• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors*

    2021-07-30 07:41:20PengLiu劉鵬JiLongHao郝繼龍ShengKaiWang王盛凱NanNanYou尤楠楠QinYuHu胡欽宇QianZhang張倩YunBai白云andXinYuLiu劉新宇
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張倩劉鵬白云

    Peng Liu(劉鵬) Ji-Long Hao(郝繼龍) Sheng-Kai Wang(王盛凱) Nan-Nan You(尤楠楠)Qin-Yu Hu(胡欽宇) Qian Zhang(張倩) Yun Bai(白云) and Xin-Yu Liu(劉新宇)

    1Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3High-Frequency High-Voltage Device and Integrated Circuits R&D Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: SiC,O2 post oxidation annealing,interface traps,MOS

    1. Introduction

    Silicon carbide (SiC) is a promising material for power electronics because of its wide band gap and high thermal conductivity. Additionally, SiC is able to grow SiO2by thermal oxidation,a conventional way similar to silicon,which is one of the unique advantages of SiC over the other compound semiconductors.[1]At present, most of the world’s leading semiconductor device manufacturers have made great progress in the production of SiC MOSFET devices. But for the oxidation treatment of SiC materials, too high or too low oxidation temperature leads to the existence of oxygen vacancy and residual carbon in gate oxide materials.

    To reduce interface defects on SiC, although many progresses have been reported by using novel treatment methods, such plasma oxidation and ALD growth of high-kdielectrics,[2-6]thermal oxides with proper POA treatments,such as H2, NO, N2O, H2O, N-O mixed plasma, H-Cl-N(10% HCl-N2) mixed plasma, and so on, are still the main stream for dielectric growth on SiC because of their relatively high reliability.[7-14]Among the above various annealing ambient,O2is the most fundamental case to study carbon-related behaviors during POA treatment, because of no introduction of additional elements. Previously, it has been found that the gas flux,which is defined by the product of annealing time and pressure, is the main factor that affects the interface state for O2POA.In specific,an optimized process window at low pressure region(~0.1 bar,1 bar=105Pa)is proposed to improve the interface quality of SiC MOS with applicable annealing duration(not too long or too short time span).[15]However,as another important factor except annealing time and pressure,the influence of temperature on the reliability of SiC/SiO2stacks needs further study. Furthermore, for O2POA, although there are several pioneering instructive works.[16-23]From the viewpoint of reliability, besidesDit, TDDB characteristics,gate-leakage density,breakdown field and their relationship still need to be further investigated.

    In this work, we study the effect of dry O2annealing at different temperatures on theDitof SiC/SiO2stacks,and further explore the effect ofDitof SiC/SiO2MOS stacks on the electrical properties of the oxide,such asJgand TDDB characteristics. Moreover, the area dependence of TDDB characteristics for thermal gate oxide on SiC is studied.

    2. Experiment

    After standard RCA cleaning, SiO2was grown by dry O2oxidation of n-type 4H-SiC epitaxial layer at 1300°C for 30 minutes followed by cooling down in N2gas with a rate of 10°C/min. Note that before cooling down process,oxygen was pumped out from the chamber to less than 1 Pa within 10 seconds.Therefore,the as-oxidized sample can be regarded as the one without any POA treatments. The thickness was confirmed to be 50 nm by 1 MHzC-Vmeasurement. The epitaxial layers were grown on (0001) Si face 4H-SiC substrate with a thickness of 12 μm,a 4°-off angle and an effective carrier density(Nd-Na)of about 7.81×1015cm-3. POA treatments were carried out at 0.1-bar dry oxygen ambient for 5 minutes with a temperature range of 800°C to 1000°C,respectively. The details are listed in Table 1. After the thermal oxidation and POA treatments, 500-nm-thick aluminum top electrodes with areas of 0.68×10-2mm2,1.83×10-2mm2,and 3.58×10-2mm2(confirmed by optical microscope)were formed by thermal evaporation with metal mask. Then, after polishing the SiC substrate backside with a diamond-pen,aluminum with thickness of 500 nm was directly evaporated to achieve back ohmic contact. Keysight B1500A and E4990 LCR meters were used forI-VandC-Vcharacterizations.

    Table 1. Detailed POA conditions for SiC/SiO2 stacks.

    3. Results and discussion

    Figure 1 shows the typical time-zero dielectric breakdown(TZDB) breakdown behavior of as-oxidized SiO2/SiC stacks(step = 0.1 MV·cm-1·s-1), which consists of soft breakdown and hard breakdown.[24]A large current jump corresponds to a hard breakdown event.[25]In general,gateJgwith a sudden jump exceeding 3 orders can be regarded as hard breakdown.[26]The soft breakdown part is the area where theJgincreases obviously without hard breakdown,and the electric field of gate oxide (Eox) from 6 MV/cm to the intrinsic breakdown field(Eint)is the soft breakdown part.

