• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于小樣本失效數(shù)據(jù)的復(fù)雜裝備可靠性評(píng)估研究進(jìn)展與挑戰(zhàn)

      2021-08-23 07:20:35李志強(qiáng)汪新陳宇奇顧鈞元
      航空兵器 2021年3期
      關(guān)鍵詞:貝葉斯網(wǎng)絡(luò)不確定性

      李志強(qiáng) 汪新 陳宇奇 顧鈞元

      摘 要: 隨著集機(jī)、電、液等技術(shù)于一體的復(fù)雜系統(tǒng)朝著高可靠性、長(zhǎng)壽命、高成本等方向發(fā)展,在可靠性定時(shí)截尾試驗(yàn)中經(jīng)常出現(xiàn)小樣本失效數(shù)據(jù),甚至無失效數(shù)據(jù)情況。在闡述整機(jī)級(jí)、系統(tǒng)級(jí)復(fù)雜裝備具有可靠性數(shù)據(jù)多源、數(shù)據(jù)信息不確定、連續(xù)性執(zhí)行任務(wù)等特點(diǎn)的基礎(chǔ)上,分別從先驗(yàn)信息、數(shù)據(jù)擴(kuò)充和多源信息融合3個(gè)方面綜述了小樣本失效數(shù)據(jù)可靠性評(píng)估的研究現(xiàn)狀,概括分析現(xiàn)有研究存在的不足,展望了今后復(fù)雜裝備可靠性評(píng)估的發(fā)展趨勢(shì)和研究重點(diǎn),提出了應(yīng)用貝葉斯網(wǎng)絡(luò)表征復(fù)雜裝備不確定性量化過程的新思路,開展了基于可靠性評(píng)估的集群裝備選擇性維修優(yōu)化研究。

      關(guān)鍵詞:小樣本;可靠性評(píng)估;不確定性;貝葉斯網(wǎng)絡(luò);選擇性維修

      中圖分類號(hào): TJ760.6+23; TB114.3? 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào):1673-5048(2021)03-0083-08

      0 引? 言

      高端武器裝備的可靠性水平是衡量綜合國(guó)力、凸顯國(guó)際競(jìng)爭(zhēng)力的關(guān)鍵因素,因此,《中國(guó)制造2025》強(qiáng)調(diào)大力提高國(guó)防裝備質(zhì)量、可靠性和壽命,增強(qiáng)國(guó)防裝備的實(shí)戰(zhàn)能力。

      由于集機(jī)、電、液等技術(shù)于一體的航天飛機(jī)、大型艦船、運(yùn)載火箭等復(fù)雜系統(tǒng)具有高可靠性、長(zhǎng)壽命、高成本等特點(diǎn),在可靠性定時(shí)截尾試驗(yàn)中經(jīng)常出現(xiàn)小樣本失效數(shù)據(jù),甚至無失效數(shù)據(jù)情況,以致基于大數(shù)定理的經(jīng)典可靠性評(píng)估方法難以適用[1-4]。雖然在復(fù)雜裝備的研制過程中進(jìn)行了各種可靠性試驗(yàn)以確保系統(tǒng)的可靠性水平,但是,大型武器裝備具有典型的訂單式生產(chǎn)特點(diǎn),即品種少、數(shù)量少,研制階段可用于試航、試飛等試驗(yàn)任務(wù)的裝備總量屈指可數(shù)。

      根據(jù)試驗(yàn)?zāi)康牡牟煌?,可靠性試?yàn)可以分為環(huán)境應(yīng)力篩選試驗(yàn)、可靠性增長(zhǎng)試驗(yàn)、可靠性鑒定試驗(yàn)、可靠性驗(yàn)收試驗(yàn)和可靠性測(cè)定試驗(yàn)。對(duì)于成敗型復(fù)雜系統(tǒng)而言,大部分可靠性試驗(yàn)具有一定的破壞性,因而無法開展大量試驗(yàn)。此外,“經(jīng)濟(jì)可承受性”的提出也要求在裝備的研制過程中充分考慮人力、物力、財(cái)力、安全性等因素。

      因此,開展小樣本失效數(shù)據(jù)條件下的復(fù)雜裝備可靠性評(píng)估研究具有極為迫切的工程實(shí)踐需要,已逐漸成為近年來國(guó)內(nèi)外的研究熱點(diǎn)。通過課題研究可以準(zhǔn)確確定復(fù)雜系統(tǒng)的可靠性指標(biāo),改進(jìn)設(shè)計(jì)和制造工藝,縮短裝備的研制周期,把握裝備性能退化規(guī)律,及時(shí)制定科學(xué)可行的維修決策,從而節(jié)約裝備運(yùn)行和維護(hù)成本,推動(dòng)傳統(tǒng)的定期維修模式向視情維修模式轉(zhuǎn)變。

      1 小樣本失效數(shù)據(jù)裝備可靠性評(píng)估難點(diǎn)

      小樣本失效數(shù)據(jù)指裝備在可靠性定時(shí)截尾試驗(yàn)中只有少量失效事件發(fā)生或者沒有失效事件發(fā)生,數(shù)據(jù)信息樣本量小,以致無法采用基于概率理論的經(jīng)典可靠性分析方法進(jìn)行可靠性評(píng)估。由于整機(jī)級(jí)、系統(tǒng)級(jí)復(fù)雜裝備具有如下特點(diǎn),目前難以利用單一來源的數(shù)據(jù)信息直接確定系統(tǒng)的可靠性指標(biāo),現(xiàn)以慣性導(dǎo)航系統(tǒng)為代表進(jìn)行簡(jiǎn)要分析:

      (1) 慣性導(dǎo)航系統(tǒng)在研制、設(shè)計(jì)、生產(chǎn)、試驗(yàn)、使用等各個(gè)階段,除了故障失效數(shù)據(jù),還有加速壽命試驗(yàn)數(shù)據(jù)、仿真數(shù)據(jù)、性能退化數(shù)據(jù)、狀態(tài)監(jiān)測(cè)數(shù)據(jù)、專家經(jīng)驗(yàn)以及相似裝備歷史數(shù)據(jù)等信息,呈現(xiàn)出多源、多階段、多格式的特點(diǎn)。如果單一地使用某種數(shù)據(jù)信息,不僅造成其他數(shù)據(jù)資源的浪費(fèi),還會(huì)使得可靠性評(píng)估結(jié)果不夠客觀、準(zhǔn)確,影響后續(xù)維修決策的制定。

      (2) 慣性導(dǎo)航系統(tǒng)在技術(shù)選擇、冗余設(shè)計(jì)、參數(shù)擬定、材料篩選、方案規(guī)劃等各個(gè)環(huán)節(jié)都涉及到不確定信息,即不精確、不完整、甚至完全未知的信息,以致出現(xiàn)元件壽命分布模型不確定、模型參數(shù)不確定等情況。因此,在進(jìn)行可靠性評(píng)估分析時(shí)還需要特別考慮不確定信息對(duì)裝備可靠性評(píng)估的影響,以確保評(píng)估結(jié)果的準(zhǔn)確性和可信性。

      (3) 隨著慣性導(dǎo)航系統(tǒng)功能日益強(qiáng)大、結(jié)構(gòu)日趨復(fù)雜,出現(xiàn)故障的可能性越大,因而造成的風(fēng)險(xiǎn)和損失也就越大。此外,慣性導(dǎo)航系統(tǒng)的運(yùn)行成本和綜合保障費(fèi)用逐漸增長(zhǎng),“經(jīng)濟(jì)可承受性”成為了一個(gè)新問題。傳統(tǒng)的“多維修、多保養(yǎng)”方式不僅導(dǎo)致了高額保障成本,也無法從根本上確保慣性導(dǎo)航系統(tǒng)的運(yùn)行可靠性,反而影響了裝備連續(xù)性地執(zhí)行任務(wù)。

