• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active thermophoresis and diffusiophoresis

    2022-10-26 09:46:48HuanLiang梁歡PengLiu劉鵬FangfuYe葉方富andMingchengYang楊明成
    Chinese Physics B 2022年10期
    關(guān)鍵詞:劉鵬

    Huan Liang(梁歡) Peng Liu(劉鵬) Fangfu Ye(葉方富) and Mingcheng Yang(楊明成)

    1Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics,Institute of Physics,Chinese Academy of Sciences(CAS),Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325001,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: active matter,colloid,thermophoresis,diffusiophoresis

    1. Introduction

    Active matter consists of self-propelled units that are capable of individually converting ambient energy into their locomotion.[1–3]Due to inherently out-of-equilibrium feature,active matter systems often exhibit exotic nonequilibrium phenomena not found in passive systems,including complex collective motions,[4–9]motility-induced phase separation,[10,11]abnormal rheology,[12]and thermodynamics.[13–15]In spite of the fundamental differences between active and passive systems, the basic thermodynamic concepts in passive systems have been widely extended and studied in active systems, which has significantly advanced our understanding of nonequilibrium properties of active matter. For instance,except for the case of active Brownian particles, the mechanical pressure of active systems is usually not a state quantity,[13,16,17]in stark contrast to equilibrium systems. The depletion interaction in equilibrium colloids[18]has also been conceptually generalized to the active bath,[19–22]and the effective interaction between passive particles in the active bath substantially depends on an external constraint suffered by the passive particles.[23]Additionally,in general,the effective temperature in the active bath cannot be uniquely defined,and different physical processes often correspond to different effective temperatures.[24–26]

    Besides the basic thermodynamic quantities mentioned above,it is desirable to extend nonequilibrium thermodynamic concepts, usually discussed in the linear response regime of passive systems, to the active bath. Phoresis is one typical representative of such concepts, and it refers to the directed migration of suspended particles in a passive solution with an external gradient field.[27]Paradigmatic examples include thermophoresis,[28,29]diffusiophoresis,[30,31]and electrophoresis,[32]whose driving fields respectively correspond to the gradients of temperature,solute concentration and electric potential. The passive phoretic effects have been extensively applied to control mesoscale objects[33–35]and to design self-propelled particles,[36–42]in which the required gradient fields are self-generated.

    In a very recent theoretical work,[43]the concept of phoresis has been extended from passive to active systems. Specifically,the passive solvent with an externally applied thermal or chemical gradient is replaced by a fluid of ideal active Brownian particles with a spatially nonuniform activity or concentration. In this inhomogeneous active bath, a suspended passive particle is shown to drift against the gradient of the activity or concentration, reminiscent of the passive phoresis. Actually,the directed transport of passive objects in an active bath with an activity gradient has been investigated in earlier theoretical and simulation work,[44–46]although the similarity to phoresis was not discussed and the concept of active phoresis was not put forward. This inhomogeneous activity-induced transport of passive objects has even been exploited to explain the experimental observation that the spontaneous movement of the nucleus from the cortex to the center of the oocyte cell,[47]where the activity of intracellular molecular motors is assumed to be position-dependent. However,most of these studies[43–45]only consider an ideal active bath composed of noninteracting self-propelled particles. On the other hand,although the active particles in Ref. [46] are nonideal, directed transport only occurs for attractive couplings between the active particle and passive objects due to special system settings,different from the results in Refs.[43–45]. So,it is interesting to study the active phoresis of a passive particle in inhomogeneous nonideal active baths,particularly with purely repulsive interactions between the active and passive particles.

    In the present work, we perform simulations to systematically study the active thermophoresis and diffusiophoresis of a passive colloidal object immersed in inhomogeneous active baths. Distinct from previous works, we consider a nonideal active bath composed of interacting active Brownian particles (ABPs) that couple with the passive colloid through a purely repulsive potential. Our results show that the interactions between the “solvent” particles have a great impact on the active phoretic effects. Particularly, the active thermophoretic drift can change the direction with the activity gradient of the ABPs, and the active diffusiophoretic motion is always along the concentration gradient of the ABPs, in contrast to the case of the active phoresis in ideal active baths.The results can be rationalized by analyzing the osmotic pressure and concentration distribution of the solvent particles.Moreover,we quantify the active thremophoretic and diffusiophoretic forces experienced by frozen passive colloidal particles and the thermoosmotic-like flow of the ABPs induced by the passive colloidal particle. The findings are reminiscent of the scenario of passive phoresis, further suggesting the concept of phoresis can be extended to active bath.

