• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*

    2017-03-09 09:09:36ZhongtaoWang王忠濤PengLiu劉鵬DongshengJengQingYang楊慶
    關(guān)鍵詞:劉鵬

    Zhong-tao Wang (王忠濤), Peng Liu (劉鵬), Dongsheng Jeng, Qing Yang (楊慶)

    1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China, E-mail:zhongtao@dlut.edu.cn

    2. Griffith School of Engineering, Griffith University Gold Coast Campus, Queensland, QLD 4222, Australia

    (Received January 31, 2015, Revised July 1, 2015)

    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*

    Zhong-tao Wang (王忠濤)1, Peng Liu (劉鵬)1, Dongsheng Jeng2, Qing Yang (楊慶)1

    1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China, E-mail:zhongtao@dlut.edu.cn

    2. Griffith School of Engineering, Griffith University Gold Coast Campus, Queensland, QLD 4222, Australia

    (Received January 31, 2015, Revised July 1, 2015)

    The principal stress rotation is one of the most important features of the stress state in a seabed subjected to wave loading. Most prior investigations focused their attention on the cyclic behaviour of soil deposits under the circular rotation stress path based on the analytical solutions for a seabed of infinite thickness. In this paper, the nonstandard elliptical, i.e., non-circular, rotation stress path is shown to be a more common state in the soil sediments of a finite seabed with an alternating changeover in stress due to a travelling regular wave. Then an experimental investigation in a hollow cylinder triaxial-torsional apparatus is conducted into the effect of the nonstandard elliptical stress path on the cyclic strength. A special attention is placed on the difference between the circular rotation stress path and the elliptical rotation stress path. The results and observations show that the shear characteristics for the circular rotation stress path in the literature are not applicable for analyzing the cyclic strength of sand in a finite seabed, and also indicate that due to the influence of three parameters about the size and the shape of a nonstandard ellipse, the cyclic strength under a nonstandard elliptical rotation stress path is evidently more complex and diversified as compared with that under a circular rotation stress path. Especially the influence of the initial phase difference on the cyclic strength is significant.

    Principal stress rotation, cyclic strength, nonstandard elliptical rotation stress path, wave loading

    Introduction

    The seabed of infinite thickness is only an ideal case. Hsu and Jeng[14]developed a set of general solutions for the porous seabed of finite thickness. Their analytical solutions indicate that the thickness of the seabed plays a dominant role in the evaluation of the wave-induced response of the seabed. Later, the problem of the wave-induced dynamic response of the finite seabed has received much attention[15-22]. Meanwhile, laboratory experiments and field measurements of the wave-induced pore pressure and the effective stresses were also conducted on a porous soil of finite thickness. But the corresponding stress path for the seabed soil with finite thickness is not further examined, and there are not experimental evidences of its effects on the characterisation of the soil behaviour. Therefore, it is necessary to re-explore the work by Ishihara and Towhata[2]through theoretical and experimental investigations of a finite seabed.

    The objective of this paper is to investigate the cyclic strength of the sand under the nonstandard elliptical rotation stress path induced by the wave loading. Before that, the nonstandard elliptical, i.e., non-circular, rotation stress path will be shown to be a more common state in the seabed soil of finite thickness due to the linear regular wave. And three parameters that determine the size and the shape of a nonstandard ellipse will be deduced. Then by using a hollow cylinder triaxial-torsional apparatus, the effects of the three parameters on the cyclic strength will be investigated separately and an experimental comparison between the circular stress path and the elliptical stress path will be made to demonstrate the necessity of adopting the elliptical rotation stress path for evaluating the cyclic strength of the sand in a finite seabed.

    1. Nonstandard elliptical rotation stress path in the seabed

    Considering the initial earth stress, the effective stress in the soil sediment can be expressed as

    whereγsandγware the unit weights of soil and water, respectively, andk0is the lateral earth pressure coefficient at rest.σz′,σx′andτzxare the waveinduced effective stresses for 2-D progressive waves, as described by Hsu and Jeng[14].zis the vertical position in the seabed.

    The normal stress difference is expressed as

    where

    whereRe{}indicates that only the real part of the complex solution is to be considered.ei?=cos?+ isin?, where?=kx?ωt.kis the wave number,ωis the angular frequency of the wave,tis the time andxis the horizontal position.p0=γwH/ 2cosh(kd)represents the amplitude of the wave loading on the surface.His the wave height of the short-crested waves, anddis the water depth.M1can be deduced as follows based on the analytical solution of the dynamic response of the seabed under 2-D progressive waves by Hsu and Jeng[14]

    The complex numbersC1throughC6are six coefficients, and the parameterδcan be interpreted as themodified wave number due to the wave action on a porous seabed.λis a parametric coefficient reflecting the saturation degree of the soil. All these parameters are described in detail in Hsu and Jeng[14]. BecauseM1is a complex number, it can be expressed as

    A1is the real part, andB1is the imaginary part.