      可見,以慣性導(dǎo)航系統(tǒng)為代表的整機(jī)級(jí)、系統(tǒng)級(jí)復(fù)雜裝備具有可靠性數(shù)據(jù)多源、數(shù)據(jù)信息不確定、連續(xù)性執(zhí)行任務(wù)等特點(diǎn),使得基于小樣本失效數(shù)據(jù)的復(fù)雜裝備可靠性評(píng)估以及后續(xù)的維修決策優(yōu)化成為了理論研究與工程實(shí)踐上的難題。

      2 小樣本失效數(shù)據(jù)裝備可靠性評(píng)估方法

      小樣本失效數(shù)據(jù)復(fù)雜裝備可靠性建模主要有三個(gè)思路[5-8]:(1)根據(jù)先驗(yàn)信息建立可靠性評(píng)估模型;(2)擴(kuò)充數(shù)據(jù)樣本,將小樣本問題轉(zhuǎn)化為大樣本問題處理;(3)融合退化數(shù)據(jù)、壽命數(shù)據(jù)和專家經(jīng)驗(yàn)等多源數(shù)據(jù)信息進(jìn)行綜合分析,如圖1所示。

      2.1 基于先驗(yàn)信息的可靠性評(píng)估方法

      基于先驗(yàn)信息的可靠性評(píng)估方法一般根據(jù)專家信息進(jìn)行模型構(gòu)建[9-12],即通過專家經(jīng)驗(yàn)給定裝備可靠性分析使用模型,如指數(shù)分布模型、正態(tài)分布模型、威布爾分布模型等,以可靠性預(yù)計(jì)數(shù)據(jù)或相似裝備故障數(shù)據(jù)作為先驗(yàn)信息確定模型參數(shù),進(jìn)而根據(jù)元件故障失效數(shù)據(jù)或者性能退化數(shù)據(jù)確定裝備可靠度函數(shù)。文獻(xiàn)[13]應(yīng)用最優(yōu)置信限法、最小二乘估計(jì)確定了壽命服從指數(shù)型分布的MEMS傳感器在無失效數(shù)據(jù)條件下的可靠性指標(biāo);文獻(xiàn)[14]對(duì)壽命服從指數(shù)分布的串并聯(lián)系統(tǒng)進(jìn)行了單元試驗(yàn)時(shí)間、故障數(shù)向系統(tǒng)層級(jí)上的折算;文獻(xiàn)[15]將失效信息引入置信限分析中,通過參數(shù)估計(jì)與時(shí)間系數(shù)等效替換等方法確定了無失效數(shù)據(jù)機(jī)電產(chǎn)品的可靠度和平均故障間隔時(shí)間;文獻(xiàn)[16]提出了一種基于蒙特卡洛方差減少技術(shù)失效事件概率的快速計(jì)算方法,評(píng)估電力傳輸網(wǎng)絡(luò)中級(jí)聯(lián)失效稀有事件的發(fā)生概率,降低了傳統(tǒng)蒙特卡洛方法的仿真計(jì)算量與運(yùn)行時(shí)間;針對(duì)多狀態(tài)節(jié)點(diǎn)條件概率值難以確定的問題,文獻(xiàn)[17-18]應(yīng)用DS證據(jù)理論融合處理多個(gè)專家信息,確定了貝葉斯網(wǎng)絡(luò)中間節(jié)點(diǎn)的信任函數(shù)、似然函數(shù),避免了單個(gè)專家推斷存在的片面性,同時(shí)降低了主觀因素引起的認(rèn)知不確定度。

      基于先驗(yàn)信息的可靠性評(píng)估方法以長(zhǎng)期積累的數(shù)據(jù)信息、專家經(jīng)驗(yàn)為前提,構(gòu)建確定分布條件下的可靠性分析模型。該方法適用于改進(jìn)型元器件,但對(duì)于缺乏數(shù)據(jù)信息和專家經(jīng)驗(yàn)的新研制元器件不適用。

      2.2 基于數(shù)據(jù)擴(kuò)充的可靠性評(píng)估方法

      基于數(shù)據(jù)擴(kuò)充的可靠性評(píng)估方法適用于小樣本失效數(shù)據(jù)裝備,無法應(yīng)用于無失效數(shù)據(jù)裝備。對(duì)于壽命分布無先驗(yàn)信息的產(chǎn)品,文獻(xiàn)[19]應(yīng)用GM預(yù)測(cè)模型進(jìn)行試驗(yàn)樣本擴(kuò)容,進(jìn)而應(yīng)用Bootstrap方法進(jìn)行未知參數(shù)估計(jì),該方法適用于威布爾分布模型、Gamma分布模型等;文獻(xiàn)[20]應(yīng)用改進(jìn)的Bootstrap方法對(duì)電氣設(shè)備小樣本數(shù)據(jù)進(jìn)行擴(kuò)容,進(jìn)而根據(jù)形態(tài)相似距離進(jìn)行曲線擬合,實(shí)現(xiàn)對(duì)電氣設(shè)備可靠性指標(biāo)的預(yù)測(cè)估計(jì);文獻(xiàn)[21-22]采用虛擬增廣原理擴(kuò)充試驗(yàn)數(shù)據(jù),借助極大似然法估計(jì)樣本參數(shù),進(jìn)而應(yīng)用Wiener過程描述了正態(tài)分布模型的可靠性指標(biāo)退化過程;文獻(xiàn)[23]通過擬合壽命概率分布曲線確定了產(chǎn)品的可靠度點(diǎn)估計(jì),又通過Bootstrap方法擴(kuò)容確定了產(chǎn)品的可靠度置信區(qū)間;文獻(xiàn)[5]應(yīng)用隨機(jī)過程構(gòu)建了復(fù)雜系統(tǒng)性能退化模型,確定了系統(tǒng)性能分布、失效時(shí)間分布、可靠度等指標(biāo)的表達(dá)式,該方法適用于無失效數(shù)據(jù)產(chǎn)品以及樣本數(shù)小于5的小樣本產(chǎn)品。

      基于數(shù)據(jù)擴(kuò)充的可靠性分析方法適用于有一定樣本量失效數(shù)據(jù)或性能退化數(shù)據(jù)的元器件。但是,對(duì)于失效數(shù)據(jù)極少的元器件,如單失效數(shù)據(jù)元器件,無法進(jìn)行數(shù)據(jù)擴(kuò)容。此外,對(duì)于缺乏數(shù)據(jù)信息的元器件,該方法也不適用。

      2.3 融合多源數(shù)據(jù)信息的可靠性評(píng)估方法

      對(duì)于復(fù)雜裝備可靠性評(píng)估而言,小樣本失效數(shù)據(jù)有兩種情況:(1)由于設(shè)計(jì)改良、新技術(shù)應(yīng)用等因素,系統(tǒng)中只存在單個(gè)元件小樣本失效數(shù)據(jù)情況;(2)復(fù)雜系統(tǒng)中某個(gè)子系統(tǒng)或多個(gè)元件為新引入模塊,出現(xiàn)多個(gè)元件為小樣本失效數(shù)據(jù)情況。