    2. Simulation method and system

    We consider a two-dimensional system with periodic boundary conditions in thexandydirections. The inhomogeneity of the active bath is prescribed in thexdirection, as sketched in Figs. 1(a) and 1(c). In the thermophoretic situation, the system is composed of small active Brownian particles (ABPs) of diameterσand a large passive colloidal particle of diameter 3σin a rectangular box of the dimensionsx0×y0(x0= 2y0andx0≥46σ), with the mean packing fraction ˉρ. The ABPs are subjected to a linearly positiondependent self-propelling forceFd(x) [Fig. 1(a)], which corresponds to a nonuniform effective temperature of the active bath.Because of the periodic boundary conditions,Fd(x)has a symmetric profile,with the maximum valueFmdon the boundary and the vanishing magnitude in the middle of the system.The interactions between different ABPs and between the active and passive particles are taken as the repulsive Lennard–Jones-type potential,U(r)=4ε[(σ/r)24-(σ/r)12]+εifr <21/12σ, andU(r)=0 otherwise. The dynamics of the ABPs obeys the overdamped Langevin equations,

    withFrthe static force on the ABP, andγs=100 andγr=γsσ2/3 being the translational and rotational friction coefficients,respectively. Here,ηandξare separately the stochastic force and torque from the thermal bath, which are Gaussian distributed with zero mean and variance〈ηi(t)ηj(t′)〉=2kBTγsδijδ(t-t′)and〈ξ(t)ξ(t′)〉=2kBTγrδ(t-t′),with the temperaturekBT=ε=1. The dynamics of the passive colloidal object evolves similarly according to Eq. (1) but withFd=0 and the translational friction coefficientγl=3γs.

    Fig. 1. (a) Schematic diagram of thermophoretic system. A large passive colloidal particle(large blue circle)is immersed in a fluid of the ABPs(small cyan circle)experiencing a linearly position-dependent activity Fd(x)represented by the dashed line. (b) The steady-state density distribution of the ABPs in the thermophoretic system with ˉρ =0.3, for different gradients of the self-propelling force (i.e., Fmd ). (c) Sketch of diffusiophoretic system,in which a large passive colloidal particle(large blue circle)is suspended in a fluid mixture composed of small passive particles (red circle) and ABPs.Here, the sink and source of the ABPs are located in the system center and boundary regions, respectively. (d) The density distribtutions of the small passive particles (dashed line) and ABPs (solid line) in the diffusiophoretic system with ˉρ =0.3 and Pr=1.0,for different Fd exerted on the ABPs.

    In the diffusiophoretic system, the “solvent” is a mixture consisting of small passive particles and ABPs experiencing a constantFd, as sketched in Fig. 1(c), unlike the singlecomponent active systems in the theoretical work.[43]To establish a stationary concentration gradient of ABPs, the sink and source of the ABPs are imposed separately in the middle and boundary regions of the simulation system. Specifically,when a solvent particle moves into the middle region, it will transform into a small passive(active)particle with the probabilityPr(1-Pr); while, a reverse operation is performed in the boundary region of the system. Such artificial chemical reactions can quickly generate a steady-state concentration gradient of the ABPs as well as the small passive particles. It should be noted that this binary-component solvent(except the background thermal bath)is employed in order to naturally achieve a steady-state gradient of the ABPs. This setup follows the idea usually used in the simulation of passive diffusiophoresis,[48,49]since,otherwise,a density gradient of single-component solvent will inevitably induce a macroscopic pressure gradient.Different solvent particles(including the small passive and active particles)interact with each other via the same repulsive Lennard–Jones-type potential. Similar to the thermophoretic case,the motions of the solvent particles and the big passive colloidal particle are described by the overdamped Langevin equations. Here, the small passive solvent particles have the same translational friction coefficientγsas the ABP and a vanishingFd.