    Equation (4) can be expressed as

    whereais the amplitude of (σz′?σx′)/2andθ1is the initial phase angle of(σz′?σx′)/2.

    Substituting Eq.(7) into Eq.(2), we have

    The shear stress can be expressed as

    where

    BecauseM2is a complex number, it can be expressed as

    A2is the real part, andB2is the imaginary part.

    Then, Eq.(10) can be expressed as

    where

    wherebis the amplitude ofτzxandθ2is the initial phase angle ofτzx.

    In summary, we have

    Equation (15) leads to

    Table 1 Physical parameters of wave and soil

    Figure 1 shows the stress path at various depths of the finite seabed, and Fig.2 shows the vertical distributions ofa,bandθversusz/h. Also plotted in Fig.2 are the numerical results obtained from the analytical solutions for the infinite seabed. The following observations can be made:

    (1) The orientation of the principal stress rotates continuously. Furthermore, at the largest seabed depth,ais not equal tobaccording to the numerical results obtained from the analytical solutions for the finite seabed.

    (2) Whenθ≠0, the stress paths form a nonstandard ellipses across the soil depth. As shown in Fig.1(b), the nonstandard degree of an ellipse is greater, near the seabed surface.

    (3) The size and the shape of the ellipse vary with the depth of the finite seabed as shown in Fig.1.

    (4)ais equal tobandθ=0when the thickness of the seabed becomes infinite as shown in Fig.2. The corresponding stress paths across the soil depth are not presented in this paper, but will precisely be a series of circles according to Eq.(15).

    Fig.1 Stress paths on the [(′?)/2,τzx]plane at the different depths of the seabed. (theY-axis scale is enlarged 5 times for clarity in Fig.1(b))

    Fig.2 Vertical distributions ofa,bandθversusz/h

    The nonstandardelliptical rotation stress path is shown to be more common than the circular rotation stress path in the finite seabed under a regular wave loading. Therefore, it is necessary to conduct undrained hollow cylinder triaxial-torsional tests to study the cyclic strength under a nonstandard elliptical rotation stress path. The cyclic strengthτfis defined as the cyclic shear stressτcycneeded to reach a specified value of the accumulated strain in a given number of uniform cycles. The number of stress cycles to the failure of the specimen is defined asNf. There is a correspondence between the cyclic shear stressτcyc, the cyclic strengthτfand the failure cyclesNf, and with a largerNf,τcycandτfare smaller.

    2.1Test process

    The testing is carried out with reconstituted specimens of Chinese Fujian Standard Sand, with a mean particle diameterD=3.4× 10?4mand the specific

    50gravityGs= 2.643 . A ll spe cimens are isotro pically consolidatedunderameannormaleffectivestress

    2. Investigation of cyclic strength through hollow cylinder triaxial-torsional tests

    =100 kPaand a coefficient of the intermediate principal stressb=0.5. A loading frequency of 0.1 Hz is used for all tests. The initial relative densityDris controlled to be 30%. The details of the method of the hollow cylinder triaxial-torsional tests can be found in Yang et al.[6]. In the course of experiment,a,bandθare controlled independently to achieve a nonstandard elliptical or circular rotation stress path. The uniform failure criterion is defined as 5% of the generalised shear strain.

    Table 2 Tests for comparison

    Table 3 Tests in detail

    2.2Test programme

    Firstly, a comparison of the experimental results between the circular stress path and the elliptical stress path is made to demonstrate the necessity of adopting the elliptical rotation stress path to evaluate the cyclic strength of the sand in the finite seabed. Secondly, seventeen hollow cylinder triaxial-torsional tests are carried out to explore the relationship betweenNfand the three parametersa,bandθfor the nonstandard elliptical rotation stress path.

    2.2.1 Comparative tests between the circular rotation stress path and the elliptical rotation stress path Six hollow cylinder triaxial-torsional tests are conducted to demonstrate the difference of the cyclic strength between the elliptical rotation stress path and the circular rotation stress path. The stress paths are correspondingly inferred from the analytical solutions for the finite and infinite seabeds at the depths ofz/h=?0.16, ?0.24, ?0.32 of the example in Section 1.The calculated values ofa,bandθare listed in Table 2 together with the experimental values.