      2.3.1 單個(gè)元件小樣本失效數(shù)據(jù)裝備

      只引入了單個(gè)新元件的復(fù)雜系統(tǒng)比較常見,其可靠性分析思路為:通過融合多源數(shù)據(jù)信息,確定新元件在小樣本失效數(shù)據(jù)條件下的可靠性指標(biāo),進(jìn)而根據(jù)復(fù)雜系統(tǒng)的模型結(jié)構(gòu)、失效模式、故障機(jī)理確定系統(tǒng)的可靠性參數(shù)。文獻(xiàn)[24]提出了一種基于動(dòng)態(tài)故障樹的稀有事件仿真方法,該方法降低了傳統(tǒng)故障樹分析中蒙特卡洛方法的仿真量;文獻(xiàn)[25]應(yīng)用經(jīng)驗(yàn)Bayesian方法構(gòu)建了失效數(shù)據(jù)稀缺產(chǎn)品的可靠性評(píng)估模型,進(jìn)而確定了點(diǎn)估計(jì)值和區(qū)間估計(jì)范圍;文獻(xiàn)[26]應(yīng)用相關(guān)函數(shù)融合樣本數(shù)據(jù)和驗(yàn)前數(shù)據(jù)確定了復(fù)雜系統(tǒng)中底事件的可靠度,在此基礎(chǔ)上,構(gòu)建T-S模糊故障樹對(duì)多狀態(tài)系統(tǒng)進(jìn)行了可靠性評(píng)估。

      2.3.2 多個(gè)元件小樣本失效數(shù)據(jù)裝備

      包含單個(gè)新元件的復(fù)雜系統(tǒng)可靠性試驗(yàn)以新元件單獨(dú)試驗(yàn)為主,較少以系統(tǒng)或者子系統(tǒng)的形式開展試驗(yàn)。然而,包含多個(gè)新元件的復(fù)雜系統(tǒng)除了單個(gè)元件的可靠性試驗(yàn),還包括系統(tǒng)級(jí)或者子系統(tǒng)級(jí)的試驗(yàn)。相對(duì)而言,包含多個(gè)新元件的復(fù)雜系統(tǒng)失效模式更加多樣、故障機(jī)理更加復(fù)雜,其可靠性分析更具有挑戰(zhàn)性。為了利用元件試驗(yàn)數(shù)據(jù)彌補(bǔ)系統(tǒng)試驗(yàn)數(shù)據(jù)的不足,文獻(xiàn)[14]引入定時(shí)截尾試驗(yàn)方案下失效率的近似概率密度函數(shù),將元件試驗(yàn)的故障數(shù)據(jù)和試驗(yàn)時(shí)間折合為系統(tǒng)試驗(yàn)的等效故障數(shù)據(jù)和試驗(yàn)時(shí)間;文獻(xiàn)[27]應(yīng)用基于PHM技術(shù)的狀態(tài)監(jiān)測(cè)系統(tǒng),采集有線通信系統(tǒng)的性能狀態(tài)指標(biāo),根據(jù)系統(tǒng)可靠性分析結(jié)果提前制定優(yōu)化的維修決策,從而避免不必要的停機(jī);文獻(xiàn)[28]在文獻(xiàn)[29-31]中E-Bayesian估計(jì)理論基礎(chǔ)上,提出了一種不依賴于先驗(yàn)信息的串聯(lián)、并聯(lián)系統(tǒng)可靠性指標(biāo)確定方法;文獻(xiàn)[32-33]通過引入老化因子構(gòu)建了處于退化階段的復(fù)雜系統(tǒng)性能衰退可靠性評(píng)估模型,描述了系統(tǒng)及元件性能指標(biāo)隨時(shí)間的變化趨勢(shì),并根據(jù)分析結(jié)果制定了相應(yīng)的維修決策。

      融合多源數(shù)據(jù)信息的可靠性分析方法綜合利用了元件在不同階段、不同運(yùn)行環(huán)境積累的數(shù)據(jù)信息,可確??煽啃苑治鼋Y(jié)果的客觀性、準(zhǔn)確性。該方法的關(guān)鍵在于如何選取合適的方法從多源數(shù)據(jù)中篩選出合適的數(shù)據(jù)信息,既不浪費(fèi)數(shù)據(jù)資源,又不影響評(píng)估結(jié)果的科學(xué)性、全面性。

      3 發(fā)展趨勢(shì)與未來展望

      由于以慣性導(dǎo)航系統(tǒng)為代表的整機(jī)級(jí)、系統(tǒng)級(jí)復(fù)雜裝備具有可靠性數(shù)據(jù)多源、數(shù)據(jù)信息不確定、連續(xù)性執(zhí)行任務(wù)等特點(diǎn),現(xiàn)有研究還存在以下不足:

      (1) 現(xiàn)有的小樣本失效數(shù)據(jù)復(fù)雜裝備可靠性評(píng)估方法一般預(yù)先假設(shè)部件壽命服從某一分布,或者人為給出分布模型參數(shù),忽略了不確定性的影響。在綜合利用退化數(shù)據(jù)、壽命數(shù)據(jù)、專家經(jīng)驗(yàn)、狀態(tài)監(jiān)測(cè)數(shù)據(jù)等多源數(shù)據(jù)信息進(jìn)行可靠性建模和評(píng)估時(shí),缺少了不確定性量化過程。

      (2) 在復(fù)雜裝備可靠性評(píng)估過程中,一般以區(qū)間函數(shù)方式分析部件的可靠性參數(shù)不確定性,忽略了不確定性在復(fù)雜系統(tǒng)中的傳播問題。此外,現(xiàn)有研究主要針對(duì)新裝備或者服役裝備在某一時(shí)刻的不確定性問題,缺少引入時(shí)間變量的動(dòng)態(tài)可靠性分析過程。

      (3) 當(dāng)前,復(fù)雜裝備的選擇性維修主要針對(duì)串并聯(lián)系統(tǒng),無法應(yīng)用于橋式結(jié)構(gòu)、網(wǎng)絡(luò)結(jié)構(gòu),而現(xiàn)有復(fù)雜裝備已不再只是簡(jiǎn)單的串并聯(lián)結(jié)構(gòu)。此外,相對(duì)于單裝備工作模式,越來越多的裝備以集群的方式開展工作,因此,集群裝備的選擇性維修已成為了一個(gè)突出問題。

      上述三個(gè)方面的問題揭示了小樣本失效數(shù)據(jù)復(fù)雜裝備可靠性評(píng)估面臨的挑戰(zhàn)以及未來可能的發(fā)展趨勢(shì)。

      3.1 引入不確定性的復(fù)雜裝備可靠性評(píng)估

      在復(fù)雜裝備的研制、設(shè)計(jì)、生產(chǎn)、試驗(yàn)、使用等各個(gè)階段,技術(shù)選擇、冗余設(shè)計(jì)、參數(shù)擬定、材料篩選、方案規(guī)劃等各個(gè)環(huán)節(jié)都涉及到不確定信息,即不精確、不完整、甚至完全未知的信息,具體包括:數(shù)據(jù)缺乏導(dǎo)致的不確定信息、不完全知識(shí)經(jīng)驗(yàn)導(dǎo)致的不確定信息、不同識(shí)別模式導(dǎo)致的不確定信息等[34-38]。從信息來源看,不確定性可以分為隨機(jī)不確定性和認(rèn)知不確定性:前者來源于系統(tǒng)固有偶然性或變異性,無法避免;后者由知識(shí)的不完備性以及數(shù)據(jù)缺乏造成,受數(shù)據(jù)信息、知識(shí)經(jīng)驗(yàn)、試驗(yàn)條件等影響[39-41]。