    3. Results and discussion

    3.1. Density distribution of the“solvent”particles

    Before the investigation of the active phoresis, we measure the steady-state density distribution of the solvent particles in the nonuniform environment in the absence of the big passive colloidal object. Figure 1(b) plots the concentration of the ABPs as a function of thexcoordinate in the thermophoretic systems. In this case, the position-dependent activity induces a spatially inhomogeneous distribution of the active particles that prefer to accumulate in the region of low activity(namely in the middle of the system),consistent with previous work.[50–52]Since the activity gradient is symmetric with respect to the system center, the density distribution of the ABPs also has a symmetric profile. Further, when the mean packing fraction of the ABPs remains fixed ˉρ=0.3,the inhomogeneity of the ABP concentration increases as the activity gradient(i.e.,Fmd)enhances.

    In the diffusiophoretic case, the stationary concentration distributions of the ABPs and passive solvent particles almost linearly depend on thexcoordinate, as shown in Fig. 1(d).And, they have opposite trends, since, by construction, the source and sink of the ABPs respectively correspond to the sink and source of the passive solvent particles. Interestingly,when the mean packing fraction ˉρa(bǔ)nd the reaction probabilityPrare constant,the density gradients of the ABPs and passive particles are dependent on the self-propelling force applied to the ABPs[Fig.1(d)]. With the rise ofFd,the density gradient of the ABPs decreases,while that of the passive solvent particles increases. This behavior can be understood based on the following fact. The ABP subjected to a strongFdhas a large effective diffusion coefficient, such that it more easily leaves its source region and enters its sink region at the system center,thus resulting in a flatter concentration profile of the ABPs.As a consequence, more ABPs transform into small passive particles,and the density gradient of the passive solvent particles becomes larger.

    3.2. Active thermophoresis of passive colloidal particle in active bath

    When a large passive colloidal particle is suspended in the active bath with a spatially varying activity, it will usually experience a directed drift parallel to the activity gradient,producing a nonuniform density distribution. This behavior is similar to the traditional thermophoresis in passive solutions.Figure 2(a)displays the probability distribution of the passive colloidal particle in the gradient direction for different maximum self-propelling forcesFmd. For smallFmd, the colloidal particle is inclined to move to the region of low activity (the center of the system) and exhibits a “thermophobic” motion;while, for largeFmd, it tends to accumulate in the region of high activity and behaves “thermophilically”. And, there exists a crossover between the thermophobic and thermophilic motions as theFmdvaries.

    Fig. 2. Probability distribution of the large passive colloidal particle as a function of the x coordinate(a)for different Fmd with ˉρ =0.3 fixed,and(b)for different mean packing fraction of the ABPs ˉρ with Fmd =20 fixed.

    Previous theoretical works[43,44]have predicted that the passive object immersed in an ideal active bath drifts against the activity gradient, since the high-activity area has a higher swimming pressure. This prediction is consistent with our results at smallFmd, but is opposite to those at largeFmd. This difference mainly arises from the fact that the active particles in our system are interacting(instead of ideal)ABPs and they occupy most space of the low-activity region for large enoughFmd[see Fig. 1(b)]. In this situation, the passive colloidal particle cannot easily enter the crowded low-activity region and thus accumulate near the system boundary (high activity). From the point of view of pressure, the Virial pressure contributed by the interparticle interactions overwhelms the swimming pressure in the crowded region. This thermophilic motion weakens with the decrease of the mean packing fraction of the ABPs, as shown in Fig. 2(b), since the crowding effect of the ABPs is weak at low ˉρ. Moreover, the results above are also different from those obtained in the simulation study,[46]in which the attractive interactions between the passive colloid and active bath particles drive the colloid to drift towards the low-activity region, while the net drift vanishes for repulsive interactions owing to the special system settings.However,in our nonideal active baths,the passive colloid can transport both along and against the activity gradient,depending on the magnitude ofFmd. This highlights the importance of the excluded-volume interactions between the ABPs in the active thermophoresis.