    2.2.2 Tests for the nonstandard elliptical rotation stress path

    Seventeen hollow cylinder triaxial-torsional tests are carried out to see the effect of the nonstandard elliptical rotation stress path on the cyclic strength. In Section 1, it is shown thata,bandθare three key parameters that determine the size and the shape of a nonstandard ellipse. Therefore, in this part, by fixing two of them and changing the other, some shear characteristics for a nonstandard elliptical rotation stress path can be found. Three parametersa,bandθare designed to cover the major range of the shear stress, the normal stress difference and the initial phase difference for the example in Section 1.

    The program for the cyclic rotational shear test is as follows:

    (1) Series 1: fixaand keepθ=0, changeb(a>b).

    (2) Series 2: fixband keepθ=0, changea(a<b).

    (3) Series 3:a=b,θ=0.

    (4) Series 4: fixbanda, changeθ(a>b).

    (5) Series 5: fixaandb, changeθ(a<b).

    The tests are summarised in Table 3 in detail.

    Fig.3 Comparison between the elliptical rotation stress path and the circular rotation stress path

    2.3Test results and analyses

    2.3.1 The results of the comparative tests between the circular rotation stress path and the elliptical rotation stress path

    The results of the failure cycles for varying positions of the seabed under the elliptical rotation stress path and the circular rotation stress path are shown in Fig.3. The failure cycles for the latter are increased when the thickness of the seabed tends to infinite, which indicates that the stress strength induced by the wave loading may be underestimated if the finite seabed is regarded as infinite. Therefore, the shear characteristics under the circular rotation stress path in the literature are not applicable for analyzing the cyclic strength of the sand in the finite seabed.

    2.3.2 The effect of the nonstandard elliptical rotation

    stress path

    The experimental results in Section 2.2.2 are plotted in Fig.4 and Fig.5. Figure 4 shows the relationship between the minor part (aorb) and lgNfwhen the major part (bora) is fixed to be 15 kPa andθ=0, indicating that:

    (1)lgNfdecreases as the minor part increases.

    Fig.4 The relationship between the minor part (aorb) and lgNf

    Fig.5 The relationship betweenθandNf

    Figure 5 shows the test results of Series 4 and Series 5. The results of S3 and S6 are also plotted to show the relationship between lgNfandθ. The results of S1 and S4 are also evaluated. From Fig.5, it follows that:

    (1)lgNfandθdisplay an approximately linear relation for specimens with the sameaandb, andlgNfincreases withθrapidly, which means that the influence ofθon the cyclic strength is significant.

    (2) By comparing every pair of Series 4 and Series 5 like S13 and S8, at a givenθ,lgNfof Series 5 is larger than that of Series 4, as is consistent with the experimental results of Fig.4.

    (3) Due to the influence ofθ, it is uncertain that the cyclic strength under the nonstandard elliptical rotation stress path is larger or smaller than that of the cyclic triaxial shear test or the cyclic torsion shear test (for example, the results of S1, S4, S6, S17).

    3. Conclusion

    The wave-in duced stress path in the seabed is traditionally considered as a circle. However, the circular rotation stress path only occurs in an infinite seabed. In this paper, a nonstandard elliptical rotation stress path is shown to be a more common stress state based on the analytical solutions for a finite seabed. Three parametersa,bandθrelated to the size and the shape of the ellipse are considered. An experimental comparison between the circular stress path and the elliptical stress path is conducted and the experimental results demonstrate the necessity of adopting the elliptical rotation stress path to evaluate the cyclic strength of the sand in a finite seabed. Then the cyclic strength under the nonstandard elliptical rotation stress path is investigated in more detail by seventeen hollow cylinder triaxial-torsional tests. The experimental results indicate that the cyclic strength under the nonstandard elliptical rotation stress path is evidently more complex and diversified as compared with a circular rotation stress path or a cyclic triaxial or torsion shear test. Especially the cyclic strength increases with the increase of the initial phase differenceθrapidly, which means that the influence ofθshould be paid more attention. The experimental observations in this paper might be used to establish a new failure criterion for the nonstandard elliptical rotation stress path.

    [1] Madsen O. S. Wave-induced pore pressures and effective stresses in a porous bed [J].Géotechnique, 1978, 28(4): 377-393.

    [2] Ishihara K., Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads [J].Soils and Foundations, 1983, 23(4): 11-26.

    [3] Yang Z. X., Li X. S., Yang J. Undrained anisotropy and rotational shear in granular soil [J].Géotechnique, 2007, 57(4): 371-384.

    [4] Lade P. V., Rodriguez N. M., Dyck E. J. V. Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand [J].Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 362-363.

    [5] Rodriguez N. M., Lade P. V. Effects of principal stress directions and mean normal stress on failure criterion for cross-anisotropic sand [J].Journal of Engineering Mechanics, 2013, 139(11): 1592-1601.

