• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors*

    2021-07-30 07:41:20PengLiu劉鵬JiLongHao郝繼龍ShengKaiWang王盛凱NanNanYou尤楠楠QinYuHu胡欽宇QianZhang張倩YunBai白云andXinYuLiu劉新宇
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張倩劉鵬白云

    Peng Liu(劉鵬) Ji-Long Hao(郝繼龍) Sheng-Kai Wang(王盛凱) Nan-Nan You(尤楠楠)Qin-Yu Hu(胡欽宇) Qian Zhang(張倩) Yun Bai(白云) and Xin-Yu Liu(劉新宇)

    1Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3High-Frequency High-Voltage Device and Integrated Circuits R&D Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: SiC,O2 post oxidation annealing,interface traps,MOS

    1. Introduction

    Silicon carbide (SiC) is a promising material for power electronics because of its wide band gap and high thermal conductivity. Additionally, SiC is able to grow SiO2by thermal oxidation,a conventional way similar to silicon,which is one of the unique advantages of SiC over the other compound semiconductors.[1]At present, most of the world’s leading semiconductor device manufacturers have made great progress in the production of SiC MOSFET devices. But for the oxidation treatment of SiC materials, too high or too low oxidation temperature leads to the existence of oxygen vacancy and residual carbon in gate oxide materials.

    To reduce interface defects on SiC, although many progresses have been reported by using novel treatment methods, such plasma oxidation and ALD growth of high-kdielectrics,[2-6]thermal oxides with proper POA treatments,such as H2, NO, N2O, H2O, N-O mixed plasma, H-Cl-N(10% HCl-N2) mixed plasma, and so on, are still the main stream for dielectric growth on SiC because of their relatively high reliability.[7-14]Among the above various annealing ambient,O2is the most fundamental case to study carbon-related behaviors during POA treatment, because of no introduction of additional elements. Previously, it has been found that the gas flux,which is defined by the product of annealing time and pressure, is the main factor that affects the interface state for O2POA.In specific,an optimized process window at low pressure region(~0.1 bar,1 bar=105Pa)is proposed to improve the interface quality of SiC MOS with applicable annealing duration(not too long or too short time span).[15]However,as another important factor except annealing time and pressure,the influence of temperature on the reliability of SiC/SiO2stacks needs further study. Furthermore, for O2POA, although there are several pioneering instructive works.[16-23]From the viewpoint of reliability, besidesDit, TDDB characteristics,gate-leakage density,breakdown field and their relationship still need to be further investigated.

    In this work, we study the effect of dry O2annealing at different temperatures on theDitof SiC/SiO2stacks,and further explore the effect ofDitof SiC/SiO2MOS stacks on the electrical properties of the oxide,such asJgand TDDB characteristics. Moreover, the area dependence of TDDB characteristics for thermal gate oxide on SiC is studied.

    2. Experiment

    After standard RCA cleaning, SiO2was grown by dry O2oxidation of n-type 4H-SiC epitaxial layer at 1300°C for 30 minutes followed by cooling down in N2gas with a rate of 10°C/min. Note that before cooling down process,oxygen was pumped out from the chamber to less than 1 Pa within 10 seconds.Therefore,the as-oxidized sample can be regarded as the one without any POA treatments. The thickness was confirmed to be 50 nm by 1 MHzC-Vmeasurement. The epitaxial layers were grown on (0001) Si face 4H-SiC substrate with a thickness of 12 μm,a 4°-off angle and an effective carrier density(Nd-Na)of about 7.81×1015cm-3. POA treatments were carried out at 0.1-bar dry oxygen ambient for 5 minutes with a temperature range of 800°C to 1000°C,respectively. The details are listed in Table 1. After the thermal oxidation and POA treatments, 500-nm-thick aluminum top electrodes with areas of 0.68×10-2mm2,1.83×10-2mm2,and 3.58×10-2mm2(confirmed by optical microscope)were formed by thermal evaporation with metal mask. Then, after polishing the SiC substrate backside with a diamond-pen,aluminum with thickness of 500 nm was directly evaporated to achieve back ohmic contact. Keysight B1500A and E4990 LCR meters were used forI-VandC-Vcharacterizations.

    Table 1. Detailed POA conditions for SiC/SiO2 stacks.

    3. Results and discussion

    Figure 1 shows the typical time-zero dielectric breakdown(TZDB) breakdown behavior of as-oxidized SiO2/SiC stacks(step = 0.1 MV·cm-1·s-1), which consists of soft breakdown and hard breakdown.[24]A large current jump corresponds to a hard breakdown event.[25]In general,gateJgwith a sudden jump exceeding 3 orders can be regarded as hard breakdown.[26]The soft breakdown part is the area where theJgincreases obviously without hard breakdown,and the electric field of gate oxide (Eox) from 6 MV/cm to the intrinsic breakdown field(Eint)is the soft breakdown part.