    To further investigate the active thermophoresis,we measure the driving force exerted on a frozen passive colloidal particle by the active bath. In the simulations, two identical colloidal particles are fixed separately at two symmetric positions,as displayed in Fig.3(b). Due to the symmetry,we only consider the left colloidal particle. Figure 3(a) indicates that the active thermophoretic forceFlargechanges nonmonotonically,with a direction reversal,as the activity gradient increases.For small and largeFmd,Flargepoints to the low-activity and highactivity regions,respectively. And,the magnitude ofFlargeincreases with the mean packing fraction of the ABPs[Fig.3(a)].These observations are consistent with the probability distribution of the passive colloidal particle in Fig. 2. It is well known that,for the passive thremophoresis,the reaction of the thermophoretic force on a fixed colloidal particle can induce a thermoosmotic flow of the surrounding solvent.[29,53,54]Similarly, it can be expected that there also exists a flow of active particles around the active thermophoretic object. Indeed,figure 3(b)illustrates such an osmotic flow in the opposite direction to the active thermophoretic force. Because of the system symmetry,the flow field has a symmetric pattern.

    Fig. 3. (a) The active thermophoretic force on the passive colloidal particle frozen in the left half simulation box as a function of Fmd , for differentˉρ. The positive direction of Flarge points to the system center (namely thermophobic). Inset is an enlarged view of the active thermophoretic force for small values of Fmd .(b)The flow field of the ABPs induced by the reaction of Flarge exerted on the passive colloidal particle. Here, Flarge is negative, with Fmd =20 and ˉρ =0.3.

    Before closing this section,we study the position dependence of the active thermophoretic force. From Fig.1(b),the density profile of the ABPs is nonlinear, although the activity gradient is constant. This implies that the environmental inhomogeneity felt by the passive colloid hinges on its position,such thatFlargeis position-dependent. Figure 4 plots theFlargesuffered by the colloidal particle fixed at three different positions. It is clearly shown thatFlargechanges with itsxcoordinate (uniform in theydirection), meaning that the active thermophoretic accumulation of the colloidal particle is a consequence of the averageFlargein the present system.

    Fig.4. Sketch of two passive colloidal particles fixed in the nonuniform active bath,with their x coordinates separately(a)x1 = x0 and x2 = x0,(c)x1=x0 and x2=x0,(e)x1= x0 and x2= x0. [(b),(d),(f)]The active thermophoretic forces on the left frozen colloidal particles,which separately correspond to panels(a),(c),and(e).

    3.3. Active diffusiophoresis of passive colloidal particle in active bath

    Now we replace the activity gradient with a concentration gradient of the ABPs,and investigate the active diffusiophoresis of the passive colloidal particle in the mixture composed of active and passive solvent particles. Figure 5 displays the probability distribution of the large passive colloidal particle.Under the parameters under study,the passive colloid drifts to the source region of the ABPs(the system boundary)and accumulates there. The observation is opposite to the theoretical prediction of the previous work,[43]where the passive colloid in a single-component ideal active bath always moves to the low-concentration area of the ABPs. This difference can be explained as follows. For the single-component active bath,the density(thus osmotic pressure)of the active particles near the source is higher than near the sink region, which drives the passive colloid to drift towards the low-concentration region. While, for our present active-passive mixture bath, the solvent particles have a larger packing fraction close to the sink of the ABPs, as plotted in Fig. 1(d). Figures 5(a) and 5(b) also show that the accumulation of the passive colloidal particle monotonically increases separately with increasing the self-propelling force and the mean packing fraction.

    Following the case of the active thermophoresis,we also quantify the active diffusiophoretic force on a passive colloidal particle fixed atx=x0/4, as plotted in Fig. 6. With the increase of the ABP activity and the packing fraction of the system, the magnitude ofFlargerises [Fig. 6(a)]. And, the active diffusiophoretic force is always along the concentration gradient of the ABPs. These results are consistent with the probability distribution of the colloidal particle in Fig. 5. In addition, the magnitude ofFlargebasically enhances with the transition probabilityPr[Fig. 6(b)], since a largerPrcauses a higher concentration gradient. As the active diffusiophoretic force in the present system is relatively small,its resulted diffusioosmitc flow is weak and is not provided here. Finally,we study the position dependence of the active diffusiophoretic force by changing the position of the passive colloidal particle. In contrast to the active thermophoretic case, the active diffusiophoretic force on the colloidal particle is hardly dependent on its distance from the ABP source, as displayed in Fig. 7. This is because the density profiles of the ABPs and passive solvent particles are almost linear [see Fig. 1(d)]. In other word,the environmental inhomogeneity experienced by the passive colloidal particle is almost constant throughout the system(except for the areas close to the sink and source).