    Fig. 1. Typical breakdown behavior of as-oxidized sample of thermal gate oxide on SiC.When Jg jumps suddenly, the value of the corresponding Eox is the Eint. The Eint can guide us to determine the range of Estr,usually 90%of the Eint is taken as the Estr.

    The gate oxide is tested by TDDB with constant stress electric feild (Estr) which is determined by TZDB test. The statistics of gate oxide TDDB tests are usually described by the Weibull distribution[27]

    whereβis called the slope parameter. This Weibull slopeβis an important parameter to determine the homogeneity level when evaluating gate-oxide reliability.βhas a useful property such that if the area is increased by a factor(A1/A2),then the distribution is shifted by a factor of ln(A1/A2),and the characteristic lifetimeα1would be decreased toα2according to the following expression:[28]

    Figure 2(a) shows time-to-breakdown (Tbd) distributions obtained from TDDB test of SiC MOS capacitors with three electrode areas. For each area, the plots can be divided into two regions: the initial failure region and the random failure region according to the bathtub curve analysis.[29]Figure 2(b)just shows the data related to random failure, where the data with failure rate ofF <63.2% are attributed to initial failure and therefore can be eliminated.

    Fig. 2. TDDB Weibull distribution of as-oxidized sample of thermal gate oxide on SiC with fxiing Estr=8.55 MV/cm and varying electrode area. (a)Initial failure and random failure;(b)just random failure.

    With the decrease of electrode area from 3.58×10-2mm2to 0.68×10-2mm2, the corresponding Weibull slopes are 1.53, 1.40, and 1.55, respectively. Within the error range of 10%,the three Weibull curves are nearly parallel.The ratio between initial failure samples and total samples inTbdare 24/37, 23/36, and 17/30 respectively, which are obtained according to the number of the same electrode areaTbdin Figs. 2(b) and 2(a). The larger the area of MOS capacitor gate,the larger the proportion of initial failure inTbddistributions. Hatakeyamaet al.suggested that the surface defects are one of the major causes of initial failure.[30]With the change of the electrode area,the Weibull slopeβdoes not change,but the characteristic lifetimeαchanges. In specific, the smaller the electrode area,the larger the characteristic lifetimeα.

    Figures 3(a)-3(d) areJg-Eoxdiagrams of as-oxidized,dry-800, dry-900, and dry-1000 samples respectively. For each figure,the data are plotted from 5 samples with the same condition. Obviously, from initial to soft breakdown, five curves are nearly overlapped,suggesting the good uniformity of the sample, making it possible for the following comparison onJgandEint.As depicted in Figs.3(a)-3(d),theEintfrom small to large is dry-800,as-oxidized,dry-1000 and dry-900.

    Fig.3. (a)-(d)Jg-Eox curves of TZDB of MOS capacitor of samples as-oxidized and samples re-oxidized at different temperatures. (e)Direct comparison of the typical TZDB curves of the four groups of samples: as-oxidized, dry-800, dry-900, dry-1000. The inset shows the comparison of leakage current density in soft breakdown region of the four groups of samples.

    Figure 3(e) shows the soft breakdown regionJgof four groups of samples atEoxof 6 MV/cm. The inset shows that theJgmeets the following trend,Jg(dry-800)<Jg(dry-900)<Jg(dry-1000)<Jg(as-oxidized). Compared with theJgfrom as-oxidized sample,the ones annealed at 800°C,900°C,and 1000°C show relatively lowerJg, indicating that POA treatment is beneficial for enhancing the dielectric quality and suppressing the gate leakage. When elevating the POA temperature from 800°C to 1000°C,Jgis found to increase,suggesting that the quality is sensitive to POA temperature.

    For Fig.3(b),it is noted that a common phenomenon with“step-like”current jump near the hard breakdown field exists when compared with those in Figs. 3(a), 3(c), and 3(d), suggesting that a bilayer continuous breakdown might occur for 800-°C POA sample. In order to further investigate the effect during POA at 800°C, it is necessary to study the interface characteristic by consideringDit. This will be discussed in next section.

    Fig.4.(a)Dit of SiC MOS capacitors at different POA temperatures with 0.1-bar pressure for 5 minutes as a function of the surface potential. (b)TDDB Weibull distributions (only random failure) of thermal gate oxide on SiC at different POA temperatures with a fixed electrode area.

    Figure 4(a) shows theDitprofiles extracted by conductance method from SiC/SiO2MOS capacitors with different POA conditions. As shown in Fig. 4(a), at the energy level of 0.2 eV below the conduction band edge of SiC,Dit(dry-800)<Dit(dry-900)<Dit(dry-1000)<Dit(As-oxidized).Compared with theDitfrom as-oxidized sample,the ones annealed at 800°C,900°C,and 1000°C show relatively lowerDit,indicating that POA treatment is beneficial for eliminating interface states in the temperature range of 800°C to 1000°C.However,with the increase of POA temperature,the reduction ofDitis decreasing. The above-mentioned trade-off behavior seems to be related to the phenomenon in Fig.3(e).