    Fig. 1. Typical breakdown behavior of as-oxidized sample of thermal gate oxide on SiC.When Jg jumps suddenly, the value of the corresponding Eox is the Eint. The Eint can guide us to determine the range of Estr,usually 90%of the Eint is taken as the Estr.

    The gate oxide is tested by TDDB with constant stress electric feild (Estr) which is determined by TZDB test. The statistics of gate oxide TDDB tests are usually described by the Weibull distribution[27]

    whereβis called the slope parameter. This Weibull slopeβis an important parameter to determine the homogeneity level when evaluating gate-oxide reliability.βhas a useful property such that if the area is increased by a factor(A1/A2),then the distribution is shifted by a factor of ln(A1/A2),and the characteristic lifetimeα1would be decreased toα2according to the following expression:[28]

    Figure 2(a) shows time-to-breakdown (Tbd) distributions obtained from TDDB test of SiC MOS capacitors with three electrode areas. For each area, the plots can be divided into two regions: the initial failure region and the random failure region according to the bathtub curve analysis.[29]Figure 2(b)just shows the data related to random failure, where the data with failure rate ofF <63.2% are attributed to initial failure and therefore can be eliminated.

    Fig. 2. TDDB Weibull distribution of as-oxidized sample of thermal gate oxide on SiC with fxiing Estr=8.55 MV/cm and varying electrode area. (a)Initial failure and random failure;(b)just random failure.

    With the decrease of electrode area from 3.58×10-2mm2to 0.68×10-2mm2, the corresponding Weibull slopes are 1.53, 1.40, and 1.55, respectively. Within the error range of 10%,the three Weibull curves are nearly parallel.The ratio between initial failure samples and total samples inTbdare 24/37, 23/36, and 17/30 respectively, which are obtained according to the number of the same electrode areaTbdin Figs. 2(b) and 2(a). The larger the area of MOS capacitor gate,the larger the proportion of initial failure inTbddistributions. Hatakeyamaet al.suggested that the surface defects are one of the major causes of initial failure.[30]With the change of the electrode area,the Weibull slopeβdoes not change,but the characteristic lifetimeαchanges. In specific, the smaller the electrode area,the larger the characteristic lifetimeα.

    Figures 3(a)-3(d) areJg-Eoxdiagrams of as-oxidized,dry-800, dry-900, and dry-1000 samples respectively. For each figure,the data are plotted from 5 samples with the same condition. Obviously, from initial to soft breakdown, five curves are nearly overlapped,suggesting the good uniformity of the sample, making it possible for the following comparison onJgandEint.As depicted in Figs.3(a)-3(d),theEintfrom small to large is dry-800,as-oxidized,dry-1000 and dry-900.

    Fig.3. (a)-(d)Jg-Eox curves of TZDB of MOS capacitor of samples as-oxidized and samples re-oxidized at different temperatures. (e)Direct comparison of the typical TZDB curves of the four groups of samples: as-oxidized, dry-800, dry-900, dry-1000. The inset shows the comparison of leakage current density in soft breakdown region of the four groups of samples.

    Figure 3(e) shows the soft breakdown regionJgof four groups of samples atEoxof 6 MV/cm. The inset shows that theJgmeets the following trend,Jg(dry-800)<Jg(dry-900)<Jg(dry-1000)<Jg(as-oxidized). Compared with theJgfrom as-oxidized sample,the ones annealed at 800°C,900°C,and 1000°C show relatively lowerJg, indicating that POA treatment is beneficial for enhancing the dielectric quality and suppressing the gate leakage. When elevating the POA temperature from 800°C to 1000°C,Jgis found to increase,suggesting that the quality is sensitive to POA temperature.

    For Fig.3(b),it is noted that a common phenomenon with“step-like”current jump near the hard breakdown field exists when compared with those in Figs. 3(a), 3(c), and 3(d), suggesting that a bilayer continuous breakdown might occur for 800-°C POA sample. In order to further investigate the effect during POA at 800°C, it is necessary to study the interface characteristic by consideringDit. This will be discussed in next section.

    Fig.4.(a)Dit of SiC MOS capacitors at different POA temperatures with 0.1-bar pressure for 5 minutes as a function of the surface potential. (b)TDDB Weibull distributions (only random failure) of thermal gate oxide on SiC at different POA temperatures with a fixed electrode area.

