gelatin-PLLA/PCL membrane. And the surface hydrophilicity of modified fibrous membrane has been greatly improved. The modification of electrospun fibers surface by plasma pretreatment and bound gelatin has great potential in applications such as biomaterials, sensors and medical devices, which is expected to carry out cell culture research in the next step.

    猜你喜歡
    文華鎮(zhèn)江
    移火柴棒
    鎮(zhèn)江大地 詩意棲居
    華人時刊(2021年13期)2021-11-27 09:19:22
    賽珍珠:我在鎮(zhèn)江有個家
    華人時刊(2020年17期)2020-12-14 08:13:00
    我的鎮(zhèn)江尋根之旅
    華人時刊(2020年17期)2020-12-14 08:12:54
    填 數(shù)
    陳文華
    寶藏(2018年6期)2018-07-10 02:26:36
    倪文華 作品
    鎮(zhèn)江學(xué)前教育體制改革的實踐探索
    鎮(zhèn)江是這樣調(diào)價的
    A?。裕颍椋幔睿纾欤濉。拢欤铮悖耄ㄒ粋€三角木塊)
    亚洲av免费高清在线观看| 久久久国产欧美日韩av| 亚洲,欧美,日韩| 两个人的视频大全免费| 人人妻人人澡人人看| 视频中文字幕在线观看| 在线免费观看不下载黄p国产| 日韩视频在线欧美| 九草在线视频观看| 午夜免费男女啪啪视频观看| 一级毛片电影观看| 日本wwww免费看| 人人妻人人澡人人看| 精品国产一区二区久久| 久久精品久久久久久噜噜老黄| 国产午夜精品久久久久久一区二区三区| av播播在线观看一区| 一区二区三区精品91| 五月伊人婷婷丁香| 亚洲熟女精品中文字幕| 少妇被粗大猛烈的视频| 视频区图区小说| 一边亲一边摸免费视频| 一级毛片久久久久久久久女| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看| 亚洲婷婷狠狠爱综合网| 中文字幕人妻熟人妻熟丝袜美| 国产黄片美女视频| 女人精品久久久久毛片| av不卡在线播放| 精品亚洲成a人片在线观看| 久久久国产精品麻豆| 日韩伦理黄色片| 久久97久久精品| 男人狂女人下面高潮的视频| 久久鲁丝午夜福利片| 国产一区二区三区av在线| 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 日韩成人伦理影院| 午夜av观看不卡| 一级毛片久久久久久久久女| 99热这里只有精品一区| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 两个人免费观看高清视频 | 一级毛片久久久久久久久女| 欧美 日韩 精品 国产| 精品人妻熟女毛片av久久网站| 国产精品无大码| 丰满迷人的少妇在线观看| 韩国av在线不卡| 精品视频人人做人人爽| 亚洲精品久久久久久婷婷小说| 亚洲精品国产成人久久av| 欧美精品亚洲一区二区| 色5月婷婷丁香| 只有这里有精品99| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 国产熟女欧美一区二区| 有码 亚洲区| av女优亚洲男人天堂| 老女人水多毛片| 欧美变态另类bdsm刘玥| 一本大道久久a久久精品| 视频区图区小说| 色吧在线观看| 精品午夜福利在线看| 色哟哟·www| av一本久久久久| 亚洲欧美日韩卡通动漫| 大香蕉97超碰在线| 久久人人爽人人片av| 久久精品国产亚洲av天美| 精品人妻一区二区三区麻豆| tube8黄色片| 人妻一区二区av| 