    Figure 4(b)shows the TDDB Weibull distribution of thermal gate oxide on SiC at different POA temperatures with a fixed electrode area of 1.83×10-2mm2. TDDB is limited only by the quality of the oxide and the interface, and not by the intrinsic properties of the SiC.[31]So the two different Weibull slopesβwhich are extracted by linear fitting the two regions in Fig.4(b)represent the breakdown characteristics of the transition layer and SiO2layer respectively. Concerning the reason for the two slopes, it can be explained by considering the distribution of residual carbon across the interfacial transition layer and the SiO2film. Compared with SiO2, the interfacial SiOxCytransition layer is a carbon-rich one,therefore the breakdown field of the interfacial transition layer should be lower, because residual carbon is the major origin of interface traps.[32,33]

    Moreover, from the aspect of POA temperature dependence, as shown in Fig. 4(b), the sample annealed at 800°C shows the longestTbdwhen compared with the as-oxidized one and the ones annealed at higher temperature. According to Figs.3(e),4(a),and 4(b),similar trade-off distributions against POA temperature are demonstrated,suggesting thatJg,Dit, andTbdare strongly correlated. Therefore, starting from the consistency in Figs.3(e),4(a),and 4(b),the data are summarized and re-plotted in Fig.5(a)for comparison.Figure 5(a)shows theJg,the inverse median lifetime of TDDB(1000/τ)and theDitvalues atEc-0.2 eV with different POA conditions. Note the median lifetimeτof TDDB is obtained from Fig.4(b)atF=63.2%,and the inverse value ofτis used here for direct comparison because all the three parameters are required to be low for gate stack quality improvement. Compared with the other three conditions, the POA treatment at 800°C is obviously the lowest in the above three key indicators. In order to explain the three trade-offs in Fig. 5(a), a plausible model is proposed in Fig. 5(b) by considering two competing reactions and a critical temperatureTcas follows.

    For the two competing reactions,one is related to the reaction with interstitial carbon atom and oxygen vacancy, and the other one is related to the reaction with C-Si bond,both of them are oxidation reactions,this is consistent with the previous research by Zhuet al.and Kitaet al.[22,34]

    On the one hand,the increase of POA temperature is beneficial to removing the residual carbon in the transition layer and reducing the density of interface states.During POA treatment, as reported by Wang group,[22,23]carbon releases from SiOxCyin the form of CO or CO2and the SiOxCytransformation into higher oxidation states,thus reducing the SiOxCycontent and the interface transition region thickness. On the other hand, it enhances the reaction between oxygen atoms and SiC,and increases the density of interface states. This is consistent with the model proposed by Song et al. and the experimental results by Gotoet al.[35,36]SiC/SiO2becomes less stable at high temperature,and tends to form oxygen vacancies and residual carbon.[37]

    Fig. 5. (a) The Jg, the inverse median lifetime of TDDB (1000/τ), and the Dit values at 0.2 eV energy level below the edge of SiC conduction band for sample as-oxidized,dry-800,dry-900,and dry-1000. (b)Two competing reactions: generation of residual carbon and elimination of residual carbon.

    Two competing effects occur simultaneously during annealing,the removal of carbon from the interfacial region and the oxidation of SiC to produce more carbon clusters.[38]According to the SiC oxidation model by Goto and Hijikata,carbon and silicon atoms are emitted from the interface into the oxide layer during thermal oxidation.[39]And the emitted carbon atoms become interstitial carbon in SiO2. Since the interaction between interstitial carbon and surrounding SiO2network is much weaker than the strong covalent C-Si bond,the activation energy of interstitial carbon reaction with oxygen is lower than that of bonded carbon reaction with oxygen. Note that 800°C is sufficiently low temperature to neglect the additional growth of oxide,which does not contribute to the interface deterioration by the low-temperature oxidation.[34]