    Figure 4(a) shows theDitprofiles extracted by conductance method from SiC/SiO2MOS capacitors with different POA conditions. As shown in Fig. 4(a), at the energy level of 0.2 eV below the conduction band edge of SiC,Dit(dry-800)<Dit(dry-900)<Dit(dry-1000)<Dit(As-oxidized).Compared with theDitfrom as-oxidized sample,the ones annealed at 800°C,900°C,and 1000°C show relatively lowerDit,indicating that POA treatment is beneficial for eliminating interface states in the temperature range of 800°C to 1000°C.However,with the increase of POA temperature,the reduction ofDitis decreasing. The above-mentioned trade-off behavior seems to be related to the phenomenon in Fig.3(e).

    Figure 4(b)shows the TDDB Weibull distribution of thermal gate oxide on SiC at different POA temperatures with a fixed electrode area of 1.83×10-2mm2. TDDB is limited only by the quality of the oxide and the interface, and not by the intrinsic properties of the SiC.[31]So the two different Weibull slopesβwhich are extracted by linear fitting the two regions in Fig.4(b)represent the breakdown characteristics of the transition layer and SiO2layer respectively. Concerning the reason for the two slopes, it can be explained by considering the distribution of residual carbon across the interfacial transition layer and the SiO2film. Compared with SiO2, the interfacial SiOxCytransition layer is a carbon-rich one,therefore the breakdown field of the interfacial transition layer should be lower, because residual carbon is the major origin of interface traps.[32,33]

    Moreover, from the aspect of POA temperature dependence, as shown in Fig. 4(b), the sample annealed at 800°C shows the longestTbdwhen compared with the as-oxidized one and the ones annealed at higher temperature. According to Figs.3(e),4(a),and 4(b),similar trade-off distributions against POA temperature are demonstrated,suggesting thatJg,Dit, andTbdare strongly correlated. Therefore, starting from the consistency in Figs.3(e),4(a),and 4(b),the data are summarized and re-plotted in Fig.5(a)for comparison.Figure 5(a)shows theJg,the inverse median lifetime of TDDB(1000/τ)and theDitvalues atEc-0.2 eV with different POA conditions. Note the median lifetimeτof TDDB is obtained from Fig.4(b)atF=63.2%,and the inverse value ofτis used here for direct comparison because all the three parameters are required to be low for gate stack quality improvement. Compared with the other three conditions, the POA treatment at 800°C is obviously the lowest in the above three key indicators. In order to explain the three trade-offs in Fig. 5(a), a plausible model is proposed in Fig. 5(b) by considering two competing reactions and a critical temperatureTcas follows.

    For the two competing reactions,one is related to the reaction with interstitial carbon atom and oxygen vacancy, and the other one is related to the reaction with C-Si bond,both of them are oxidation reactions,this is consistent with the previous research by Zhuet al.and Kitaet al.[22,34]

    On the one hand,the increase of POA temperature is beneficial to removing the residual carbon in the transition layer and reducing the density of interface states.During POA treatment, as reported by Wang group,[22,23]carbon releases from SiOxCyin the form of CO or CO2and the SiOxCytransformation into higher oxidation states,thus reducing the SiOxCycontent and the interface transition region thickness. On the other hand, it enhances the reaction between oxygen atoms and SiC,and increases the density of interface states. This is consistent with the model proposed by Song et al. and the experimental results by Gotoet al.[35,36]SiC/SiO2becomes less stable at high temperature,and tends to form oxygen vacancies and residual carbon.[37]

    Fig. 5. (a) The Jg, the inverse median lifetime of TDDB (1000/τ), and the Dit values at 0.2 eV energy level below the edge of SiC conduction band for sample as-oxidized,dry-800,dry-900,and dry-1000. (b)Two competing reactions: generation of residual carbon and elimination of residual carbon.

    Two competing effects occur simultaneously during annealing,the removal of carbon from the interfacial region and the oxidation of SiC to produce more carbon clusters.[38]According to the SiC oxidation model by Goto and Hijikata,carbon and silicon atoms are emitted from the interface into the oxide layer during thermal oxidation.[39]And the emitted carbon atoms become interstitial carbon in SiO2. Since the interaction between interstitial carbon and surrounding SiO2network is much weaker than the strong covalent C-Si bond,the activation energy of interstitial carbon reaction with oxygen is lower than that of bonded carbon reaction with oxygen. Note that 800°C is sufficiently low temperature to neglect the additional growth of oxide,which does not contribute to the interface deterioration by the low-temperature oxidation.[34]