精品亚洲成国产av| 性色avwww在线观看| 好男人视频免费观看在线| 高清欧美精品videossex| 日韩 亚洲 欧美在线| 老司机亚洲免费影院| 麻豆精品久久久久久蜜桃| 欧美 日韩 精品 国产| 国产欧美日韩精品一区二区| 国产av精品麻豆| 哪个播放器可以免费观看大片| 男女边吃奶边做爰视频| 国模一区二区三区四区视频| 久久久久网色| 亚洲图色成人| 中文字幕人妻熟人妻熟丝袜美| 国产高清三级在线| 亚洲精品一二三| 国产精品一区二区在线观看99| 女性生殖器流出的白浆| 亚洲精品aⅴ在线观看| 欧美日韩视频精品一区| 精品一区在线观看国产| 高清欧美精品videossex| 中文字幕免费在线视频6| 男女无遮挡免费网站观看| 18+在线观看网站| 天天躁夜夜躁狠狠久久av| 久久99蜜桃精品久久| 美女xxoo啪啪120秒动态图| 一本一本综合久久| 国产色爽女视频免费观看| 久久av网站| 日本猛色少妇xxxxx猛交久久| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 国产精品蜜桃在线观看| 久久精品国产亚洲av涩爱| 中文欧美无线码| 嫩草影院新地址| 99久国产av精品国产电影| 欧美 日韩 精品 国产| 午夜福利,免费看| 深夜a级毛片| 观看美女的网站| 久久精品夜色国产| 一个人免费看片子| 你懂的网址亚洲精品在线观看| 亚洲一区二区三区欧美精品| xxx大片免费视频| 亚洲欧美精品自产自拍| 日本黄色日本黄色录像| www.av在线官网国产| 一级,二级,三级黄色视频| 天天躁夜夜躁狠狠久久av| 极品少妇高潮喷水抽搐| 国产精品99久久久久久久久| 中文字幕人妻丝袜制服| 99久久精品热视频| videossex国产| 亚洲国产精品国产精品| 国产男女超爽视频在线观看| 日本wwww免费看| 国产精品女同一区二区软件| 人妻系列 视频| 又黄又爽又刺激的免费视频.| 少妇的逼水好多| 国产片特级美女逼逼视频| 狂野欧美白嫩少妇大欣赏| 插阴视频在线观看视频| 国产午夜精品久久久久久一区二区三区| 久久久久久久久大av| 在线观看美女被高潮喷水网站| 午夜福利影视在线免费观看| 久久精品久久久久久久性| 一级爰片在线观看| 精品少妇黑人巨大在线播放| av网站免费在线观看视频| 草草在线视频免费看| 免费大片18禁| 国产亚洲精品久久久com| 亚洲成人一二三区av| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 老司机影院成人| 在线播放无遮挡| 最新中文字幕久久久久| 热99国产精品久久久久久7| 国产又色又爽无遮挡免| 亚洲av.av天堂| 欧美日韩av久久| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 黄色视频在线播放观看不卡| 久久国产精品大桥未久av | 涩涩av久久男人的天堂| 深夜a级毛片| 日韩免费高清中文字幕av| 赤兔流量卡办理| 观看av在线不卡| 免费观看无遮挡的男女| 在现免费观看毛片| 成人国产av品久久久| 菩萨蛮人人尽说江南好唐韦庄| 日日撸夜夜添| 在线观看三级黄色| 国产高清国产精品国产三级| 久久人人爽av亚洲精品天堂| 亚洲人与动物交配视频| 日韩欧美一区视频在线观看 | 亚洲国产精品国产精品| av在线观看视频网站免费| 热re99久久国产66热| 精品一品国产午夜福利视频| 亚洲国产av新网站| 色视频www国产| 老司机影院毛片| 一级毛片电影观看| 99热这里只有是精品50| 亚洲美女视频黄频| 色视频www国产| 色5月婷婷丁香| 国产黄片美女视频| 国产在线一区二区三区精| 精品视频人人做人人爽| 成人免费观看视频高清| 婷婷色麻豆天堂久久| 哪个播放器可以免费观看大片| 成人影院久久| 久久久久精品性色| 中文字幕人妻熟人妻熟丝袜美| 伦理电影大哥的女人| 日本色播在线视频| 色哟哟·www| 亚洲四区av| 亚洲不卡免费看| 内射极品少妇av片p| 婷婷色麻豆天堂久久| 久久久国产一区二区| 亚洲综合精品二区| 