    For MOS capacitor, theDit,Jg, and 1/τ, are all related to the amount of defects in the oxide and at the interface. In this work, we can roughly use the difference of reaction rate between the above mentioned two reactions to evaluate the amount of defects in SiO2and SiO2/SiC interfaces. For both reactions, the reaction rate (R) can be approximately written in the following expression,R=F×exp(-Ea/kBT), whereFis a pre-factor that depends on the reactant concentration,Eais the reaction activation energy,Tis the temperature,andkBis the Boltzmann constant. For the reaction that repairs the SiO2network and SiO2/SiC interface,Fis mainly determined by the interstitial carbon and oxygen vacancy concentration.While for the latter one, it is related to the atomic density of SiC.Compared with the former one,since both interstitial carbon and oxygen vacancy are defects in the thermal oxide,the atomic density of SiC should be significantly larger. In order to make the discussion clearer and easier,we assume that in a short period of time,Fof each reaction is a fixed value. And for comparison of activation energies,as mentioned above,Eaof reaction corresponding to network repairment should be much lower than the one corresponding to oxide growth at the interface during POA. Since the temperature is involved as exp(-Ea/kBT)in the rate expression,as the POA temperature increases,rate grows faster for the reaction corresponding to higherEa.Therefore,as the POA temperature increases,the rate difference between network repairment and oxide growth becomes smaller,and thus results in less improvement of gate stack quality includingDit,Jg, and 1/τin higher POA temperature region. In this work,although only 800°C-1000°C has been investigated,we infer that such trend can be slightly extended to higher temperature(~1100°C or more),because the reaction mechanism does not change. While for the case of POA at<800°C,although the oxide growth that degrades the interface nearly stops, the POA effect on gate stack improvement also becomes quite limited in short time span such as 5 min in this study, which is consistent with the results by Yinet al. and Kitaet al.[33,34]

    Therefore, by considering the above-mentioned tradeoffs, we believe a critical temperatureTcshould exist. For the POA temperature lower thanTc,the removal rate of residual carbon increases with the increase of temperature, while for the POA temperature higher thanTc,it decreases with the increase of temperature, even with a net increase of residual carbon.

    In the POA treatment,some residual carbon can be eliminated by oxidizing and repairing the interface,which helps to reduce theDit.And when the temperature is higher thanTc,the rate of residual carbon produced by oxidation increases more with the increase of temperature. At this time,the net elimination rate of carbon residue decreases, leading to the decrease of improvement effect, and finally leading to degradation ofDit, reliability and gate leakage. This trend further confirms the inference about the existence ofTc.

    Concerning the step-like jump in TZDB tests of 800-°C POA samples,since 800°C is close toTcbased on our model,thus it is reasonable to believe that the uniformity and breakdown electric field of the interfacial layer at this condition is relatively higher, which makes the TZDB curves different from the other three ones, and causes the segmental breakdown of the two layers.

    4. Conclusion

    The effect of the O2POA temperature on the gate oxide quality is studied,in terms of gate leakage current density,interface trap density, and TDDB reliability, where trade-off distributions with the same optimized temperature(~800°C)have been demonstrated. A plausible model is proposed by considering two competing reactions,e.g.,the removal of carbon from the interfacial region and the oxidation of SiC to produce more residual carbon, and a critical temperatureTc,which can well explain all the results in this work and strongly indicating that O2POA treatment nearTcis effective in improving the oxide quality on SiC for high performance and reliability devices.