    Fig.5.Probability distribution of the active diffusiophoretic passive colloidal particle (a) for different self-propelling force Fd and (b) for different mean packing fractions of the solvent particles ˉρ,with Pr=1.0 being fixed.

    Fig.6. The active diffusiophoretic force on the frozen passive colloidal particle as a function of(a)the self-propelling force for different ˉρ with Pr=1.0 and(b)the transition probability Pr for different Fd. Here,the positive direction of the force points to the sink of the ABPs(the system center).

    Fig. 7. Sketch of two active diffusiophoretic colloidal particles fixed in the nonuniform active bath,with their x coordinates separately(a)x1=0 and x2 =x0,(c)x1 =x0 and x2 =0,(e)x1 = and x2 = 0. [(b),(d),(f)] The active diffusiophoretic forces on the left colloidal particles, which respectively correspond to panels (a), (c), and (e). In the simulations, the transition probability Pr=1.0 remains fixed.

    Although the active diffusiophoresis is obtained by imposing a steady-state constant concentration gradient, a similar behavior could be expected to happen in a dynamic gradient field. A recent theoretical study shows that a spatially local, and temporally abrupt change in fluid particle density may give rise to a diffusiophoretic-type motion of immersed inclusions.[55]

    4. Conclusion

    In the work,we numerically demonstrated that the passive colloidal particle exhibits phoretic-like motions in nonuniform nonideal active fluids. In the active bath consisting of the ABPs with a spatially varying activity,corresponding to an effective temperature gradient, the suspended passive colloidal particle suffers from a thermophoretic-like force and thus unidirectionally drifts parallel to the gradient. In the active fluid of the active-passive solvent mixture having a concentration gradient of the ABPs, the passive colloidal particle experiences a diffusiophoretic-like force and hence directed motion. The active thermophoresis and diffusiophoresis sensitively hinge on the imposed external gradients and the activity and packing fraction of the solvent particles, and even reverse the direction.Our results are largely different from those predicted by the previous theoretical work with ideal active baths,[43,44]which highlights the important role of the interactions between the solvent particles in the active phoresis. The phoretic-like transport and accompanying phoretic osmoticlike flow could be used to manipulate mesoscopic particles and to understand the tracer transport in living cells.[56,57]Our findings,particularly the active thermophoresis,would be easily verified by considering a colloidal particle in a bacterial solution with a spatially varying activity.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 11874397) and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000).