    For MOS capacitor, theDit,Jg, and 1/τ, are all related to the amount of defects in the oxide and at the interface. In this work, we can roughly use the difference of reaction rate between the above mentioned two reactions to evaluate the amount of defects in SiO2and SiO2/SiC interfaces. For both reactions, the reaction rate (R) can be approximately written in the following expression,R=F×exp(-Ea/kBT), whereFis a pre-factor that depends on the reactant concentration,Eais the reaction activation energy,Tis the temperature,andkBis the Boltzmann constant. For the reaction that repairs the SiO2network and SiO2/SiC interface,Fis mainly determined by the interstitial carbon and oxygen vacancy concentration.While for the latter one, it is related to the atomic density of SiC.Compared with the former one,since both interstitial carbon and oxygen vacancy are defects in the thermal oxide,the atomic density of SiC should be significantly larger. In order to make the discussion clearer and easier,we assume that in a short period of time,Fof each reaction is a fixed value. And for comparison of activation energies,as mentioned above,Eaof reaction corresponding to network repairment should be much lower than the one corresponding to oxide growth at the interface during POA. Since the temperature is involved as exp(-Ea/kBT)in the rate expression,as the POA temperature increases,rate grows faster for the reaction corresponding to higherEa.Therefore,as the POA temperature increases,the rate difference between network repairment and oxide growth becomes smaller,and thus results in less improvement of gate stack quality includingDit,Jg, and 1/τin higher POA temperature region. In this work,although only 800°C-1000°C has been investigated,we infer that such trend can be slightly extended to higher temperature(~1100°C or more),because the reaction mechanism does not change. While for the case of POA at<800°C,although the oxide growth that degrades the interface nearly stops, the POA effect on gate stack improvement also becomes quite limited in short time span such as 5 min in this study, which is consistent with the results by Yinet al. and Kitaet al.[33,34]

    Therefore, by considering the above-mentioned tradeoffs, we believe a critical temperatureTcshould exist. For the POA temperature lower thanTc,the removal rate of residual carbon increases with the increase of temperature, while for the POA temperature higher thanTc,it decreases with the increase of temperature, even with a net increase of residual carbon.

    In the POA treatment,some residual carbon can be eliminated by oxidizing and repairing the interface,which helps to reduce theDit.And when the temperature is higher thanTc,the rate of residual carbon produced by oxidation increases more with the increase of temperature. At this time,the net elimination rate of carbon residue decreases, leading to the decrease of improvement effect, and finally leading to degradation ofDit, reliability and gate leakage. This trend further confirms the inference about the existence ofTc.

    Concerning the step-like jump in TZDB tests of 800-°C POA samples,since 800°C is close toTcbased on our model,thus it is reasonable to believe that the uniformity and breakdown electric field of the interfacial layer at this condition is relatively higher, which makes the TZDB curves different from the other three ones, and causes the segmental breakdown of the two layers.

    4. Conclusion

    The effect of the O2POA temperature on the gate oxide quality is studied,in terms of gate leakage current density,interface trap density, and TDDB reliability, where trade-off distributions with the same optimized temperature(~800°C)have been demonstrated. A plausible model is proposed by considering two competing reactions,e.g.,the removal of carbon from the interfacial region and the oxidation of SiC to produce more residual carbon, and a critical temperatureTc,which can well explain all the results in this work and strongly indicating that O2POA treatment nearTcis effective in improving the oxide quality on SiC for high performance and reliability devices.