    [6] Kuenza K., Towhata I., Orense R. P. et al. Undrained torsional shear tests on gravelly soils [J].Landslides, 2004, 1(3): 185-194.

    [7] Georgiannou V. N., Konstadinou M. Cyclic behaviour of loose anisotropically consolidated Ottawa sand under undrained torsional loading [J].Géotechnique, 2013, 63(13): 1144-1158.

    [8] Blanc M., Benedetto H. D., Tiouajni S. Deformation Charcteristics of dry hostun sand with principal stress axes rotation [J].Soils and Foundations, 2011, 51(4): 749-760.

    [9] Xiao J., Juang C. H., Wei K. et al. Effects of principal stress rotation on the cumulative deformation of normally consolidated soft clay under subway traffic loading [J].Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 80-90.

    [10] Graebe P. J., Clayton C. R. I. Effects of principal stress rotation on resilient behavior in rail track foundations [J].Journal of Geotechnical Engineering, 2014, 140(2): 1-10.

    [11] Yu H. S., Yang L. T., Li X. et al. Experimental investigation on the deformation characteristics of granular materials under drained rotational shear [J].Geomechanics and Geoengineering, 2015, 11(1): 47-63.

    [12] Konstadinou M., Georgiannou V. N. Effects of density on cyclic behaviour of anisotropically consolidated Ottawa sand under undrained torsional loading [J].Géotechnique, 2014, 64(4): 287-302.

    [13] Pan H. Undrained dynamic strength behavior of saturated nanjing fine sand under wave load [J].Marine Georesources and Geotechnology, 2016, 34(2): 188-193.

    [14] Hsu J. R. C., Jeng D. S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness [J].International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785-807.

    [15] Lee T. C., Tsai C. P., Jeng D. S. Ocean waves propagating over a porous seabed of finite thickness [J].Ocean Engineering, 2002, 29(01): 1577-1601.

    [16] Liu Z., Jeng D. S., Chan A. H. C. et al. Wave-induced progressive liquefaction in a poro-elastoplastic seabed: A two-layered model [J].International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(5): 591-610.

    [17] Hua L. N., YU X. P. Element-free Galerkin method for response of stratified seabed under wave action[J].Journal of Hydrodynamics, 2009, 21(4): 550-556.

    [18] Sun Y. J., Lu S. Q., Lin W. Q. et al. In-situ study on nutrient release fluxes from shallow lake sediments under wind-driven waves [J].Journal of Hydrodynamics, 2016, 28(2): 247-254.

    [19] Zhao H. Y., Jeng D. S., Guo Z. et al. Two-dimensional model for pore pressure accumulations in the vicinity of a buried pipeline [J].Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4): 042001.

    [20] Zhang Y., Jeng D. S., Gao F. P. et al. An analytical solution for response of a porous seabed to combined wave and current loading [J].Ocean Engineering, 2013, 57: 240-247.

    [21] Zhou X., Zhang J., Wang J. et al. Stability and liquefaction analysis of porous seabed subjected to cnoidal wave [J].Applied Ocean Research, 2014, 48: 250-265.

    [22] Wang Z. T., Liu P., Yang Q. Dynamic strength of saturated loose sand under nonstandard elliptical stress path [J].Chinese Journal of Geotechnical Engineering, 2016 38(6): 1133-1139(in Chinese).

    * Project supported by the Natural Science Foundation of China (Grant Nos. 51639002, 51209033), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120041130002).