国产乱人偷精品视频| 九草在线视频观看| av免费观看日本| 亚洲四区av| 国产欧美亚洲国产| 国产视频首页在线观看| 夜夜爽夜夜爽视频| 菩萨蛮人人尽说江南好唐韦庄| 在线免费观看不下载黄p国产| 欧美日韩综合久久久久久| 中国国产av一级| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 18禁在线播放成人免费| 精品久久久噜噜| 久久国产乱子免费精品| 少妇人妻精品综合一区二区| 大话2 男鬼变身卡| 人妻人人澡人人爽人人| 久久精品国产亚洲av涩爱| 97超视频在线观看视频| 香蕉精品网在线| 久久99一区二区三区| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 国产亚洲最大av| 精品亚洲成a人片在线观看| 亚洲美女黄色视频免费看| 99久国产av精品国产电影| 国产欧美亚洲国产| 在线观看美女被高潮喷水网站| 美女中出高潮动态图| 免费播放大片免费观看视频在线观看| 性色av一级| 制服丝袜香蕉在线| 成人无遮挡网站| 午夜福利,免费看| 午夜激情久久久久久久| videos熟女内射| 亚洲天堂av无毛| 丝袜脚勾引网站| 欧美区成人在线视频| 黄色怎么调成土黄色| 精品视频人人做人人爽| 五月玫瑰六月丁香| 黑人巨大精品欧美一区二区蜜桃 | 欧美激情国产日韩精品一区| av天堂久久9| 夜夜爽夜夜爽视频| 爱豆传媒免费全集在线观看| 久久精品国产a三级三级三级| 国产极品天堂在线| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 久久ye,这里只有精品| 欧美精品高潮呻吟av久久| 日韩精品有码人妻一区| 国产精品一二三区在线看| 国产免费福利视频在线观看| 午夜福利影视在线免费观看| 最近中文字幕2019免费版| 嫩草影院新地址| 国产又色又爽无遮挡免| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 精品久久久久久电影网| 99热这里只有精品一区| 少妇丰满av| 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| 插阴视频在线观看视频| 欧美日韩综合久久久久久| 日日爽夜夜爽网站| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 80岁老熟妇乱子伦牲交| 欧美另类一区| 日韩一区二区视频免费看| 久久久久视频综合| 乱码一卡2卡4卡精品| 国产欧美日韩综合在线一区二区 | 天天操日日干夜夜撸| 性色avwww在线观看| 亚洲中文av在线| 日本av手机在线免费观看| 亚洲人成网站在线观看播放| av一本久久久久| 日韩电影二区| 日韩av免费高清视频| videos熟女内射| 亚洲美女视频黄频| 久久久久久久久久久丰满| 日韩中字成人| 欧美成人精品欧美一级黄| 亚洲精品久久久久久婷婷小说| 曰老女人黄片| 国内少妇人妻偷人精品xxx网站| 亚洲av免费高清在线观看| 美女脱内裤让男人舔精品视频| 91精品伊人久久大香线蕉| 欧美人与善性xxx| 噜噜噜噜噜久久久久久91| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 精品一区二区三卡| 有码 亚洲区| 免费少妇av软件| 亚洲一级一片aⅴ在线观看| 自线自在国产av| 在线看a的网站| 日韩三级伦理在线观看| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 亚洲国产精品成人久久小说| 欧美一级a爱片免费观看看| 国产精品一区二区性色av| 我要看日韩黄色一级片| 亚洲不卡免费看| 欧美日韩一区二区视频在线观看视频在线| 大片电影免费在线观看免费| 久久午夜福利片| 久久久久久久久久久丰满| 久久久久久久久久人人人人人人| 日本午夜av视频| 91精品国产国语对白视频| 男人添女人高潮全过程视频| 免费高清在线观看视频在线观看| 18禁在线无遮挡免费观看视频| 