      在傳統(tǒng)的可靠性分析研究中,通常應(yīng)用概率理論和模糊集理論處理不確定問題,然而,在工程實(shí)踐中由于環(huán)境、技術(shù)、成本、時(shí)間等原因缺乏大量統(tǒng)計(jì)觀測(cè)數(shù)據(jù),因此,傳統(tǒng)方法選用模型的參數(shù)概率分布和隸屬度函數(shù)難以確定,出現(xiàn)元件壽命分布模型不確定、模型參數(shù)不確定,進(jìn)而影響了可靠性評(píng)估結(jié)果的準(zhǔn)確性和科學(xué)性[42-43]。由于隨機(jī)不確定性無法避免,當(dāng)前的不確定性研究主要針對(duì)認(rèn)知不確定性展開。鑒于不確定信息難以用精確語言描述,國(guó)內(nèi)外學(xué)者應(yīng)用專家經(jīng)驗(yàn)量化、確信可靠性理論、區(qū)間集合理論、DS證據(jù)理論、貝葉斯網(wǎng)絡(luò)等方法對(duì)復(fù)雜裝備可靠性分析中涉及的不確定性開展研究[44-47]。作為可靠性分析領(lǐng)域的新方法,確信可靠性理論引入不確定測(cè)度描述系統(tǒng)的認(rèn)知不確定性,應(yīng)用概率論描述隨機(jī)不確定性,應(yīng)用機(jī)會(huì)理論描述混合不確定性。

      以貝葉斯網(wǎng)絡(luò)方法為例表達(dá)不確定性,如圖2所示,二狀態(tài)裝備C由二狀態(tài)元件A和三狀態(tài)元件B構(gòu)成。由于不確定性的存在,貝葉斯網(wǎng)絡(luò)中節(jié)點(diǎn)A由兩個(gè)狀態(tài)拓展為三個(gè)狀態(tài),包括一個(gè)不確定度狀態(tài),節(jié)點(diǎn)B由三個(gè)狀態(tài)拓展為五個(gè)狀態(tài),包括兩個(gè)不確定度狀態(tài)。由節(jié)點(diǎn)C延伸出兩個(gè)置信節(jié)點(diǎn)和兩個(gè)似然節(jié)點(diǎn),分別表示節(jié)點(diǎn)處于狀態(tài)1和狀態(tài)2的置信度和似然度。應(yīng)用MC仿真方法可以驗(yàn)證所建模型的準(zhǔn)確性。

      3.2 基于貝葉斯網(wǎng)絡(luò)的復(fù)雜裝備可靠性評(píng)估

      Bayesian方法在融合處理多源、多階段失效數(shù)據(jù)方面具有巨大優(yōu)勢(shì),已廣泛應(yīng)用于裝備可靠性參數(shù)的確定中。然而,復(fù)雜裝備可靠性評(píng)估主要針對(duì)單元件裝備或結(jié)構(gòu)簡(jiǎn)單的串并聯(lián)系統(tǒng),對(duì)于結(jié)構(gòu)復(fù)雜的多元件裝備,Bayesian方法涉及復(fù)雜的多重積分,難以適用。鑒于貝葉斯網(wǎng)絡(luò)在復(fù)雜系統(tǒng)可靠性建模中的巨大優(yōu)勢(shì)[48-55],課題組擬采用Bayesian方法處理具有多源數(shù)據(jù)信息的元件,在此基礎(chǔ)上,應(yīng)用貝葉斯網(wǎng)絡(luò)進(jìn)行復(fù)雜裝備可靠性建模與分析,研究思路如圖3所示。對(duì)于具有失效數(shù)據(jù)、相似裝備數(shù)據(jù)、加速壽命試驗(yàn)數(shù)據(jù)等多源數(shù)據(jù)信息的部件,在統(tǒng)計(jì)量相容性檢驗(yàn)的基礎(chǔ)上,應(yīng)用Bayesian方法進(jìn)行數(shù)據(jù)融合,確定貝葉斯網(wǎng)絡(luò)根節(jié)點(diǎn)的可靠性指標(biāo);對(duì)于無數(shù)據(jù)信息的部分新研部件,充分利用專家經(jīng)驗(yàn)信息確定根節(jié)點(diǎn)可靠性指標(biāo)置信范圍。貝葉斯網(wǎng)絡(luò)中間節(jié)點(diǎn)條件概率值通過布爾邏輯關(guān)系確定,對(duì)于難以確定的多狀態(tài)中間節(jié)點(diǎn)擬應(yīng)用DS/AHP方法融合專家經(jīng)驗(yàn)信息確定[17]。

      作為多源數(shù)據(jù)融合的基礎(chǔ),t檢驗(yàn)可以判斷多源數(shù)據(jù)是否服從同一分布,以可靠度總體服從正態(tài)分布的機(jī)電裝備零部件為例,t檢驗(yàn)統(tǒng)計(jì)量表示為

      t=X-μσxn-1(1)

      式中:t為樣本與總體分布的離差統(tǒng)計(jì)量;X為樣本平均值;μ為總體平均數(shù);σx為樣本標(biāo)準(zhǔn)差;n為樣本容量。

      當(dāng)設(shè)定α為顯著水平時(shí),比較樣本離差t與臨界值t(n-1)a之間的大小關(guān)系。若t

      根據(jù)復(fù)雜裝備的結(jié)構(gòu)組成構(gòu)建貝葉斯網(wǎng)絡(luò)模型,應(yīng)用Bayesian方法、DS理論確定根節(jié)點(diǎn)處于各狀態(tài)的概率,借助DS/AHP方法確定多狀態(tài)中間節(jié)點(diǎn)條件概率值,進(jìn)而利用貝葉斯網(wǎng)絡(luò)的前向推理確定裝備可靠性指標(biāo),清晰表達(dá)不確定性在模型中的傳播過程以及量化各個(gè)不確定性要素對(duì)系統(tǒng)性能指標(biāo)的影響,量化過程如圖4所示。進(jìn)而根據(jù)不同的不確定性來源合理分配資源,降低系統(tǒng)不確定性和管理風(fēng)險(xiǎn)。然而,在不確定性量化過程中面臨著如下主要挑戰(zhàn):(1)復(fù)雜裝備元件多、數(shù)據(jù)多、結(jié)構(gòu)多樣,如何進(jìn)行模型不確定性降維;(2)個(gè)別輸入變量既包含隨機(jī)不確定性又包含認(rèn)知不確定性,如何將二者有效分離,進(jìn)而采取相應(yīng)措施降低認(rèn)知不確定性對(duì)輸出變量產(chǎn)生的影響;(3)如何在動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)中表征非線性變量、靜態(tài)節(jié)點(diǎn)以及非根節(jié)點(diǎn)與上一時(shí)間片中非根節(jié)點(diǎn)之間存在的依賴關(guān)系;(4)如何在貝葉斯網(wǎng)絡(luò)中表征共因失效、競(jìng)爭(zhēng)失效。