    Biography:Zhong-tao Wang (1974-), Male, Ph. D., Associate Professor

    Peng Liu, E-mail:lp-536@163.com

    猜你喜歡
    劉鵬
    Active thermophoresis and diffusiophoresis
    Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
    《公園創(chuàng)意拼貼》
    新時期配電運(yùn)檢工作的優(yōu)化策略研究
    爸媽腿腳不好, 當(dāng)心這個病
    祝您健康(2020年9期)2020-09-08 06:21:54
    贖罪婚姻
    中外文摘(2017年19期)2017-10-10 08:28:38
    劉鵬
    藝術(shù)家(2017年4期)2017-06-07 07:28:10
    On d-Dimensional Lattice(co)sine n-Algebra?
    局長多說一句話
    映像畜牧業(yè)
    亚洲欧美中文字幕日韩二区| 色视频www国产| 新久久久久国产一级毛片| 大香蕉97超碰在线| 一区二区三区四区激情视频| 综合色丁香网| 少妇猛男粗大的猛烈进出视频 | 麻豆乱淫一区二区| 色视频www国产| 亚洲精品乱码久久久v下载方式| 亚洲不卡免费看| 精品人妻一区二区三区麻豆| 97在线人人人人妻| 99热6这里只有精品| 特大巨黑吊av在线直播| 国产色爽女视频免费观看| 赤兔流量卡办理| 涩涩av久久男人的天堂| 大码成人一级视频| 精品人妻偷拍中文字幕| 亚洲成人久久爱视频| 免费在线观看成人毛片| 国产精品99久久99久久久不卡 | 午夜老司机福利剧场| 国产精品久久久久久精品电影小说 | 久久久久久九九精品二区国产| 街头女战士在线观看网站| 亚洲美女视频黄频| 啦啦啦在线观看免费高清www| 舔av片在线| 午夜免费鲁丝| av国产久精品久网站免费入址| 国产精品熟女久久久久浪| a级毛色黄片| 香蕉精品网在线| 新久久久久国产一级毛片| 日韩视频在线欧美| 人妻 亚洲 视频| 国产精品伦人一区二区| 国产成人免费无遮挡视频| 国产精品国产三级专区第一集| 中文天堂在线官网| 国内少妇人妻偷人精品xxx网站| 纵有疾风起免费观看全集完整版| 免费高清在线观看视频在线观看| 久久精品人妻少妇| 中文字幕av成人在线电影| 国产免费一级a男人的天堂| 身体一侧抽搐| 国产精品福利在线免费观看| 日韩不卡一区二区三区视频在线| 99久久中文字幕三级久久日本| 亚洲精品成人久久久久久| 日本wwww免费看| 搡女人真爽免费视频火全软件| 26uuu在线亚洲综合色| 国产一区二区在线观看日韩| 亚洲av男天堂| 亚州av有码| 久久久国产一区二区| 亚洲国产欧美在线一区| 成人国产麻豆网| 街头女战士在线观看网站| 亚洲成色77777| 久久精品熟女亚洲av麻豆精品| 亚洲精品一区蜜桃| 精品一区二区三卡| 男人添女人高潮全过程视频| 成人欧美大片| 伦精品一区二区三区| 中国美白少妇内射xxxbb| 白带黄色成豆腐渣| 肉色欧美久久久久久久蜜桃 | 国产极品天堂在线| 国产精品偷伦视频观看了| 久久精品国产自在天天线| xxx大片免费视频| 丰满乱子伦码专区| 少妇裸体淫交视频免费看高清| 国产极品天堂在线| 亚洲va在线va天堂va国产| 久久午夜福利片| 国语对白做爰xxxⅹ性视频网站| 最后的刺客免费高清国语| 国产成人a∨麻豆精品| 性插视频无遮挡在线免费观看| 男人爽女人下面视频在线观看| 亚洲国产色片| 国产美女午夜福利| 天堂俺去俺来也www色官网| 久久精品国产a三级三级三级| 亚洲人成网站在线播| 午夜福利视频精品| 视频中文字幕在线观看| 国产亚洲午夜精品一区二区久久 | 日本爱情动作片www.在线观看| 嫩草影院新地址| 校园人妻丝袜中文字幕| 国产免费视频播放在线视频| 久久99热这里只频精品6学生| av在线播放精品| 男人和女人高潮做爰伦理| 久久人人爽人人片av| 一级av片app| 97在线人人人人妻| 久久这里有精品视频免费| 国产伦在线观看视频一区| 欧美+日韩+精品| 日本wwww免费看| 午夜日本视频在线| 日韩欧美精品v在线| 99热网站在线观看| 国产精品爽爽va在线观看网站| av国产精品久久久久影院| 日韩免费高清中文字幕av| 国产精品99久久99久久久不卡 | 久热久热在线精品观看| 欧美成人午夜免费资源| 久久久久久久亚洲中文字幕| 小蜜桃在线观看免费完整版高清| 少妇高潮的动态图| 国产女主播在线喷水免费视频网站| 汤姆久久久久久久影院中文字幕| 97人妻精品一区二区三区麻豆| 少妇人妻久久综合中文| 日本猛色少妇xxxxx猛交久久| 高清视频免费观看一区二区| 国产伦精品一区二区三区四那| 人妻制服诱惑在线中文字幕| 国产精品久久久久久久电影| 