    猜你喜歡
    張倩劉鵬白云
    Dual-wavelength pumped latticed Fermi–Pasta–Ulam recurrences in nonlinear Schr¨odinger equation
    竇晨珂、曲樹(shù)云、王逸文、張倩作品精選
    Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
    《公園創(chuàng)意拼貼》
    賈逵隔籬偷學(xué)
    白云(外三首)
    Pressure-induced phase transition of B-type Y2O3?
    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*
    尋找丟失的快樂(lè)
    白云的來(lái)歷
    精品卡一卡二卡四卡免费| 午夜激情av网站| 亚洲一区高清亚洲精品| 777久久人妻少妇嫩草av网站| 美女 人体艺术 gogo| 亚洲国产精品一区二区三区在线| 俄罗斯特黄特色一大片| 日本黄色日本黄色录像| 老熟女久久久| 不卡av一区二区三区| 亚洲成人手机| 亚洲欧美日韩高清在线视频| 大码成人一级视频| 亚洲人成电影观看| 一区福利在线观看| 啦啦啦在线免费观看视频4| av福利片在线| 18禁裸乳无遮挡免费网站照片 | 成人18禁高潮啪啪吃奶动态图| 亚洲av片天天在线观看| 欧美大码av| 正在播放国产对白刺激| svipshipincom国产片| 极品人妻少妇av视频| 国产成人精品无人区| а√天堂www在线а√下载 | 国产精品美女特级片免费视频播放器 | 亚洲av第一区精品v没综合| 久久久国产欧美日韩av| 亚洲成a人片在线一区二区| 制服诱惑二区| 嫁个100分男人电影在线观看| 亚洲精华国产精华精| 久久久国产欧美日韩av| 女性被躁到高潮视频| 精品少妇久久久久久888优播| 精品欧美一区二区三区在线| 亚洲熟女精品中文字幕| 男女之事视频高清在线观看| 国产一区二区三区综合在线观看| 亚洲精品中文字幕在线视频| 精品少妇一区二区三区视频日本电影| xxxhd国产人妻xxx| 久久香蕉激情| 亚洲国产精品一区二区三区在线| 亚洲久久久国产精品| 午夜影院日韩av| 在线观看66精品国产| 一级毛片高清免费大全| 亚洲精品国产一区二区精华液| 波多野结衣一区麻豆| 免费女性裸体啪啪无遮挡网站| 18禁国产床啪视频网站| av天堂在线播放| 亚洲欧美日韩另类电影网站| 色综合婷婷激情| www.熟女人妻精品国产| 99久久国产精品久久久| 69av精品久久久久久| 99在线人妻在线中文字幕 | 一边摸一边抽搐一进一小说 | 国产在线精品亚洲第一网站| 精品久久久久久电影网| 在线观看日韩欧美| 日本一区二区免费在线视频| 日韩欧美三级三区| 色综合婷婷激情| 色婷婷av一区二区三区视频| 操美女的视频在线观看| 久久久久久亚洲精品国产蜜桃av| 久久精品国产99精品国产亚洲性色 | 91精品三级在线观看| 欧美黄色片欧美黄色片| 天天影视国产精品| 夜夜躁狠狠躁天天躁| 国产精品亚洲av一区麻豆| 69精品国产乱码久久久| 精品熟女少妇八av免费久了| 在线av久久热| √禁漫天堂资源中文www| 色婷婷av一区二区三区视频| 久久亚洲真实| 捣出白浆h1v1| 亚洲精品在线观看二区| 18禁观看日本| 天天影视国产精品| 一二三四社区在线视频社区8| 久久精品人人爽人人爽视色| 大香蕉久久网| a级片在线免费高清观看视频| 99热只有精品国产| 精品乱码久久久久久99久播| 国产男靠女视频免费网站| 成人国产一区最新在线观看| 无遮挡黄片免费观看| 久久精品熟女亚洲av麻豆精品| 久久国产乱子伦精品免费另类| 搡老熟女国产l中国老女人| 久久午夜综合久久蜜桃| 久久人人爽av亚洲精品天堂| 亚洲色图综合在线观看| 免费一级毛片在线播放高清视频 | 女同久久另类99精品国产91| 国产精品久久久久成人av| 色播在线永久视频| 人妻丰满熟妇av一区二区三区 | 91九色精品人成在线观看| 少妇猛男粗大的猛烈进出视频| 黄色a级毛片大全视频| 真人做人爱边吃奶动态| 亚洲欧美日韩另类电影网站| 久久精品国产a三级三级三级| 又紧又爽又黄一区二区| 巨乳人妻的诱惑在线观看| 真人做人爱边吃奶动态| 亚洲欧洲精品一区二区精品久久久| 国产精品欧美亚洲77777| 午夜免费鲁丝| 又黄又粗又硬又大视频| 水蜜桃什么品种好| 一本综合久久免费| 免费观看精品视频网站| 亚洲精品国产一区二区精华液| www.