      3.3 基于可靠性評(píng)估的選擇性維修優(yōu)化

      選擇性維修指在任務(wù)間隔期對(duì)連續(xù)執(zhí)行多個(gè)任務(wù)的復(fù)雜裝備中的老化或者失效部件進(jìn)行維修,以確保后續(xù)任務(wù)的順利完成[56-60],如圖5所示。選擇性維修受維修成本、維修時(shí)長(zhǎng)、備件庫存、維修人員數(shù)量等因素的制約,在任務(wù)間隔期內(nèi)選擇性地對(duì)部分裝備部件采取維修措施,從而最大程度地確保后續(xù)任務(wù)的完成。相比于事后維修、定期維修,選擇性維修屬于有限資源約束條件下的視情維修,具有如下特點(diǎn):(1)部件維修選擇性,不一定是所有老化或者失效部件,不同的選擇性維修方案消耗不同的資源,獲得不同的維修效果;(2)維修時(shí)間限制性,只能在任務(wù)間隔期對(duì)裝備采取維修措施;(3)面向任務(wù)成功性,不同于以往的優(yōu)化維修模型,選擇性維修追求有限資源約束條件下系統(tǒng)的最大任務(wù)成功概率;(4)維修決策動(dòng)態(tài)性,由于復(fù)雜裝備系統(tǒng)及部件性能狀態(tài)隨時(shí)間變化,任務(wù)具有隨機(jī)性、模糊性,單裝備、集群裝備的選擇性維修策略需要?jiǎng)討B(tài)調(diào)整。

      與復(fù)雜裝備可靠性評(píng)估類似,選擇性維修現(xiàn)有研究主要圍繞串并聯(lián)系統(tǒng)的模型構(gòu)建、維修程度選擇、維修資源優(yōu)化、任務(wù)特性分析、智能優(yōu)化算法五個(gè)方面展開,各方面又相互交叉[61-65]。隨著研究深入,選擇性維修也逐漸拓展到了集群裝備領(lǐng)域,如文獻(xiàn)[66]以費(fèi)用為約束條件,構(gòu)建了集群裝備任務(wù)成功概率最大化的選擇性維修優(yōu)化模型,為降低計(jì)算量將非線性目標(biāo)函數(shù)線性化近似處理;文獻(xiàn)[67]以階段性任務(wù)必須滿足的可靠度指標(biāo)為約束條件,以所有關(guān)鍵子系統(tǒng)的有效剩余壽命為輸入變量,構(gòu)建了集群裝備選擇性維修優(yōu)化模型;文獻(xiàn)[68]在分析裝備結(jié)構(gòu)、任務(wù)性質(zhì)、競(jìng)爭(zhēng)失效等因素模糊特性的基礎(chǔ)上,構(gòu)建了集群裝備在競(jìng)爭(zhēng)失效條件下的模糊多狀態(tài)系統(tǒng)選擇性維修模型。但是,隨著不確定性引入復(fù)雜裝備可靠性評(píng)估分析中,選擇性維修建模還需在如下方面進(jìn)行完善:(1)如何構(gòu)建橋式結(jié)構(gòu)復(fù)雜系統(tǒng)選擇性維修優(yōu)化模型;(2)如何構(gòu)建網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜系統(tǒng)選擇性維修優(yōu)化模型;(3)如何構(gòu)建不同裝備組成集群的選擇性維修優(yōu)化模型;(4)如何在建模過程中引入共因失效和競(jìng)爭(zhēng)失效。

      4 結(jié) 束 語

      融合多源數(shù)據(jù)信息的可靠性評(píng)估方法為小樣本失效數(shù)據(jù)復(fù)雜裝備,尤其是無失效數(shù)據(jù)復(fù)雜裝備的可靠性評(píng)估提供了思路和途徑,已逐漸在數(shù)控機(jī)床、風(fēng)力發(fā)電場(chǎng)、航天飛機(jī)、大型艦船等領(lǐng)域得到應(yīng)用。發(fā)展多源數(shù)據(jù)融合可靠性評(píng)估、不確定性量化、動(dòng)態(tài)可靠性分析、選擇性維修優(yōu)化等前沿理論,有助于解決小樣本失效數(shù)據(jù)的復(fù)雜裝備可靠性分析與維修決策優(yōu)化這一工程難題,其研究成果能夠改進(jìn)現(xiàn)有大型整機(jī)級(jí)、系統(tǒng)級(jí)復(fù)雜裝備的綜合保障模式,節(jié)約復(fù)雜裝備保障成本、時(shí)間和人力,為后續(xù)制定優(yōu)化的維修決策提供理論指導(dǎo)。

      參考文獻(xiàn):

      [1] 陳文華,賀青川,潘駿,等. 機(jī)械產(chǎn)品可靠性試驗(yàn)技術(shù)研究現(xiàn)狀與展望[J]. 中國(guó)機(jī)械工程, 2020, 31(1): 72-82.

      Chen Wenhua, He Qingchuan, Pan Jun, et al. Reliability Test Technology of Mechanical Products-Overview and Prospect[J]. China Mechanical Engineering, 2020, 31(1): 72-82. (in Chinese)

      [2] Balesdent M, Morio J, Marzat J. Recommendations for the Tuning of Rare Event Probability Estimators[J]. Reliability Engineering & System Safety, 2015, 133: 68-78.

      [3] Bourinet J M. Rare-Event Probability Estimation with Adaptive Su-pport Vector Regression Surrogates[J]. Reliability Engineering and System Safety, 2016, 150: 210-221.

      [4] Yang J W, Wang J H, Huang Q, et al. Reliability Assessment for the Solenoid Valve of a High-Speed Train Braking System under Small Sample Size[J]. Chinese Journal of Mechanical Engineering, 2018, 31(3): 189-199.

      [5] Wu Q, Yang J Z, Wang J Y, et al. Reliability Analysis of Degradation with a New Independent Increment Process[J]. Journal of Mechanical Science and Technology, 2014, 28(10): 3971-3976.

      [6] Chen W H, Cui J, Fan X Y, et al. Reliability Analysis of DOOF for Weibull Distribution[J]. Journal of Zhejiang University:Science, 2003, 4(4): 448-453.

      [7] 陳文華,崔杰,樊曉燕,等. 單失效數(shù)據(jù)的可靠性統(tǒng)計(jì)分析[J]. 機(jī)械工程學(xué)報(bào), 2003, 39(9): 44-48.

      Chen Wenhua, Cui Jie, Fan Xiaoyan, et al. Reliability Statistical Analysis of Data Only One Failure[J]. China Journal of Mechanical Engineering, 2003, 39(9): 44-48. (in Chinese)

      [8] 傅惠民,岳曉蕊,張勇波. 極少失效數(shù)據(jù)的可靠性評(píng)估和壽命預(yù)測(cè)[J]. 航空動(dòng)力學(xué)報(bào), 2010, 25(8): 1855-1859.

      Fu Huimin, Yue Xiaorui, Zhang Yongbo. Reliability Assessment and Life Prediction for Very Few Failure Data[J]. Journal of Aerospace Power, 2010, 25(8): 1855-1859. (in Chinese)

      [9] 王浩偉,滕克難,呂衛(wèi)民. 導(dǎo)彈貯存延壽試驗(yàn)關(guān)鍵技術(shù)及研究進(jìn)展[J]. 含能材料, 2019, 27(12): 1004-1016.

      Wang Haowei, Teng Kenan, Lü Weimin. Review on Key Technologies for Missile Storage and Life-Extension Test[J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1004-1016. (in Chinese)

      [10] 楊立健,趙敏,李強(qiáng). 單臺(tái)件設(shè)備可靠性評(píng)估方法[J]. 水下無人系統(tǒng)學(xué)報(bào), 2017, 25(3): 288-292.