    猜你喜歡
    劉鵬
    Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
    《公園創(chuàng)意拼貼》
    新時(shí)期配電運(yùn)檢工作的優(yōu)化策略研究
    爸媽腿腳不好, 當(dāng)心這個(gè)病
    祝您健康(2020年9期)2020-09-08 06:21:54
    贖罪婚姻
    中外文摘(2017年19期)2017-10-10 08:28:38
    劉鵬
    藝術(shù)家(2017年4期)2017-06-07 07:28:10
    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*
    On d-Dimensional Lattice(co)sine n-Algebra?
    局長(zhǎng)多說(shuō)一句話
    映像畜牧業(yè)
    欧美中文综合在线视频| 亚洲精品美女久久av网站| 国产乱来视频区| 免费av中文字幕在线| 久久久久久久久久久久大奶| 岛国毛片在线播放| 国产xxxxx性猛交| 欧美亚洲日本最大视频资源| 男男h啪啪无遮挡| 如日韩欧美国产精品一区二区三区| 久久久久久久久久久免费av| 一级爰片在线观看| 亚洲国产色片| 日韩成人av中文字幕在线观看| 精品一区二区三区四区五区乱码 | 欧美xxⅹ黑人| 国产又色又爽无遮挡免| 欧美日韩亚洲高清精品| 午夜福利视频精品| 欧美精品国产亚洲| 国产成人免费观看mmmm| a级毛片在线看网站| 欧美精品人与动牲交sv欧美| 免费女性裸体啪啪无遮挡网站| 日韩熟女老妇一区二区性免费视频| 纯流量卡能插随身wifi吗| 最近的中文字幕免费完整| 一二三四中文在线观看免费高清| 日韩三级伦理在线观看| 日韩精品有码人妻一区| 大香蕉久久成人网| 男的添女的下面高潮视频| 欧美日韩综合久久久久久| 精品国产乱码久久久久久男人| 日韩av不卡免费在线播放| 中文字幕人妻熟女乱码| 亚洲精品乱久久久久久| 日韩精品有码人妻一区| 有码 亚洲区| videossex国产| 激情视频va一区二区三区| 女人高潮潮喷娇喘18禁视频| 丝瓜视频免费看黄片| 色婷婷久久久亚洲欧美| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 欧美日本中文国产一区发布| 人人妻人人澡人人爽人人夜夜| 在线天堂中文资源库| 久久国产精品男人的天堂亚洲| 天天影视国产精品| 成人毛片60女人毛片免费| 亚洲成国产人片在线观看| 午夜老司机福利剧场| 乱人伦中国视频| 久久久国产精品麻豆| 99热国产这里只有精品6| 综合色丁香网| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 亚洲天堂av无毛| 亚洲欧洲精品一区二区精品久久久 | 精品国产乱码久久久久久小说| 久久影院123| 曰老女人黄片| 欧美激情 高清一区二区三区| 亚洲av中文av极速乱| 多毛熟女@视频| 在线 av 中文字幕| 老女人水多毛片| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线| 九草在线视频观看| 少妇人妻久久综合中文| 国语对白做爰xxxⅹ性视频网站| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕免费大全7| 国产精品久久久久久av不卡| 欧美成人午夜免费资源| 黄色配什么色好看| 欧美日韩一级在线毛片| 黄片播放在线免费| 老熟女久久久| 黄色配什么色好看| 日日撸夜夜添| 丝袜脚勾引网站| 免费少妇av软件| 一级毛片黄色毛片免费观看视频| 成人国语在线视频| 免费黄色在线免费观看| 国产精品国产av在线观看| 亚洲一区二区三区欧美精品| 校园人妻丝袜中文字幕| 新久久久久国产一级毛片| 黄色配什么色好看| 可以免费在线观看a视频的电影网站 | 韩国高清视频一区二区三区| 亚洲精华国产精华液的使用体验| 一级片免费观看大全| 国产片内射在线| 国产精品国产三级国产专区5o| 赤兔流量卡办理| 久久精品亚洲av国产电影网| 日本爱情动作片www.在线观看| 中文字幕亚洲精品专区| 亚洲成人av在线免费| 成人国语在线视频| 丰满饥渴人妻一区二区三| 99re6热这里在线精品视频| 只有这里有精品99| 精品少妇内射三级| 国产精品香港三级国产av潘金莲 | 国产有黄有色有爽视频| 国产精品 欧美亚洲| 少妇熟女欧美另类| 国产av精品麻豆| 久久久久久伊人网av| 春色校园在线视频观看| 男人添女人高潮全过程视频| 国产福利在线免费观看视频| 欧美少妇被猛烈插入视频| 少妇熟女欧美另类| 日韩熟女老妇一区二区性免费视频| 国产成人免费观看mmmm| 国产精品免费视频内射| 亚洲精品美女久久久久99蜜臀 | 久久精品亚洲av国产电影网| 久久国产亚洲av麻豆专区| 国产爽快片一区二区三区| 色94色欧美一区二区| 国产精品亚洲av一区麻豆 | 男女无遮挡免费网站观看| 国产成人精品久久二区二区91 | 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 精品一区二区三区四区五区乱码 | 有码 亚洲区| 天堂俺去俺来也www色官网| 亚洲在久久综合| 久久久久精品久久久久真实原创| 在线看a的网站| 久久久国产一区二区| 亚洲欧美一区二区三区国产| 