    猜你喜歡
    張倩劉鵬白云
    Dual-wavelength pumped latticed Fermi–Pasta–Ulam recurrences in nonlinear Schr¨odinger equation
    竇晨珂、曲樹(shù)云、王逸文、張倩作品精選
    Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
    《公園創(chuàng)意拼貼》
    賈逵隔籬偷學(xué)
    白云(外三首)
    Pressure-induced phase transition of B-type Y2O3?
    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*
    尋找丟失的快樂(lè)
    白云的來(lái)歷
    精品国产亚洲在线| av有码第一页| 久9热在线精品视频| av网站在线播放免费| 精品国产乱子伦一区二区三区| 岛国在线观看网站| 免费少妇av软件| 国产精品自产拍在线观看55亚洲 | av天堂久久9| 高清欧美精品videossex| 中文字幕制服av| 精品乱码久久久久久99久播| 久久人妻熟女aⅴ| 亚洲国产av新网站| 成人精品一区二区免费| 又紧又爽又黄一区二区| 考比视频在线观看| 精品免费久久久久久久清纯 | 一级毛片女人18水好多| 久久久精品区二区三区| 国产高清激情床上av| 国产精品一区二区在线观看99| 桃红色精品国产亚洲av| 91老司机精品| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看| 丝袜美腿诱惑在线| 久久午夜亚洲精品久久| 18禁裸乳无遮挡动漫免费视频| 一本—道久久a久久精品蜜桃钙片| www.熟女人妻精品国产| 亚洲综合色网址| 在线av久久热| 一级片'在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国内视频| 亚洲精品自拍成人| 在线观看免费午夜福利视频| 桃花免费在线播放| 国产亚洲欧美精品永久| 男女高潮啪啪啪动态图| 久久 成人 亚洲| 免费日韩欧美在线观看| 一区二区三区激情视频| www.自偷自拍.com| av在线播放免费不卡| 国产在线视频一区二区| 亚洲一码二码三码区别大吗| 69精品国产乱码久久久| 丁香六月欧美| 日本五十路高清| 五月开心婷婷网| 别揉我奶头~嗯~啊~动态视频| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三区在线| 日韩视频一区二区在线观看| 国产精品亚洲av一区麻豆| 精品国产国语对白av| www.自偷自拍.com| 男女免费视频国产| 黄色丝袜av网址大全| 国产精品一区二区精品视频观看| 国产伦理片在线播放av一区| 欧美成狂野欧美在线观看| 91大片在线观看| 少妇 在线观看| kizo精华| 最黄视频免费看| 日日夜夜操网爽| 女人被躁到高潮嗷嗷叫费观| 国产男女超爽视频在线观看| 欧美一级毛片孕妇| 又紧又爽又黄一区二区| 99国产精品免费福利视频| 免费观看a级毛片全部| 50天的宝宝边吃奶边哭怎么回事| 久久久久久人人人人人| 国产精品自产拍在线观看55亚洲 | 少妇猛男粗大的猛烈进出视频| 91字幕亚洲| 女性生殖器流出的白浆| 日韩中文字幕视频在线看片| www日本在线高清视频| 日韩 欧美 亚洲 中文字幕| 夜夜爽天天搞| 青青草视频在线视频观看| 不卡一级毛片| 精品国产乱码久久久久久男人| 夜夜夜夜夜久久久久| 中文字幕色久视频| 一本久久精品| 精品人妻在线不人妻| 男女边摸边吃奶| 伦理电影免费视频| 三上悠亚av全集在线观看| 十八禁网站免费在线| 波多野结衣一区麻豆| 我的亚洲天堂| 亚洲精品在线观看二区| 亚洲精华国产精华精| 久久久久精品国产欧美久久久| 日韩中文字幕欧美一区二区| av有码第一页| 美女扒开内裤让男人捅视频| 国产精品久久久久久精品古装| 99精品欧美一区二区三区四区| 如日韩欧美国产精品一区二区三区| 国产日韩一区二区三区精品不卡| 日韩制服丝袜自拍偷拍| 狠狠婷婷综合久久久久久88av| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 99在线人妻在线中文字幕 | 色综合婷婷激情| 午夜免费成人在线视频| 夜夜爽天天搞| 久久国产亚洲av麻豆专区| 99国产极品粉嫩在线观看| 久久中文字幕一级| 午夜激情久久久久久久| 亚洲欧美精品综合一区二区三区| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| 日韩中文字幕欧美一区二区| 成在线人永久免费视频| 黑人猛操日本美女一级片| 999久久久精品免费观看国产| 久久久水蜜桃国产精品网| 亚洲国产av新网站| 一级a爱视频在线免费观看| 久久中文看片网| 久9热在线精品视频| 午夜91福利影院| 天天影视国产精品| 国产精品偷伦视频观看了| 亚洲精品av麻豆狂野| 