      Yang Lijian, Zhao Min, Li Qiang. Reliability Evaluation Method for Single Equipment[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 288-292. (in Chinese)

      [11] 宋明順,魯偉,方興華. 基于小樣本失效數(shù)據(jù)的機(jī)械可靠性評(píng)估[J]. 工業(yè)工程, 2017, 20(5): 87-93.

      Song Mingshun, Lu Wei, Fang Xinghua. A Research on Mechanical Reliability Assessment Based on Small Sample Failure Data[J]. Industrial Engineering Journal, 2017, 20(5): 87-93. (in Chinese)

      [12] 郭銳,張榮兵,趙靜一,等. 單失效數(shù)據(jù)情形下蓄能器可靠性評(píng)估[J]. 中國(guó)機(jī)械工程, 2018, 29(16): 1891-1899.

      Guo Rui, Zhang Rongbing, Zhao Jingyi, et al. Reliability Evaluation of Accumulator in Single Failure Data[J]. China Mechanical Engineering, 2018, 29(16): 1891-1899. (in Chinese)

      [13] 佐磊,孫洪凱,何怡剛,等. 無失效數(shù)據(jù)的 MEMS 傳感器可靠性分析[J]. 電子測(cè)量與儀器學(xué)報(bào), 2019, 33(6): 69-75.

      Zuo Lei, Sun Hongkai, He Yigang, et al. Reliability Analysis of MEMS Sensors with Zero-Failure Data[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(6): 69-75. (in Chinese)

      [14] 金俊坤,楊寧國(guó),呂冬雪. 結(jié)合單元試驗(yàn)數(shù)據(jù)的指數(shù)型串聯(lián)系統(tǒng)定時(shí)截尾試驗(yàn)可靠性評(píng)估方法[J]. 兵工學(xué)報(bào), 2019, 40(8): 1756-1760.

      Jin Junkun, Yang Ningguo, Lü Dongxue. Evaluation Method of Exponential Series System Reliability Based on Fixed Time Truncated Test and the Combination of System and Its Units Test Data[J]. Acta Armamentarii, 2019, 40(8): 1756-1760. (in Chinese)

      [15] 李海洋,謝里陽,李銘,等. 一種新的無失效數(shù)據(jù)可靠性評(píng)估方法研究[J]. 兵工學(xué)報(bào), 2018, 39(8): 1622-1631.

      Li Haiyang, Xie Liyang, Li Ming, et al. Research on a New Reliability Assessment Method for Zero-Failure Data[J]. Acta Armamentarii, 2018, 39(8): 1622-1631. (in Chinese)

      [16] Cadini F, Agliardi G L, Zio E. Estimation of Rare Event Probabilities in Power Transmission Networks Subject to Cascading Failures[J]. Reliability Engineering & System Safety, 2017, 158: 9-20.

      [17] 李志強(qiáng),徐廷學(xué),顧鈞元,等. 融合不確定信息的某型導(dǎo)彈控制系統(tǒng)可靠性分析方法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(12): 2879-2886.

      Li Zhiqiang, Xu Tingxue, Gu Junyuan, et al. Reliability Analysis of a Missile Control System by Fusing Uncertain Information[J]. Systems Engineering and Electronics, 2017, 39(12): 2879-2886. (in Chinese)

      [18] 徐廷學(xué),李志強(qiáng),顧鈞元,等. 基于多狀態(tài)貝葉斯網(wǎng)絡(luò)的導(dǎo)彈質(zhì)量狀態(tài)評(píng)估[J]. 兵工學(xué)報(bào), 2018, 39(2): 391-398.

      Xu Tingxue, Li Zhiqiang, Gu Junyuan, et al. Missile Condition Assessment Based on Multi-State Bayesian Network[J]. Acta Armamentarii, 2018, 39(2): 391-398. (in Chinese)

      [19] Xia X T. Reliability Analysis of Zero-Failure Data with Poor Information[J]. Quality and Reliability Engineering International, 2011, 28(8): 981-990.

      [20] 周凱,丁堅(jiān)勇,田世明,等. 基于小樣本性能數(shù)據(jù)的電氣設(shè)備可靠性評(píng)估與預(yù)測(cè)方法研究[J]. 電網(wǎng)技術(shù), 2018, 42(6): 1967-1974.

      Zhou Kai, Ding Jianyong, Tian Shiming, et al. Research on Assessment and Prediction of Electrical Equipment Reliability Based on Small Sample Performance Data[J]. Power System Technology, 2018, 42(6): 1967-1974. (in Chinese)

      [21] 張?jiān)?,姜楠,王立? 基于Wiener過程的數(shù)控轉(zhuǎn)臺(tái)極小子樣可靠性分析[J]. 清華大學(xué)學(xué)報(bào): 自然科學(xué)版, 2019, 59(2): 91-95.

      Zhang Yun, Jiang Nan, Wang Liping. Reliability Analysis of NC Rotary Table Based on a Wiener Process for Extremely Small Samples[J]. Journal of Tsinghua University: Science and Technology, 2019, 59(2): 91-95. (in Chinese)

      [22] 張?jiān)?,于廣,王立平,等. 基于性能退化數(shù)據(jù)的數(shù)控轉(zhuǎn)臺(tái)單子樣可靠性分析[J/OL]. 清華大學(xué)學(xué)報(bào): 自然科學(xué)版, 2019. http:∥kns.cnki.net/kcms/detail/11.2223.N. 20191106. 20191540. 20191001. html.

      Zhang Yun, Yu Guang, Wang Liping, et al. Performance Degradation Data Based NC Rotary Table Reliability Predictions Using a Single Sample[J/OL]. Journal of Tsinghua University: Science and Technology, 2019. http:∥kns.cnki.net/kcms/detail/11.2223.N.20191106. 20191540. 20191001. html. (in Chinese)

      [23] Li H Y, Xie L Y, Li M, et al. Reliability Assessment of High-Quality and Long-Life Products Based on Zero-Failure Data[J]. Quality and Reliability Engineering International, 2018, 35(1): 470-482.

      [24] Ruijters E, Reijsbergen D, de Boer P-T, et al. Rare Event Simulation for Dynamic Fault Trees[J]. Reliability Engineering & System Safety, 2019, 186: 220-231.

      [25] Quigley J, Bedford T, Walls L. Estimating Rate of Occurrence of Rare Events with Empirical Bayes: A Railway Application[J]. Reliability Engineering & System Safety, 2007, 92(5): 619-627.

      [26] 陸鳳儀,趙科淵,徐格寧,等. 基于多源信息融合及模糊故障樹的小子樣可靠性評(píng)估[J]. 工程設(shè)計(jì)學(xué)報(bào), 2017, 24(6): 609-617.

      Lu Fengyi, Zhao Keyuan, Xu Gening, et al. Reliability Assessment of Small Sample Based on Multiple Source Information Fusion and Fuzzy Fault Tree[J]. Chinese Journal of Engineering Design, 2017, 24(6): 609-617. (in Chinese)

      [27] Lee J, Kown D, Kim N, et al. PHM-Based Wiring System Da-mage Estimation for Near Zero Downtime in Manufacturing Facilities[J]. Reliability Engineering & System Safety, 2019, 184: 213-218.

      [28] Gholizadeh R, Londono S L M, Pereira M. Expectation Bayesian Estimation of System Reliability Based on Failures[J]. Methodo-logy and Computing Applied Probability, 2019, 21: 367-385.

      [29] Han M. E-Bayesian Estimation of Failure Probability and Its Application[J]. Mathematical and Computer Modelling: An International Journal, 2007, 45(9/10): 1272-1279.