国产午夜精品一二区理论片| av免费观看日本| 性色avwww在线观看| 欧美精品高潮呻吟av久久| 亚洲av欧美aⅴ国产| 欧美精品国产亚洲| 中文字幕制服av| 叶爱在线成人免费视频播放| 亚洲内射少妇av| 黄网站色视频无遮挡免费观看| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 飞空精品影院首页| 纵有疾风起免费观看全集完整版| 男女高潮啪啪啪动态图| 老熟女久久久| 亚洲精品视频女| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| 永久免费av网站大全| 黑人猛操日本美女一级片| 欧美成人午夜精品| 免费观看在线日韩| 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频| 在线看a的网站| 久久久久人妻精品一区果冻| 黄色 视频免费看| 欧美日韩综合久久久久久| 有码 亚洲区| 香蕉精品网在线| 90打野战视频偷拍视频| 国产亚洲最大av| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 日韩av免费高清视频| 三级国产精品片| 亚洲久久久国产精品| 欧美bdsm另类| 亚洲欧美精品综合一区二区三区 | 搡老乐熟女国产| 国产精品久久久久久精品古装| 亚洲中文av在线| 国产精品亚洲av一区麻豆 | 亚洲,欧美精品.| 26uuu在线亚洲综合色| 99久久精品国产国产毛片| 亚洲第一青青草原| 日韩大片免费观看网站| 超碰成人久久| 国产成人精品福利久久| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区国产| 亚洲国产日韩一区二区| 欧美中文综合在线视频| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| 91精品国产国语对白视频| 丝袜喷水一区| 99香蕉大伊视频| 免费日韩欧美在线观看| 久久国产精品大桥未久av| 国产人伦9x9x在线观看 | 国产激情久久老熟女| 老汉色∧v一级毛片| 亚洲欧美精品自产自拍| 久久韩国三级中文字幕| 亚洲久久久国产精品| 女人精品久久久久毛片| 三上悠亚av全集在线观看| 男的添女的下面高潮视频| 啦啦啦视频在线资源免费观看| 伊人久久国产一区二区| 久久99蜜桃精品久久| 婷婷色综合www| 久久毛片免费看一区二区三区| 看非洲黑人一级黄片| 丝袜脚勾引网站| 久久久久国产网址| 日本猛色少妇xxxxx猛交久久| 美女视频免费永久观看网站| 丝袜美腿诱惑在线| 亚洲 欧美一区二区三区| 日本欧美视频一区| 久久精品国产自在天天线| 欧美国产精品va在线观看不卡| 久久鲁丝午夜福利片| 777米奇影视久久| 国产精品一二三区在线看| 久久人妻熟女aⅴ| 青青草视频在线视频观看| 国产xxxxx性猛交| 久久精品国产自在天天线| 国产成人aa在线观看| 亚洲成人av在线免费| 黄片播放在线免费| 成人午夜精彩视频在线观看| 成人国产av品久久久| 国产亚洲精品第一综合不卡| 国产精品一国产av| 久久久久久伊人网av| 精品久久久久久电影网| 春色校园在线视频观看| 五月开心婷婷网| av网站在线播放免费| 999久久久国产精品视频| 国产福利在线免费观看视频| 免费观看无遮挡的男女| 精品人妻一区二区三区麻豆| 成人手机av| 我要看黄色一级片免费的| 亚洲,欧美,日韩| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说| 波野结衣二区三区在线| 日日摸夜夜添夜夜爱| 国产av一区二区精品久久| av免费在线看不卡| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 久久99热这里只频精品6学生| 精品一区二区三卡| 99热网站在线观看| 亚洲伊人久久精品综合| 国产熟女午夜一区二区三区| 国产精品免费视频内射| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 久久亚洲国产成人精品v| 国产成人精品婷婷| 丝袜喷水一区| 一区二区av电影网| 国产精品久久久久久久久免| 欧美日韩成人在线一区二区| 99久久精品国产国产毛片| 91精品三级在线观看| 国产亚洲午夜精品一区二区久久| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美一区二区三区久久| 午夜福利在线免费观看网站| av卡一久久| 欧美激情 高清一区二区三区| 日韩av免费高清视频| 丝瓜视频免费看黄片| 日韩av在线免费看完整版不卡| 精品少妇内射三级| 成人免费观看视频高清| 久久久精品94久久精品| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 久热久热在线精品观看| 日本-黄色视频高清免费观看| 久久 成人 亚洲| 两个人免费观看高清视频| 桃花免费在线播放| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片| a 毛片基地| 欧美日韩综合久久久久久| 中文字幕av电影在线播放| 亚洲欧美成人精品一区二区| 在线观看国产h片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成国产人片在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区国产| 久久久国产精品麻豆| 日本爱情动作片www.