成人午夜精彩视频在线观看| 久久久久视频综合| 男女无遮挡免费网站观看| 国产成人精品婷婷| 美女中出高潮动态图| 国产国拍精品亚洲av在线观看| 黄色欧美视频在线观看| 国产国拍精品亚洲av在线观看| 成人综合一区亚洲| 少妇的逼好多水| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 日韩精品免费视频一区二区三区 | 色94色欧美一区二区| av卡一久久| 国产黄片美女视频| 国产在视频线精品| 制服丝袜香蕉在线| 乱系列少妇在线播放| 日韩人妻高清精品专区| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片 | 99国产精品免费福利视频| 青青草视频在线视频观看| 国产伦理片在线播放av一区| 日本av手机在线免费观看| 亚洲欧美日韩东京热| 亚洲欧美日韩卡通动漫| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 国产精品蜜桃在线观看| 亚洲精品成人av观看孕妇| 人人妻人人爽人人添夜夜欢视频 | 美女主播在线视频| 精品久久久精品久久久| 午夜视频国产福利| 日韩不卡一区二区三区视频在线| 简卡轻食公司| 国产成人精品福利久久| 97在线视频观看| 亚洲不卡免费看| 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| 女人精品久久久久毛片| 欧美3d第一页| 国产成人精品无人区| 9色porny在线观看| 亚洲国产欧美日韩在线播放 | 亚洲国产最新在线播放| 欧美人与善性xxx| 亚洲情色 制服丝袜| 大又大粗又爽又黄少妇毛片口| 九九久久精品国产亚洲av麻豆| 一本大道久久a久久精品| 高清视频免费观看一区二区| 国产精品欧美亚洲77777| 国产精品人妻久久久久久| 一级二级三级毛片免费看| 人人妻人人爽人人添夜夜欢视频 | 少妇被粗大的猛进出69影院 | 欧美日韩精品成人综合77777| 国产爽快片一区二区三区| 一区二区av电影网| 日本欧美视频一区| √禁漫天堂资源中文www| 91精品一卡2卡3卡4卡| 日韩成人av中文字幕在线观看| 免费大片黄手机在线观看| 国产免费视频播放在线视频| 最近中文字幕2019免费版| 在现免费观看毛片| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| 国产欧美日韩综合在线一区二区 | 欧美bdsm另类| 久久久a久久爽久久v久久| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 国产av国产精品国产| 国产精品一区二区在线观看99| 欧美日韩国产mv在线观看视频| 一级毛片黄色毛片免费观看视频| 国产成人aa在线观看| 国产精品成人在线| av线在线观看网站| xxx大片免费视频| av视频免费观看在线观看| 久久午夜综合久久蜜桃| 国产精品.久久久| 一级毛片我不卡| 中文天堂在线官网| 亚洲精品中文字幕在线视频 | 国产精品久久久久久精品古装| 国产极品粉嫩免费观看在线 | 久久亚洲国产成人精品v| 日韩成人av中文字幕在线观看| 亚洲经典国产精华液单| 男人和女人高潮做爰伦理| 美女大奶头黄色视频| 麻豆精品久久久久久蜜桃| 3wmmmm亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品欧美亚洲77777| 亚洲,欧美,日韩| 国产精品久久久久久av不卡| 亚洲自偷自拍三级| 两个人免费观看高清视频 | 美女脱内裤让男人舔精品视频| 男人爽女人下面视频在线观看| 免费高清在线观看视频在线观看| 内地一区二区视频在线| 精品午夜福利在线看| 在线播放无遮挡| 卡戴珊不雅视频在线播放| 成年美女黄网站色视频大全免费 | 亚洲精品一二三| 中文字幕av电影在线播放| 熟女电影av网| 久久人人爽人人片av| 少妇丰满av| 国产一区有黄有色的免费视频| 丰满乱子伦码专区| 国产精品.