      [30] Han M. E-Bayesian Estimation and Hierarchical Bayesian Estimation of Failure Rate[J]. Applied Mathematical Modelling, 2009, 33(4): 1915-1922.

      [31] Han M. E-Bayesian Estimation of the Reliability Derived from Binomial Distribution[J]. Applied Mathematical Modelling, 2011, 35(5): 2419-2424.

      [32] Li Z Q, Xu T X, Gu J Y, et al. Performance Degradation Modeling for Multi-State Element Considering Aging Factor[J]. Mecha-nika, 2018, 24(2): 260-267.

      [33] 李志強(qiáng),徐廷學(xué),顧鈞元,等. 考慮老化因素的串聯(lián)系統(tǒng)不完全維修決策優(yōu)化[J]. 控制與決策, 2019, 34(4): 827-833.

      Li Zhiqiang, Xu Tingxue, Gu Junyuan, et al. Optimal Maintenance Policies for Series Systems under Imperfect Repair Considering Aging Factor[J]. Control and Decision, 2019, 34(4): 827-833. (in Chinese)

      [34] 李志強(qiáng),徐廷學(xué),顧鈞元,等. 不確定條件下復(fù)雜系統(tǒng)可靠性建模與分析綜述[J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù), 2018(6): 13-19.

      Li Zhiqiang, Xu Tingxue, Gu Junyuan, et al. Reliability Modeling and Analysis of Complex Systems under Uncertainty[J]. Tactical Missile Technology, 2018(6): 13-19. (in Chinese)

      [35] Nima K. System Safety Assessment under Epistemic Uncertainty: Using Imprecise Probabilities in Bayesian Network[J]. Safety Science, 2019, 116: 149-160.

      [36] Hu L H, Kang R, Pan X, et al. Risk Assessment of Uncertain Random System-Level-1 and Level-2 Joint Propagation of Uncertainty and Probability in Fault Tree Analysis[J]. Reliability Engineering & System Safety, 2020, 198: 106874.

      [37] Abrishami S, Khakzad N, Hosseini S M, et al. BN-SLIM: A Bayesian Network Methodology for Human Reliability Assessment Based on Success Likelihood Index Method (SLIM)[J]. Reliabi-lity Engineering & System Safety, 2020, 193: 106647.

      [38] Kown Y C, Won J-H, Kim B J, et al. Uncertainty Quantification Using Bayesian Neural Networks in Classification: Application to Biomedical Image Segmentation[J]. Computational Statistics and Data Analysis, 2020, 142: 106816.

      [39] Karanki D R, Rahman S, Dang V N, et al. Epistemic and Aleatory Uncertainties in Integrated Deterministic and Probabilistic Safety Assessment: Tradeoff between Accuracy and Accident Simulations[J]. Reliability Engineering & System Safety, 2017, 162: 91-102.

      [40] Rahman S,? Karanki D R,? Epiney A, et al. Deterministic Sampling for Propagating Epistemic and Aleatory Uncertainty in Dynamic Event Tree Analysis[J]. Reliability Engineering & System Safety, 2018, 175: 62-78.

      [41] Vincent C, Mathieu B, Jean-Marc B, et al. Reliability-Based Sensitivity Estimators of Rare Event Probability in the Presence of Distribution Parameter Uncertainty[J]. Reliability Engineering & System Safety, 2018, 178: 164-178.

      [42] Zeng Z G, Kang R, Wen M L, et al. Uncertainty Theory as a Basis for Belief Reliability[J]. Information Sciences, 2018, 429: 26-36.

      [43] Kabir S, Papadopoulos Y. Applications of Bayesian Networks and Petri Nets in Safety, Reliability, and Risk Assessments: A Review[J]. Safety Science, 2019, 115: 154-175.

      [44] Lannoy A, Procaccia H. Expertise, Safety, Reliability, and Decision Making: Practical Industrial Experience[J]. Environment System and Decisions, 2014, 34(2): 259-276.

      [45] 彭文勝,張建國(guó),張金洋,等. 混合不確定多態(tài)系統(tǒng)可靠性的EUGF分析方法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(12): 2863-2868.

      Peng Wensheng, Zhang Jianguo, Zhang Jinyang, et al. EUGF Analysis of Reliability of MSS Containing Hybrid Uncertainties[J]. Systems Engineering and Electronics, 2017, 39(12): 2863-2868. (in Chinese)

      [46] Li Z Q, Xu T X, Gu J Y, et al. Reliability Modeling of Redundant Systems Considering CCF Based on DBN[J]. Arabian Journal for Science and Engineering, 2019, 44(3): 2567-2577.

      [47] 于格,康銳,林焱輝,等. 基于確信可靠度的齒輪可靠性建模與分析[J]. 系統(tǒng)工程與電子技術(shù), 2019, 41(10): 2385-2391.

      Yu Ge, Kang Rui, Lin Yanhui, et al. Reliability Modeling and Analysis of Gear Based on Belief Reliability[J]. Systems Engineering and Electronics, 2019, 41(10): 2385-2391. (in Chinese)

      [48] Mi J H, Li Y F, Yang Y J, et al. Reliability Assessment of Complex Electromechanical Systems under Epistemic Uncertainty[J]. Reliability Engineering & System Safety, 2016, 152: 1-15.

      [49] 李志強(qiáng),徐廷學(xué),顧鈞元,等. 視情維修條件下的多狀態(tài)控制單元可用性建模與分析[J]. 兵工學(xué)報(bào), 2017, 38(11): 2240-2250.

      Li Zhiqiang, Xu Tingxue, Gu Junyuan, et al. Availability Modeling and Analyzing of Multi-State Control Unit under Condition-Based Maintenance[J]. Acta Armamentarii, 2017, 38(11): 2240-2250. (in Chinese)

      [50] Mi J H, Li Y F, Peng W W, et al. Reliability Analysis of Complex Multi-State System with Common Cause Failure Based on Evidential Networks[J]. Reliability Engineering & System Safety, 2018, 174: 71-81.

      [51] He R, Li X H, Chen G M, et al. A Quantitative Risk Analysis Model Considering Uncertain Information[J]. Process Safety and Environmental Protection, 2018(118): 361-370.

      [52] Li Z Q, Xu T X, Gu J Y, et al. Reliability Modelling and Analysis of a Multi-State Element Based on a Dynamic Bayesian Network[J]. Royal Society Open Science, 2018, 5(4): 171438.

      [53] 李志強(qiáng),徐廷學(xué),安進(jìn),等. 冗余系統(tǒng)共因失效動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)建模[J]. 儀器儀表學(xué)報(bào), 2018, 39(3): 190-198.

      Li Zhiqiang, Xu Tingxue, An Jin, et al. Common Cause Failure Modeling for Redundant System Based on Dynamic Bayesian Network[J]. Chinese Journal of Scientific Instrument, 2018, 39(3): 190-198. (in Chinese)

      [54] Nguyen S, Chen S L, Du Y Q, et al. A Quantitative Risk Analysis Model with Integrated Deliberative Delphi Platform for Container Shipping Operational Risks[J]. Transportation Research Part E: Logistics and Transportation Review,? 2019, 129: 203-227.

      [55] 何永昌,陳之光,王海鋒,等. 基于Netica的導(dǎo)彈故障診斷貝葉斯網(wǎng)絡(luò)模型研究[J]. 航空兵器, 2020, 27(1): 89-95.