亚洲av欧美aⅴ国产| 日本午夜av视频| 又粗又硬又长又爽又黄的视频| 欧美zozozo另类| 亚洲四区av| 少妇熟女欧美另类| 亚洲人成网站在线播| 可以在线观看毛片的网站| 欧美+日韩+精品| 人人妻人人澡人人爽人人夜夜| 午夜福利高清视频| 亚洲成人中文字幕在线播放| 精品一区二区免费观看| 亚洲国产精品专区欧美| 爱豆传媒免费全集在线观看| 搡老乐熟女国产| 丝袜美腿在线中文| 99热6这里只有精品| 亚洲不卡免费看| 噜噜噜噜噜久久久久久91| 国产成人精品福利久久| 欧美潮喷喷水| 少妇的逼水好多| 亚洲国产日韩一区二区| 夜夜看夜夜爽夜夜摸| 久久久久久久久久人人人人人人| 亚洲一区二区三区欧美精品 | 丰满人妻一区二区三区视频av| 91狼人影院| 亚洲欧美日韩卡通动漫| 亚洲国产最新在线播放| 久久久色成人| 成人二区视频| 在线观看一区二区三区激情| 黄色一级大片看看| 午夜福利网站1000一区二区三区| 亚洲欧美精品专区久久| 五月玫瑰六月丁香| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站 | 免费不卡的大黄色大毛片视频在线观看| 夫妻午夜视频| 美女主播在线视频| 亚洲怡红院男人天堂| 亚洲成人久久爱视频| eeuss影院久久| 日本午夜av视频| 免费电影在线观看免费观看| 久久久精品94久久精品| 18禁裸乳无遮挡免费网站照片| 啦啦啦啦在线视频资源| 亚洲精品一区蜜桃| 欧美成人午夜免费资源| 日韩视频在线欧美| 大香蕉久久网| 国产成人精品久久久久久| 99久久九九国产精品国产免费| 国产毛片a区久久久久| 三级国产精品欧美在线观看| 人体艺术视频欧美日本| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 别揉我奶头 嗯啊视频| 国产有黄有色有爽视频| 国产精品爽爽va在线观看网站| 久久精品久久久久久久性| 99re6热这里在线精品视频| 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 国产v大片淫在线免费观看| 黄色配什么色好看| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区国产| 国产午夜精品一二区理论片| 1000部很黄的大片| 国产视频首页在线观看| 亚洲国产精品成人久久小说| 国产欧美亚洲国产| 国产成人精品婷婷| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产乱来视频区| .国产精品久久| 亚洲av.av天堂| 国产淫片久久久久久久久| 不卡视频在线观看欧美| 精品久久久久久久久av| 亚洲精品中文字幕在线视频 | 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| 99视频精品全部免费 在线| 中文精品一卡2卡3卡4更新| 精品人妻熟女av久视频| 高清午夜精品一区二区三区| 国产精品精品国产色婷婷| 成年av动漫网址| 国产免费一级a男人的天堂| av在线天堂中文字幕| 特大巨黑吊av在线直播| 午夜福利高清视频| 久久6这里有精品| 最近最新中文字幕大全电影3| 国产老妇女一区| 97在线视频观看| 婷婷色av中文字幕| 日本免费在线观看一区| 嫩草影院精品99| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 天天躁日日操中文字幕| 天堂网av新在线| 日韩精品有码人妻一区| 水蜜桃什么品种好| www.av在线官网国产| 日韩av免费高清视频| 成年免费大片在线观看| 人体艺术视频欧美日本| 国产高清有码在线观看视频| 亚洲三级黄色毛片| 又大又黄又爽视频免费| 国产精品99久久99久久久不卡 | 久久久国产一区二区| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 亚洲国产av新网站| 国产成人aa在线观看| 亚洲,欧美,日韩| 又大又黄又爽视频免费| 久久久久性生活片| 插逼视频在线观看| 亚洲国产精品成人综合色| 亚洲人成网站高清观看| 日韩伦理黄色片| 午夜爱爱视频在线播放| 免费大片黄手机在线观看| 少妇人妻 视频| 99久国产av精品国产电影| 亚洲无线观看免费| 国产亚洲91精品色在线| 美女视频免费永久观看网站| 午夜福利网站1000一区二区三区| 男男h啪啪无遮挡| 国产日韩欧美在线精品| 亚洲美女视频黄频| 午夜爱爱视频在线播放| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 亚洲最大成人av| 久久精品人妻少妇| 国内揄拍国产精品人妻在线| 黄片无遮挡物在线观看| 各种免费的搞黄视频| 日韩成人av中文字幕在线观看| 97精品久久久久久久久久精品| 亚洲av在线观看美女高潮| 亚洲无线观看免费| 