精华液| 夜夜夜夜夜久久久久| 久久久久精品国产欧美久久久| 高潮久久久久久久久久久不卡| 一级毛片女人18水好多| 亚洲欧美激情综合另类| 亚洲熟女精品中文字幕| 欧美丝袜亚洲另类 | 亚洲欧美日韩高清在线视频| 精品少妇久久久久久888优播| 久久精品亚洲熟妇少妇任你| 亚洲中文字幕日韩| 黄色 视频免费看| 麻豆乱淫一区二区| 黄色成人免费大全| 美女国产高潮福利片在线看| 一本综合久久免费| 老司机深夜福利视频在线观看| 建设人人有责人人尽责人人享有的| 日韩制服丝袜自拍偷拍| 久久亚洲精品不卡| 亚洲,欧美精品.| 91麻豆精品激情在线观看国产 | 亚洲欧美色中文字幕在线| 免费在线观看影片大全网站| 十八禁高潮呻吟视频| 黄色女人牲交| videosex国产| 亚洲精华国产精华精| 一级,二级,三级黄色视频| 91成年电影在线观看| 亚洲av第一区精品v没综合| 欧美日韩成人在线一区二区| 午夜老司机福利片| 在线播放国产精品三级| 最新在线观看一区二区三区| 日韩有码中文字幕| 男人操女人黄网站| 国产精品成人在线| 中文字幕人妻熟女乱码| 亚洲人成伊人成综合网2020| 欧美丝袜亚洲另类 | 国产亚洲av高清不卡| 在线观看免费视频日本深夜| 亚洲五月色婷婷综合| 在线观看66精品国产| 一边摸一边做爽爽视频免费| 亚洲中文字幕日韩| 妹子高潮喷水视频| 亚洲精品中文字幕在线视频| 国产精品久久久久久精品古装| 美女视频免费永久观看网站| 免费在线观看影片大全网站| 女人被躁到高潮嗷嗷叫费观| 国产精品综合久久久久久久免费 | 亚洲男人天堂网一区| 欧美黑人欧美精品刺激| 欧美激情 高清一区二区三区| 久久中文看片网| 国产欧美日韩精品亚洲av| 亚洲精品美女久久av网站| 一进一出好大好爽视频| 午夜福利,免费看| 女人久久www免费人成看片| 精品国产乱码久久久久久男人| 国产黄色免费在线视频| 亚洲七黄色美女视频| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线 | 久久久久久免费高清国产稀缺| 欧美日韩亚洲高清精品| 两个人免费观看高清视频| 天天添夜夜摸| 男女免费视频国产| 男女下面插进去视频免费观看| 一区在线观看完整版| 国产高清videossex| 老司机深夜福利视频在线观看| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 国产免费现黄频在线看| 午夜福利视频在线观看免费| 亚洲少妇的诱惑av| 久久久国产欧美日韩av| 亚洲少妇的诱惑av| 美女午夜性视频免费| 99热只有精品国产| 黄片小视频在线播放| 黄频高清免费视频| 久久中文字幕人妻熟女| 久久精品91无色码中文字幕| 男人操女人黄网站| 欧美另类亚洲清纯唯美| 日韩欧美在线二视频 | 精品人妻在线不人妻| 亚洲欧美一区二区三区黑人| 欧美丝袜亚洲另类 | 国产精品久久久av美女十八| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久久5区| 操出白浆在线播放| av国产精品久久久久影院| 亚洲国产欧美日韩在线播放| 日韩欧美一区二区三区在线观看 | 亚洲久久久国产精品| 久久久久精品人妻al黑| 性色av乱码一区二区三区2| 日本wwww免费看| 国产在线精品亚洲第一网站| 美国免费a级毛片| 国产成+人综合+亚洲专区| 国产精品国产高清国产av | 久久人妻熟女aⅴ| 在线观看午夜福利视频| 三级毛片av免费| 国产精品免费大片| 国产99久久九九免费精品| 亚洲午夜理论影院| 国产精品免费视频内射| 欧美精品高潮呻吟av久久| 国产欧美亚洲国产| 国产精品免费一区二区三区在线 | avwww免费| 欧美黑人精品巨大| 91麻豆精品激情在线观看国产 | 欧美日韩av久久| 亚洲美女黄片视频| av有码第一页| 天天躁狠狠躁夜夜躁狠狠躁| 嫩草影视91久久| 国产野战对白在线观看| 亚洲精品久久成人aⅴ小说| 精品久久久久久久毛片微露脸| 欧美乱妇无乱码| 老司机福利观看| 丰满迷人的少妇在线观看| 亚洲中文日韩欧美视频| 亚洲午夜精品一区,二区,三区| 黑人巨大精品欧美一区二区蜜桃| 久久天堂一区二区三区四区| 国产一区二区三区在线臀色熟女 | 一二三四在线观看免费中文在| 一级a爱视频在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 99久久人妻综合| 亚洲成av片中文字幕在线观看| 精品国产乱码久久久久久男人| 十八禁人妻一区二区| 中文欧美无线码| 色婷婷av一区二区三区视频| www.