成人国产一区最新在线观看| 亚洲av日韩在线播放| 多毛熟女@视频| 建设人人有责人人尽责人人享有的| 国产精品二区激情视频| 亚洲第一欧美日韩一区二区三区 | 肉色欧美久久久久久久蜜桃| 国产在线精品亚洲第一网站| 波多野结衣av一区二区av| 99国产精品一区二区蜜桃av | 国产日韩欧美视频二区| 国产精品一区二区在线观看99| 精品欧美一区二区三区在线| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲 | 国产欧美日韩综合在线一区二区| 热re99久久精品国产66热6| 国产在线观看jvid| 黄色视频不卡| 成年人黄色毛片网站| 高清在线国产一区| 一本大道久久a久久精品| 久久久久久人人人人人| 国产免费现黄频在线看| 一区二区日韩欧美中文字幕| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜成年电影在线免费观看| 欧美激情久久久久久爽电影 | 男女下面插进去视频免费观看| 日韩一卡2卡3卡4卡2021年| 国产免费视频播放在线视频| 不卡一级毛片| 亚洲成av片中文字幕在线观看| 十八禁人妻一区二区| 一级片'在线观看视频| 不卡av一区二区三区| 97在线人人人人妻| 视频区欧美日本亚洲| 一区二区三区精品91| 欧美国产精品一级二级三级| 国产精品一区二区精品视频观看| 考比视频在线观看| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 国产男女超爽视频在线观看| 国产欧美日韩一区二区精品| 亚洲伊人久久精品综合| 大香蕉久久成人网| 成人18禁在线播放| 亚洲va日本ⅴa欧美va伊人久久| 新久久久久国产一级毛片| 老司机影院毛片| 国产国语露脸激情在线看| xxxhd国产人妻xxx| 欧美日韩黄片免| 午夜福利,免费看| 国产黄频视频在线观看| av片东京热男人的天堂| 日韩人妻精品一区2区三区| 日韩大码丰满熟妇| 99国产精品99久久久久| av免费在线观看网站| 久久狼人影院| 亚洲国产欧美一区二区综合| 国产精品亚洲av一区麻豆| 中文字幕精品免费在线观看视频| 999久久久精品免费观看国产| 黑人操中国人逼视频| 日韩制服丝袜自拍偷拍| 老司机影院毛片| 女警被强在线播放| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| 捣出白浆h1v1| 99国产精品99久久久久| 国产精品熟女久久久久浪| 日韩成人在线观看一区二区三区| 黄频高清免费视频| 成年女人毛片免费观看观看9 | 国产单亲对白刺激| 五月天丁香电影| 99re在线观看精品视频| 精品福利永久在线观看| 国产成人啪精品午夜网站| 一边摸一边抽搐一进一出视频| 一区福利在线观看| a在线观看视频网站| 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 老司机影院毛片| 嫁个100分男人电影在线观看| 免费在线观看完整版高清| 十八禁人妻一区二区| 国产精品一区二区在线不卡| 我要看黄色一级片免费的| 少妇精品久久久久久久| 国产成人精品久久二区二区91| 亚洲av日韩在线播放| 亚洲精品中文字幕一二三四区 | 欧美乱码精品一区二区三区| 99久久人妻综合| 久久人妻福利社区极品人妻图片| 日韩中文字幕视频在线看片| 手机成人av网站| 国产高清激情床上av| 嫁个100分男人电影在线观看| 久久热在线av| 美女视频免费永久观看网站| 午夜福利,免费看| 99精品久久久久人妻精品| 日日摸夜夜添夜夜添小说| 乱人伦中国视频| 免费观看av网站的网址| 一级毛片电影观看| 亚洲精品中文字幕在线视频| 国产精品二区激情视频| 国产精品欧美亚洲77777| 成人av一区二区三区在线看| 久久人妻福利社区极品人妻图片| 亚洲综合色网址| 亚洲av第一区精品v没综合| 国产成人精品无人区| 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 日本五十路高清| 国产一区二区激情短视频| 亚洲色图 男人天堂 中文字幕| 中文字幕av电影在线播放| 亚洲 欧美一区二区三区| 制服人妻中文乱码| 无限看片的www在线观看| 两个人免费观看高清视频| 欧美日韩成人在线一区二区| 99国产精品99久久久久| 成年动漫av网址| 91国产中文字幕| 亚洲av成人一区二区三| 午夜免费成人在线视频| 免费观看人在逋| 国产精品亚洲av一区麻豆| 下体分泌物呈黄色| 亚洲精品一二三| 在线观看免费午夜福利视频| 一区二区三区乱码不卡18| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影 | 91大片在线观看| 女人被躁到高潮嗷嗷叫费观| 国内毛片毛片毛片毛片毛片| 免费av中文字幕在线| 在线观看www视频免费| 黑丝袜美女国产一区| www.