91午夜精品亚洲一区二区三区| 在线观看一区二区三区| 欧美另类一区| 欧美zozozo另类| 男人和女人高潮做爰伦理| 青春草视频在线免费观看| 高清午夜精品一区二区三区| 99久久精品热视频| 一区二区三区四区激情视频| 啦啦啦啦在线视频资源| 18+在线观看网站| av在线蜜桃| 日韩伦理黄色片| 精品少妇久久久久久888优播| 韩国高清视频一区二区三区| 小蜜桃在线观看免费完整版高清| 精品熟女少妇av免费看| 国产精品三级大全| 亚洲欧美中文字幕日韩二区| 免费少妇av软件| 人妻夜夜爽99麻豆av| 最新中文字幕久久久久| 97在线视频观看| 欧美区成人在线视频| 2021天堂中文幕一二区在线观| 中文欧美无线码| 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 久久鲁丝午夜福利片| 日韩av不卡免费在线播放| 免费电影在线观看免费观看| 久久精品久久精品一区二区三区| 亚洲精品中文字幕在线视频 | 成年女人看的毛片在线观看| 日本色播在线视频| 久久久久久久午夜电影| 美女cb高潮喷水在线观看| 热re99久久精品国产66热6| 欧美潮喷喷水| 神马国产精品三级电影在线观看| 国产精品无大码| 亚洲最大成人av| 欧美性猛交╳xxx乱大交人| 激情 狠狠 欧美| 国产成人a∨麻豆精品| 亚洲美女搞黄在线观看| tube8黄色片| 色5月婷婷丁香| 看非洲黑人一级黄片| 啦啦啦在线观看免费高清www| 六月丁香七月| 国产美女午夜福利| 中文字幕久久专区| 久久久久久久久久人人人人人人| 亚洲天堂av无毛| 久久久精品94久久精品| 精品久久久久久久末码| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 麻豆成人av视频| 久久精品国产自在天天线| 一区二区三区四区激情视频| 王馨瑶露胸无遮挡在线观看| a级毛色黄片| 国产久久久一区二区三区| 联通29元200g的流量卡| 国产老妇女一区| 国产乱人视频| 精品国产三级普通话版| 欧美激情在线99| 日韩欧美精品免费久久| 亚洲成人一二三区av| 精品少妇黑人巨大在线播放| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 男女国产视频网站| 久久97久久精品| 下体分泌物呈黄色| 国产大屁股一区二区在线视频| 大又大粗又爽又黄少妇毛片口| 在线观看av片永久免费下载| 国产精品国产三级国产av玫瑰| 在线 av 中文字幕| 特大巨黑吊av在线直播| 三级经典国产精品| 日韩人妻高清精品专区| 国产精品国产三级国产av玫瑰| 性色avwww在线观看| 国产综合懂色| 日韩成人伦理影院| 女人久久www免费人成看片| 欧美精品一区二区大全| 在线观看一区二区三区| 色播亚洲综合网| 嘟嘟电影网在线观看| 国产探花在线观看一区二区| 大话2 男鬼变身卡| 美女国产视频在线观看| 久久久精品欧美日韩精品| 人妻系列 视频| videos熟女内射| 不卡视频在线观看欧美| 国产极品天堂在线| 国产欧美另类精品又又久久亚洲欧美| 国语对白做爰xxxⅹ性视频网站| 国产在线男女| 中文欧美无线码| 亚洲,一卡二卡三卡| 欧美3d第一页| 波野结衣二区三区在线| 蜜臀久久99精品久久宅男| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 秋霞伦理黄片| 国产精品国产av在线观看| 日韩成人伦理影院| 亚洲精品色激情综合| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 中文字幕亚洲精品专区| 18+在线观看网站| 亚洲av日韩在线播放| 综合色av麻豆| 久久久久久久大尺度免费视频| 天天一区二区日本电影三级| 内地一区二区视频在线| 国产人妻一区二区三区在| 久久精品国产鲁丝片午夜精品| 国产有黄有色有爽视频| 五月玫瑰六月丁香| 成人鲁丝片一二三区免费| www.av在线官网国产| 亚洲自拍偷在线| 2021少妇久久久久久久久久久| 少妇的逼水好多| 黄片无遮挡物在线观看| 久久6这里有精品| 国产成人精品一,二区| 久久鲁丝午夜福利片| 亚洲欧美精品专区久久| 好男人视频免费观看在线| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 成人特级av手机在线观看| 欧美成人精品欧美一级黄| 免费大片黄手机在线观看| 中国三级夫妇交换| 简卡轻食公司| 黄色日韩在线| 久久人人爽人人爽人人片va| 亚洲人成网站在线播| 哪个播放器可以免费观看大片| 美女高潮的动态| 日产精品乱码卡一卡2卡三| 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 亚洲精品第二区| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 身体一侧抽搐| 