      He Yongchang, Chen Zhiguang, Wang Haifeng, et al. Research on Bayesian Network for Fault Diagnosis of Tactical Missile Using Netica[J]. Aero Weaponry, 2020, 27(1): 89-95. (in Chinese)

      [56] Cao W B, Jia X S, Hu Q W, et al. A Literature Review on Selective Maintenance for Multi-Unit Systems[J]. Quality and Reliabi-lity Engineering International, 2018, 34(5): 824-845.

      [57] 王少華,張仕新,李勇,等. 不完全維修條件下復(fù)雜系統(tǒng)的選擇性維修決策方法研究[J]. 兵工學(xué)報(bào), 2018, 39(6): 1215-1224.

      Wang Shaohua, Zhang Shixin, Li Yong, et al. Research on Selective Maintenance Decision-Making Method of Complex System Considering Imperfect Maintenance[J]. Acta Armamentarii, 2018, 39(6): 1215-1224. (in Chinese)

      [58] 王少華,張仕新,李勇,等. 有限任務(wù)間隔時(shí)間內(nèi)的裝備選擇性維修決策研究[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(11): 2611-2616.

      Wang Shaohua, Zhang Shixin, Li Yong, et al. Research on Selective Maintenance Decision-Making of Equipment Given Finite Mission Time Intervals[J]. Systems Engineering and Electronics, 2018, 40(11): 2611-2616. (in Chinese)

      [59] 陳一明,姜濤,劉宇. 選擇性維護(hù)決策的研究進(jìn)展與挑戰(zhàn)[J]. 運(yùn)籌學(xué)學(xué)報(bào), 2019, 23(3): 27-46.

      Chen Yiming, Jiang Tao, Liu Yu. Selective Maintenance Optimization: Research Advances and Challenges[J]. Operations Research Transactions, 2019, 23(3): 27-46. (in Chinese)

      [60] Shahraki A F, Yadav O P, Vogiatzis C. Selective Maintenance Optimization for Multi-State Systems Considering Stochastically Dependent Components and Stochastic Imperfect Maintenance Actions[J]. Reliability Engineering & System Safety, 2020, 196: 106738.

      [61] Liu Y, Chen Y M, Jiang T. On Sequence Planning for Selective Maintenance of Multi-State Systems under Stochastic Maintenance Durations[J]. European Journal of Operational Research, 2018, 268(1): 113-127.

      [62] 曹文斌,賈希勝,胡起偉. 共因失效條件下多狀態(tài)系統(tǒng)選擇性維修優(yōu)化[J]. 航空學(xué)報(bào), 2018, 39(2): 164-178.

      Cao Wenbin, Jia Xisheng, Hu Qiwei. Selective Maintenance Optimization for Multi-State Systems Subject to Common Cause Failures[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 164-178. (in Chinese)

      [63] Chaabane K,? Khatab A,? Diallo C, et al. Integrated Imperfect Multimission Selective Maintenance and Repairpersons Assignment Problem[J]. Reliability Engineering & System Safety, 2020, 199: 106895.

      [64] Jiang T, Liu Y. Selective Maintenance Strategy for Systems Executing Multiple Consecutive Missions with Uncertainty[J]. Reliability Engineering & System Safety, 2020, 193: 106632.

      [65] Liu Y, Chen Y M, Jiang T. Dynamic Selective Maintenance Optimization for Multi-State Systems over a Finite Horizon: A Deep Reinforcement Learning Approach[J]. European Journal of Operational Research, 2020, 283(1): 166-181.

      [66] Schneider K, Cassady R. Evaluation and Comparison of Alternative Fleet-Level Selective Maintenance Models[J]. Reliability Engineering & System Safety, 2015, 134: 178-187.

      [67] Yang D Z, Wang H C, Feng Q, et al. Fleet-Level Selective Maintenance Problem under a Phased Mission Scheme with Short Breaks: A Heuristic Sequential Game Approach[J]. Computers & Industrial Engineering, 2018, 119: 404-415.

      [68] 逯程,徐廷學(xué),李啟超,等. 競(jìng)爭(zhēng)失效條件下的裝備選擇性維修優(yōu)化方法[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2019, 27(2): 272-280.

      Lu Cheng, Xu Tingxue, Li Qichao, et al. Optimal Method for Selective Maintenance of Equipment Subject to Competing Failure[J]. Journal of Chinese Inertial Technology, 2019, 27(2): 272-280. (in Chinese)

      Research Advances and Challenges of Reliability Assessment of

      Complex Equipment Based on Small Sample Failure Data

      Li Zhiqiang1*,Wang Xin1,Chen Yuqi2,Gu Junyuan2

      (1. Unit 91388 of PLA,Zhanjiang 524024, China; 2. Navy Aviation University, Yantai 264001, China)

      Abstract: With the development of complex equipment which integrates mechanical, electrical, hydraulic and other technologies towards the direction of high reliability, long life and high cost, small sample failure data, even no failure data, appears in the reliability timing censoring test frequently. On the basis of explaining the characteristics of machine-level and system-level complex equipment with multi-source reliability data, uncertain data information, and continuous execution of tasks, this paper summarizes the research status of reliability evaluation of small sample failure data from three aspects of prior information, data expansion and multi-source information fusion. The shortcomings of the existing research are summarized, and the development trend and research focus of reliability assessment of complex equipment in the future are put forward. A new idea of applying Bayesian network to quantify the uncertainty in complex equipment is proposed, and the research of selective maintenance optimization on group equipment based on reliability assessment is carried out.

      Key words: small sample; reliability assessment; uncertainty; Bayesian network; selective maintenance

      收稿日期:2020-06-25

      基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(51605487)

      作者簡(jiǎn)介:李志強(qiáng)(1988-),男,四川宜賓人,工程師,博士,研究方向?yàn)槲淦餮b備可靠性試驗(yàn)與評(píng)估。

      猜你喜歡
      貝葉斯網(wǎng)絡(luò)不確定性
      法律的兩種不確定性
      法律方法(2022年2期)2022-10-20 06:41:56
      英鎊或繼續(xù)面臨不確定性風(fēng)險(xiǎn)
      具有凸多面體不確定性的混雜隨機(jī)微分方程的鎮(zhèn)定分析
      基于分布式貝葉斯網(wǎng)絡(luò)的多故障診斷方法研究
      無人機(jī)數(shù)據(jù)鏈測(cè)試與評(píng)估研究
      科技資訊(2016年25期)2016-12-27 16:22:32
      基于貝葉斯網(wǎng)絡(luò)的流域內(nèi)水文事件豐枯遭遇研究
      基于興趣預(yù)測(cè)和熱點(diǎn)分析的聯(lián)合推薦算法研究 
      具有不可測(cè)動(dòng)態(tài)不確定性非線性系統(tǒng)的控制
      基于貝葉斯網(wǎng)絡(luò)的城市居民出行方式研究
      基于貝葉斯網(wǎng)絡(luò)的協(xié)同過濾推薦算法
      岫岩| 姜堰市| 曲阜市| 海口市| 博湖县| 广灵县| 宁津县| 满城县| 合江县| 清河县| 类乌齐县| 策勒县| 皮山县| 洱源县| 会东县| 江安县| 聂拉木县| 乌鲁木齐市| 武义县| 团风县| 兰溪市| 桂平市| 龙游县| 新乡市| 青阳县| 巫山县| 阳山县| 左云县| 八宿县| 太谷县| 武安市| 石林| 肥乡县| 瑞昌市| 礼泉县| 临桂县| 沈阳市| 大丰市| 两当县| 武夷山市| 于田县|