熟女人妻精品国产| 中文字幕制服av| 天堂中文最新版在线下载| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| 久久久久精品国产欧美久久久| 国产又爽黄色视频| 欧美一级毛片孕妇| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 日本vs欧美在线观看视频| 成人av一区二区三区在线看| 欧美人与性动交α欧美精品济南到| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 国产精品免费视频内射| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 中文字幕另类日韩欧美亚洲嫩草| 91九色精品人成在线观看| 欧美日本中文国产一区发布| 50天的宝宝边吃奶边哭怎么回事| 国产精品二区激情视频| 日本av手机在线免费观看| 他把我摸到了高潮在线观看 | 国产精品二区激情视频| 黄色a级毛片大全视频| 国产免费av片在线观看野外av| 大片电影免费在线观看免费| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 女人精品久久久久毛片| 丝袜喷水一区| 国产成人欧美在线观看 | 一区二区日韩欧美中文字幕| 天堂俺去俺来也www色官网| 国产主播在线观看一区二区| cao死你这个sao货| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 精品一品国产午夜福利视频| 亚洲av国产av综合av卡| 国产片内射在线| 变态另类成人亚洲欧美熟女 | 欧美日韩亚洲综合一区二区三区_| 久久性视频一级片| 脱女人内裤的视频| 桃红色精品国产亚洲av| 国产片内射在线| 麻豆乱淫一区二区| 精品人妻熟女毛片av久久网站| 在线观看免费午夜福利视频| 一本综合久久免费| 国产精品麻豆人妻色哟哟久久| 中亚洲国语对白在线视频| 精品一区二区三区av网在线观看 | 两个人免费观看高清视频| 国产成人影院久久av| 日日摸夜夜添夜夜添小说| 国产日韩欧美在线精品| 一边摸一边抽搐一进一小说 | 国产高清国产精品国产三级| 老熟女久久久| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区久久| 精品久久久久久久毛片微露脸| 国产1区2区3区精品| 国产精品二区激情视频| 国产精品一区二区免费欧美| 中文字幕人妻丝袜一区二区| 黄色丝袜av网址大全| 精品视频人人做人人爽| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 欧美中文综合在线视频| h视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 99久久人妻综合| 在线观看免费午夜福利视频| 纯流量卡能插随身wifi吗| tocl精华| 久久婷婷成人综合色麻豆| 黄片大片在线免费观看| 一级黄色大片毛片| 国产精品 国内视频| 久久久久网色| 亚洲av日韩在线播放| 亚洲专区字幕在线| 日韩熟女老妇一区二区性免费视频| xxxhd国产人妻xxx| 99在线人妻在线中文字幕 | 日日摸夜夜添夜夜添小说| 深夜精品福利| 日日夜夜操网爽| 19禁男女啪啪无遮挡网站| 真人做人爱边吃奶动态| 日韩视频一区二区在线观看| 久久精品亚洲熟妇少妇任你| 一级,二级,三级黄色视频| 一边摸一边做爽爽视频免费| 如日韩欧美国产精品一区二区三区| 精品一区二区三区视频在线观看免费 | 麻豆乱淫一区二区| 久久久国产成人免费| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说 | 少妇裸体淫交视频免费看高清 | 夫妻午夜视频| 亚洲国产成人一精品久久久| 男女下面插进去视频免费观看| 99国产精品99久久久久| 国产一卡二卡三卡精品| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 99riav亚洲国产免费| 免费日韩欧美在线观看| 亚洲国产成人一精品久久久| 亚洲专区字幕在线| 国产高清激情床上av| 麻豆国产av国片精品| 精品国产国语对白av| 热99久久久久精品小说推荐| 亚洲国产av影院在线观看| 精品福利观看| 国内毛片毛片毛片毛片毛片| 国产99久久九九免费精品| 日韩欧美一区视频在线观看| 国产麻豆69| 欧美人与性动交α欧美软件| 99国产精品一区二区三区| 国产精品免费一区二区三区在线 | 欧美日韩国产mv在线观看视频| 十八禁高潮呻吟视频| 欧美精品一区二区免费开放| 欧美日韩av久久| 天天添夜夜摸| 久久99热这里只频精品6学生| 日韩精品免费视频一区二区三区| 99久久国产精品久久久| 久久国产精品影院| 成在线人永久免费视频| 一级毛片精品| 一二三四社区在线视频社区8| 真人做人爱边吃奶动态| 免费观看人在逋| 亚洲av成人一区二区三| 日本a在线网址| 亚洲午夜理论影院| 国产免费福利视频在线观看| 午夜两性在线视频| 无人区码免费观看不卡 | √禁漫天堂资源中文www| 欧美午夜高清在线| 