久久久| 热99国产精品久久久久久7| 最新的欧美精品一区二区| 国产91av在线免费观看| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 精品久久久精品久久久| 国产黄色免费在线视频| 丝瓜视频免费看黄片| 久久人人爽人人爽人人片va| 国产毛片在线视频| 插阴视频在线观看视频| 国产极品天堂在线| 99久久人妻综合| 有码 亚洲区| 国产在线视频一区二区| 国产精品久久久久成人av| 汤姆久久久久久久影院中文字幕| av线在线观看网站| 久久久精品94久久精品| 久久久久久久久久久免费av| 欧美日韩av久久| 69精品国产乱码久久久| 少妇精品久久久久久久| 亚洲情色 制服丝袜| 99精国产麻豆久久婷婷| 免费在线观看成人毛片| 亚洲综合色惰| 欧美高清成人免费视频www| 啦啦啦视频在线资源免费观看| 国产免费福利视频在线观看| 国产精品久久久久久精品古装| 日韩大片免费观看网站| 国产伦理片在线播放av一区| 亚洲va在线va天堂va国产| 日日啪夜夜撸| 新久久久久国产一级毛片| 国产视频首页在线观看| 久久久久久久久久人人人人人人| 少妇 在线观看| 国产精品秋霞免费鲁丝片| 在线观看免费视频网站a站| 亚洲,一卡二卡三卡| 国产精品一区二区性色av| 亚洲精品中文字幕在线视频 | 亚洲精品国产av蜜桃| 亚洲国产欧美在线一区| 欧美老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 亚洲欧美清纯卡通| 亚洲欧美精品专区久久| 久久久久久久大尺度免费视频| 国内揄拍国产精品人妻在线| 99热这里只有是精品50| 亚洲精品久久午夜乱码| 人妻夜夜爽99麻豆av| 91精品国产九色| 国产成人精品婷婷| 黄色配什么色好看| 麻豆成人午夜福利视频| 成人国产麻豆网| 日韩欧美一区视频在线观看 | 伊人亚洲综合成人网| 亚洲人成网站在线播| 一边亲一边摸免费视频| 国产精品.久久久| 狂野欧美激情性bbbbbb| 亚洲国产av新网站| 熟女av电影| 人妻人人澡人人爽人人| 国产一区二区三区av在线| 日本欧美视频一区| 日日爽夜夜爽网站| 久久久亚洲精品成人影院| 亚洲人成网站在线播| 免费av中文字幕在线| 国产男女超爽视频在线观看| 国产精品国产三级国产专区5o| 丰满人妻一区二区三区视频av| 中国美白少妇内射xxxbb| 精品久久久精品久久久| 亚洲美女黄色视频免费看| 免费少妇av软件| 久久6这里有精品| 伊人亚洲综合成人网| 99久久人妻综合| 亚洲国产精品一区三区| 亚洲欧美精品自产自拍| 国产欧美日韩一区二区三区在线 | 建设人人有责人人尽责人人享有的| av免费在线看不卡| 亚洲性久久影院| 色婷婷久久久亚洲欧美| 日韩精品有码人妻一区| 亚洲精华国产精华液的使用体验| 一本大道久久a久久精品| av免费观看日本| 99久久精品一区二区三区| 亚洲婷婷狠狠爱综合网| 中文欧美无线码| 精品视频人人做人人爽| 亚洲婷婷狠狠爱综合网| 街头女战士在线观看网站| 精品一区二区三卡| 六月丁香七月| 欧美亚洲 丝袜 人妻 在线| 在线观看人妻少妇| av国产精品久久久久影院| 久久热精品热| 中文在线观看免费www的网站| 色视频在线一区二区三区| 欧美精品一区二区大全| 亚洲国产精品国产精品| 综合色丁香网| 在线观看av片永久免费下载| 精品人妻一区二区三区麻豆| 午夜免费鲁丝| 欧美精品一区二区大全| av黄色大香蕉| 久久99热这里只频精品6学生| 天天躁夜夜躁狠狠久久av| videos熟女内射| 啦啦啦中文免费视频观看日本| 日韩av在线免费看完整版不卡| 新久久久久国产一级毛片| 久久精品久久精品一区二区三区| 亚洲精品亚洲一区二区| 国产一区有黄有色的免费视频| 一二三四中文在线观看免费高清| 国产极品天堂在线| 免费黄频网站在线观看国产| 国产亚洲最大av| 女人久久www免费人成看片| 国模一区二区三区四区视频| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 亚洲真实伦在线观看| 纯流量卡能插随身wifi吗| 中国三级夫妇交换|