五月天丁香电影| 婷婷色麻豆天堂久久| 黄色视频在线播放观看不卡| 亚洲真实伦在线观看| 丰满少妇做爰视频| 亚洲最大成人中文| 一级毛片我不卡| 伊人久久精品亚洲午夜| 欧美zozozo另类| 91狼人影院| 亚洲伊人久久精品综合| 91午夜精品亚洲一区二区三区| 1000部很黄的大片| 我的女老师完整版在线观看| 97热精品久久久久久| 极品少妇高潮喷水抽搐| 欧美 日韩 精品 国产| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 国语对白做爰xxxⅹ性视频网站| 在线观看人妻少妇| 亚洲精品,欧美精品| 成人无遮挡网站| 青春草视频在线免费观看| 国产一区二区三区av在线| 69av精品久久久久久| 好男人在线观看高清免费视频| 免费人成在线观看视频色| 日韩 亚洲 欧美在线| 国产视频内射| 91久久精品电影网| 一区二区三区乱码不卡18| 国产精品.久久久| 国产高清国产精品国产三级 | 男女国产视频网站| 久热久热在线精品观看| 欧美+日韩+精品| 97超视频在线观看视频| 插阴视频在线观看视频| 97在线人人人人妻| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久 | 久久久久久久大尺度免费视频| 欧美三级亚洲精品| 有码 亚洲区| 国产亚洲精品久久久com| 国产精品99久久久久久久久| 五月玫瑰六月丁香| 一级黄片播放器| 亚洲国产日韩一区二区| 亚州av有码| 黄色欧美视频在线观看| 午夜亚洲福利在线播放| 黄色视频在线播放观看不卡| 亚洲精品,欧美精品| 欧美成人精品欧美一级黄| 免费av毛片视频| 中文在线观看免费www的网站| 国产一区亚洲一区在线观看| 秋霞伦理黄片| 99九九线精品视频在线观看视频| 可以在线观看毛片的网站| 少妇裸体淫交视频免费看高清| 看十八女毛片水多多多| 国产精品熟女久久久久浪| 亚洲av中文av极速乱| 久久久久国产精品人妻一区二区| 中文字幕av成人在线电影| 99久久精品国产国产毛片| 国产大屁股一区二区在线视频| 国产一区二区三区综合在线观看 | 少妇熟女欧美另类| 最近中文字幕2019免费版| 欧美亚洲 丝袜 人妻 在线| 午夜激情久久久久久久| 国产亚洲一区二区精品| 三级男女做爰猛烈吃奶摸视频| 99九九线精品视频在线观看视频| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| 一级毛片我不卡| 看黄色毛片网站| 在线观看国产h片| 天堂网av新在线| 国产精品久久久久久精品电影| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩无卡精品| 秋霞在线观看毛片| 永久免费av网站大全| av在线天堂中文字幕| 久久久久久久亚洲中文字幕| 欧美bdsm另类| 99热这里只有是精品在线观看| 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 午夜福利高清视频| 欧美日韩视频高清一区二区三区二| 国产午夜精品一二区理论片| 高清av免费在线| 国产成人精品一,二区| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 三级经典国产精品| 青青草视频在线视频观看| 联通29元200g的流量卡| 婷婷色综合大香蕉| 亚洲精品456在线播放app| 国产成人免费观看mmmm| videos熟女内射| 国产永久视频网站| 插阴视频在线观看视频| 亚洲精品日韩在线中文字幕| 性色av一级| 精品午夜福利在线看| 伊人久久精品亚洲午夜| 国产黄片视频在线免费观看| 熟女电影av网| 国产亚洲一区二区精品| 国产精品一及| 国产探花在线观看一区二区| 91精品伊人久久大香线蕉| 日韩成人伦理影院| 欧美一区二区亚洲| 免费观看av网站的网址| 最后的刺客免费高清国语| 免费看a级黄色片| 一级黄片播放器| 国产永久视频网站| 久久精品久久久久久久性| 视频区图区小说| 赤兔流量卡办理| 卡戴珊不雅视频在线播放| 亚洲精品日韩在线中文字幕| 欧美日韩亚洲高清精品| 看非洲黑人一级黄片| 日本一本二区三区精品| 欧美少妇被猛烈插入视频| av天堂中文字幕网| 简卡轻食公司| 欧美日韩在线观看h| 久久精品国产a三级三级三级| 国产男人的电影天堂91| 国产成人精品福利久久| 成年人午夜在线观看视频| 日日啪夜夜撸| 国产综合懂色| 青春草亚洲视频在线观看| 国产老妇女一区| 国产黄色视频一区二区在线观看| 免费播放大片免费观看视频在线观看| 久久精品熟女亚洲av麻豆精品| 精品一区在线观看国产| 国产在线男女| 性插视频无遮挡在线免费观看| 午夜福利在线在线| 晚上一个人看的免费电影| 我的女老师完整版在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲av片在线观看秒播厂|