国产精品电影一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 一区二区日韩欧美中文字幕| 久久青草综合色| 午夜福利在线免费观看网站| 色婷婷久久久亚洲欧美| 黄片大片在线免费观看| 乱人伦中国视频| av网站在线播放免费| 国产精品免费一区二区三区在线 | 美女国产高潮福利片在线看| 两性夫妻黄色片| 99久久人妻综合| 大片电影免费在线观看免费| 天堂动漫精品| 成人永久免费在线观看视频 | 天天躁夜夜躁狠狠躁躁| 欧美一级毛片孕妇| 欧美黑人欧美精品刺激| 男男h啪啪无遮挡| 亚洲欧美一区二区三区黑人| 天堂俺去俺来也www色官网| 黄色片一级片一级黄色片| 日本欧美视频一区| 精品一区二区三区av网在线观看 | 精品国内亚洲2022精品成人 | 久久久精品免费免费高清| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看 | 国产精品成人在线| 在线观看66精品国产| 精品免费久久久久久久清纯 | 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 日本一区二区免费在线视频| 久久婷婷成人综合色麻豆| 后天国语完整版免费观看| 国产成人欧美| 波多野结衣一区麻豆| 欧美亚洲日本最大视频资源| 欧美成狂野欧美在线观看| 女同久久另类99精品国产91| 国产三级黄色录像| 国产精品一区二区在线不卡| 热99久久久久精品小说推荐| 99久久精品国产亚洲精品| 欧美国产精品va在线观看不卡| 肉色欧美久久久久久久蜜桃| 一边摸一边抽搐一进一出视频| 国产精品成人在线| 免费黄频网站在线观看国产| 男女高潮啪啪啪动态图| 成人亚洲精品一区在线观看| 亚洲午夜精品一区,二区,三区| 欧美日韩视频精品一区| 国产日韩欧美在线精品| 午夜免费鲁丝| 亚洲七黄色美女视频| 亚洲中文字幕日韩| 日本vs欧美在线观看视频| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久二区二区91| 999精品在线视频| 国产成人免费观看mmmm| 黄片小视频在线播放| 欧美乱码精品一区二区三区| 国产成人影院久久av| 亚洲伊人色综图| 欧美中文综合在线视频| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久精品电影小说| 免费观看a级毛片全部| 国产又爽黄色视频| 99精品在免费线老司机午夜| 欧美在线一区亚洲| 大型黄色视频在线免费观看| svipshipincom国产片| 久久久国产精品麻豆| 亚洲精品一卡2卡三卡4卡5卡| 视频区图区小说| 久久精品国产亚洲av香蕉五月 | 亚洲av成人不卡在线观看播放网| 国产男女内射视频| 19禁男女啪啪无遮挡网站| 色老头精品视频在线观看| 美女主播在线视频| 国产不卡一卡二| 欧美久久黑人一区二区| 免费观看av网站的网址| 久久婷婷成人综合色麻豆| 欧美成人免费av一区二区三区 | 男女免费视频国产| 少妇粗大呻吟视频| av网站在线播放免费| 国产午夜精品久久久久久| 757午夜福利合集在线观看| 制服诱惑二区| 国产不卡一卡二| 国产1区2区3区精品| 色精品久久人妻99蜜桃| 韩国精品一区二区三区| 国产精品一区二区在线不卡| 91av网站免费观看| 老司机靠b影院| 欧美成人免费av一区二区三区 | 亚洲一码二码三码区别大吗| 999久久久国产精品视频| 男女高潮啪啪啪动态图| 国产精品av久久久久免费| 久久久精品区二区三区| 亚洲国产欧美在线一区| 国产一区二区激情短视频| 一二三四在线观看免费中文在| 性少妇av在线| 中文字幕人妻丝袜一区二区| 亚洲一区中文字幕在线| 免费在线观看黄色视频的| 少妇被粗大的猛进出69影院| 国产亚洲精品一区二区www | 亚洲精品av麻豆狂野| a级毛片在线看网站| 国产男靠女视频免费网站| 91老司机精品| 精品福利永久在线观看| 99国产极品粉嫩在线观看| 亚洲情色 制服丝袜| 久久99一区二区三区| 韩国精品一区二区三区| 最近最新中文字幕大全电影3 | 国产欧美日韩一区二区精品| 一区福利在线观看| 午夜91福利影院| 如日韩欧美国产精品一区二区三区| 国产不卡一卡二| 亚洲av片天天在线观看| 成人手机av| 欧美在线黄色| 国产成人精品久久二区二区免费| 在线观看免费日韩欧美大片| 精品国产一区二区三区四区第35| 亚洲中文日韩欧美视频| 黄片大片在线免费观看| 精品一区二区三卡| 亚洲av成人一区二区三| 久久午夜亚洲精品久久| 一区二区日韩欧美中文字幕| 一区二区三区乱码不卡18| 麻豆国产av国片精品| 午夜福利一区二区在线看| 中文字幕精品免费在线观看视频| 亚洲人成电影免费在线| 亚洲精品一二三| 在线 av 中文字幕| 极品人妻少妇av视频| 一二三四社区在线视频社区8| 国产精品98久久久久久宅男小说| 最新在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 中文亚洲av片在线观看爽 | 亚洲一区中文字幕在线| 老司机午夜十八禁免费视频| 99re6热这里在线精品视频|