精华液| 我的亚洲天堂| 日日爽夜夜爽网站| 国产精品亚洲一级av第二区| 另类亚洲欧美激情| 久久天躁狠狠躁夜夜2o2o| 色综合欧美亚洲国产小说| 精品久久久精品久久久| 精品电影一区二区在线| 欧美激情 高清一区二区三区| 国产成人影院久久av| 老司机福利观看| 精品国产乱子伦一区二区三区| www日本在线高清视频| 精品亚洲成国产av| 丝袜美腿诱惑在线| 日本撒尿小便嘘嘘汇集6| 十分钟在线观看高清视频www| 日日爽夜夜爽网站| 国产亚洲精品久久久久久毛片 | 国产高清国产精品国产三级| 国产1区2区3区精品| 亚洲av成人av| 日韩熟女老妇一区二区性免费视频| 日本一区二区免费在线视频| 高清欧美精品videossex| 91麻豆精品激情在线观看国产 | 国产蜜桃级精品一区二区三区 | 咕卡用的链子| 大片电影免费在线观看免费| 精品熟女少妇八av免费久了| 亚洲五月婷婷丁香| 女警被强在线播放| 久久久国产一区二区| 亚洲午夜理论影院| 成年版毛片免费区| 国产午夜精品久久久久久| 大片电影免费在线观看免费| 日韩成人在线观看一区二区三区| 嫁个100分男人电影在线观看| 美国免费a级毛片| 免费在线观看完整版高清| 99热网站在线观看| 999精品在线视频| 亚洲av欧美aⅴ国产| 看黄色毛片网站| 久久精品国产清高在天天线| 国产男女内射视频| 国产一区有黄有色的免费视频| 一区在线观看完整版| 欧美精品亚洲一区二区| 最近最新中文字幕大全免费视频| 午夜福利影视在线免费观看| 国产一区二区三区在线臀色熟女 | 国产亚洲一区二区精品| 一级,二级,三级黄色视频| 午夜日韩欧美国产| 精品国产美女av久久久久小说| 可以免费在线观看a视频的电影网站| 激情视频va一区二区三区| 90打野战视频偷拍视频| 丁香六月欧美| 亚洲精品国产精品久久久不卡| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院 | 9热在线视频观看99| 亚洲性夜色夜夜综合| 国产人伦9x9x在线观看| 精品视频人人做人人爽| 婷婷丁香在线五月| 久久人人97超碰香蕉20202| a级毛片在线看网站| 超碰成人久久| 极品教师在线免费播放| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 久久午夜亚洲精品久久| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| e午夜精品久久久久久久| 激情在线观看视频在线高清 | 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 美女福利国产在线| 亚洲中文av在线| 夜夜躁狠狠躁天天躁| 精品人妻在线不人妻| 老司机午夜福利在线观看视频| 99久久人妻综合| 中文字幕人妻熟女乱码| 成人av一区二区三区在线看| 免费观看a级毛片全部| 亚洲成人免费电影在线观看| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| 久久久久久久久久久久大奶| 777久久人妻少妇嫩草av网站| 一夜夜www| 欧美乱码精品一区二区三区| 久久国产精品大桥未久av| 一级毛片精品| 色94色欧美一区二区| 国产激情欧美一区二区| 黄色视频不卡| 在线观看免费高清a一片| 国产一区二区三区综合在线观看| 精品少妇久久久久久888优播| 黄片小视频在线播放| 亚洲精品国产色婷婷电影| 午夜福利乱码中文字幕| 久久久久精品国产欧美久久久| 久久精品熟女亚洲av麻豆精品| 中文字幕色久视频| 久久国产精品男人的天堂亚洲| 十分钟在线观看高清视频www| 国产在线一区二区三区精| 91成年电影在线观看| 老司机午夜十八禁免费视频| 在线观看舔阴道视频| 欧美精品高潮呻吟av久久| 国产精品免费一区二区三区在线 | 久9热在线精品视频| 国产激情欧美一区二区| 自线自在国产av| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 老司机亚洲免费影院| 一区福利在线观看| 18在线观看网站| 黄色毛片三级朝国网站| 国产精品影院久久| 在线看a的网站| 国产精品一区二区在线不卡| 午夜两性在线视频| 老司机靠b影院| 成人精品一区二区免费| 国产高清视频在线播放一区| 亚洲第一青青草原| 亚洲精华国产精华精| 亚洲色图 男人天堂 中文字幕| 欧美人与性动交α欧美精品济南到| 成人影院久久| 国产一区二区三区视频了| av视频免费观看在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲avbb在线观看| 一区二区日韩欧美中文字幕| 伦理电影免费视频| 精品国产美女av久久久久小说| 午夜精品久久久久久毛片777| 国产1区2区3区精品| 国产深夜福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 久久久久国内视频| 久久久久久亚洲精品国产蜜桃av| 亚洲专区字幕在线| 久久中文看片网| x7x7x7水蜜桃| 热99国产精品久久久久久7| 80岁老熟妇乱子伦牲交| 99riav亚洲国产免费| 亚洲情色 制服丝袜| 亚洲欧美精品综合一区二区三区| 国产不卡一卡二| 亚洲五月天丁香| 成年女人毛片免费观看观看9 | 亚洲五月色婷婷综合| 99精品欧美一区二区三区四区| 操出白浆在线播放| 亚洲中文字幕日韩| 欧美人与性动交α欧美精品济南到| 999久久久国产精品视频| 性少妇av在线| 日本欧美视频一区| 老司机午夜福利在线观看视频| 激情视频va一区二区三区| 黄色女人牲交| 女人高潮潮喷娇喘18禁视频| 欧美日韩中文字幕国产精品一区二区三区 | av视频免费观看在线观看| 色精品久久人妻99蜜桃| 日韩欧美在线二视频 | 久久国产精品大桥未久av| 久久精品国产清高在天天线| 黑丝袜美女国产一区| 亚洲欧美激情综合另类| 91精品国产国语对白视频| 日韩精品免费视频一区二区三区| 交换朋友夫妻互换小说| 精品第一国产精品| av线在线观看网站| 国产精品免费一区二区三区在线 | 丰满饥渴人妻一区二区三| 国内毛片毛片毛片毛片毛片| 久久久久久亚洲精品国产蜜桃av| av免费在线观看网站| 男人舔女人的私密视频| 午夜福利欧美成人| 制服诱惑二区| 一本大道久久a久久精品| 1024香蕉在线观看| 国产成人欧美在线观看 | 在线免费观看的www视频| 国产精品成人在线| 人妻久久中文字幕网| 亚洲中文字幕日韩| 天堂中文最新版在线下载| 亚洲精品久久午夜乱码| 久久国产乱子伦精品免费另类| a级毛片在线看网站| 精品国产国语对白av| 欧美激情 高清一区二区三区| 久久久久视频综合| 日韩中文字幕欧美一区二区| 一级,二级,三级黄色视频| 黄色 视频免费看| 日韩有码中文字幕| 无遮挡黄片免费观看| 亚洲国产中文字幕在线视频| 精品人妻熟女毛片av久久网站| 色综合婷婷激情| 亚洲一码二码三码区别大吗| 国产无遮挡羞羞视频在线观看| 日本一区二区免费在线视频| 精品国产一区二区三区四区第35| xxx96com| 露出奶头的视频| 亚洲国产精品合色在线| 午夜精品在线福利| 村上凉子中文字幕在线| 天天躁日日躁夜夜躁夜夜| 国产一区二区三区综合在线观看| 桃红色精品国产亚洲av| 热99re8久久精品国产| 午夜视频精品福利| 久久午夜亚洲精品久久| 精品少妇一区二区三区视频日本电影| 高清黄色对白视频在线免费看| 人人妻人人添人人爽欧美一区卜| 国产精品免费一区二区三区在线 | 一区福利在线观看| 首页视频小说图片口味搜索| 黑人巨大精品欧美一区二区蜜桃| 欧美乱妇无乱码| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 亚洲情色 制服丝袜| 亚洲成人国产一区在线观看| av一本久久久久| av在线播放免费不卡| 自拍欧美九色日韩亚洲蝌蚪91| 好男人电影高清在线观看| 日韩有码中文字幕| 久久人人97超碰香蕉20202| 制服诱惑二区| 丁香欧美五月| 夜夜躁狠狠躁天天躁| 一夜夜www| 国产一区二区三区视频了| 久久久久视频综合| 深夜精品福利| av不卡在线播放| 国产精品偷伦视频观看了| 国产深夜福利视频在线观看| www.熟女人妻精品国产| 日韩熟女老妇一区二区性免费视频| 欧美不卡视频在线免费观看 | av天堂久久9| 久久久国产精品麻豆| av免费在线观看网站| 精品国产一区二区久久| 欧美午夜高清在线| 午夜日韩欧美国产| 日韩大码丰满熟妇| 人人妻,人人澡人人爽秒播| 久久久久精品国产欧美久久久| 色94色欧美一区二区| 又紧又爽又黄一区二区| 精品无人区乱码1区二区| 久热这里只有精品99| 色播在线永久视频| 亚洲精品自拍成人| 午夜影院日韩av| 久久人妻av系列| 午夜亚洲福利在线播放| 在线观看www视频免费| 中出人妻视频一区二区| 19禁男女啪啪无遮挡网站| 曰老女人黄片| 久久这里只有精品19| 国产91精品成人一区二区三区| av电影中文网址| 一级,二级,三级黄色视频| 十八禁高潮呻吟视频| 久久国产精品人妻蜜桃| 亚洲精品中文字幕一二三四区| 亚洲精品国产区一区二| 美女扒开内裤让男人捅视频| 五月开心婷婷网| 黑人巨大精品欧美一区二区mp4| 国产亚洲欧美98| 91精品三级在线观看| 下体分泌物呈黄色| 精品久久久久久电影网| 欧美黄色片欧美黄色片| 岛国在线观看网站| 国产极品粉嫩免费观看在线| 国产不卡av网站在线观看| 天天躁日日躁夜夜躁夜夜| tocl精华| 午夜福利欧美成人| 午夜日韩欧美国产| 欧美精品一区二区免费开放| 亚洲欧美色中文字幕在线| 怎么达到女性高潮| 日韩人妻精品一区2区三区| 人人妻,人人澡人人爽秒播| 黄片播放在线免费| 亚洲av第一区精品v没综合| 999久久久国产精品视频| 中文字幕最新亚洲高清| 香蕉丝袜av| 一进一出抽搐gif免费好疼 | 在线观看66精品国产| 首页视频小说图片口味搜索| 在线天堂中文资源库| 欧美精品亚洲一区二区| 女人精品久久久久毛片| 亚洲熟妇熟女久久| 亚洲精品成人av观看孕妇| 日本vs欧美在线观看视频| 亚洲久久久国产精品| 成年人午夜在线观看视频| 精品久久久久久电影网| 亚洲熟妇中文字幕五十中出 | 久热这里只有精品99|