在线观看| 亚洲欧美成人精品一区二区| 男女国产视频网站| 亚洲国产看品久久| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成a人片在线观看| 少妇被粗大猛烈的视频| 999久久久国产精品视频| 这个男人来自地球电影免费观看 | 国产又爽黄色视频| 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 国产一区二区在线观看av| 18禁观看日本| 精品国产乱码久久久久久小说| 一级a爱视频在线免费观看| 边亲边吃奶的免费视频| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 午夜福利乱码中文字幕| 久久久精品94久久精品| 蜜桃在线观看..| 一本—道久久a久久精品蜜桃钙片| 免费观看性生交大片5| 精品一区二区三区四区五区乱码 | 日韩制服骚丝袜av| a 毛片基地| www日本在线高清视频| 国产精品香港三级国产av潘金莲 | 久久久国产精品麻豆| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级| 18+在线观看网站| 亚洲欧洲日产国产| 精品人妻在线不人妻| 大片电影免费在线观看免费| 亚洲三级黄色毛片| 欧美国产精品一级二级三级| 久久婷婷青草| www.精华液| 午夜福利乱码中文字幕| 国产人伦9x9x在线观看 | 免费观看无遮挡的男女| 黄片小视频在线播放| 男女国产视频网站| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 最近2019中文字幕mv第一页| 中文天堂在线官网| 国产成人aa在线观看| a级毛片在线看网站| 国产精品免费视频内射| 免费人妻精品一区二区三区视频| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 99久国产av精品国产电影| 成年美女黄网站色视频大全免费| 女性被躁到高潮视频| 免费高清在线观看日韩| 2021少妇久久久久久久久久久| 亚洲成人av在线免费| 精品久久久精品久久久| 大陆偷拍与自拍| 精品卡一卡二卡四卡免费| 久久久久久久久久久免费av| 99九九在线精品视频| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 欧美激情极品国产一区二区三区| 亚洲,一卡二卡三卡| 国产探花极品一区二区| 亚洲成人手机| 亚洲成人av在线免费| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 国产1区2区3区精品| 女人久久www免费人成看片| 日本爱情动作片www.在线观看| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区久久| 在线看a的网站| 色婷婷久久久亚洲欧美| 成人毛片a级毛片在线播放| 美女国产高潮福利片在线看| 母亲3免费完整高清在线观看 | 色网站视频免费| 一区二区三区四区激情视频| 女性生殖器流出的白浆| 9191精品国产免费久久| 亚洲第一区二区三区不卡| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 在线观看www视频免费| 五月伊人婷婷丁香| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| 在线观看人妻少妇| 精品午夜福利在线看| 日韩一区二区视频免费看| 搡老乐熟女国产| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 在线精品无人区一区二区三| 啦啦啦视频在线资源免费观看| 五月开心婷婷网| 在线观看免费高清a一片| 久久久久久久久久久免费av| 99久国产av精品国产电影| 母亲3免费完整高清在线观看 | 国产女主播在线喷水免费视频网站| 久久久久网色| 婷婷色麻豆天堂久久| 国产精品一二三区在线看| 日本午夜av视频| 国产无遮挡羞羞视频在线观看| 大香蕉久久成人网| 九九爱精品视频在线观看| 色婷婷av一区二区三区视频| 国产成人精品一,二区| 女人精品久久久久毛片| 久热久热在线精品观看| 久久精品国产亚洲av涩爱| 少妇人妻 视频| 97人妻天天添夜夜摸| 看免费成人av毛片| 综合色丁香网| 亚洲精品美女久久久久99蜜臀 | 亚洲经典国产精华液单| 亚洲av福利一区| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 日韩三级伦理在线观看| 亚洲视频免费观看视频| 日本爱情动作片www.在线观看| 国产成人精品福利久久| 一二三四中文在线观看免费高清| 欧美日韩综合久久久久久| 男人爽女人下面视频在线观看| 午夜福利网站1000一区二区三区| 亚洲精品成人av观看孕妇| 高清黄色对白视频在线免费看| 少妇熟女欧美另类| 亚洲欧洲国产日韩| 男人添女人高潮全过程视频| 熟女少妇亚洲综合色aaa.| 黄片小视频在线播放| 在线观看免费高清a一片| 性高湖久久久久久久久免费观看| 国产成人a∨麻豆精品| 午夜福利在线观看免费完整高清在| 亚洲av免费高清在线观看| 18在线观看网站| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 久久精品熟女亚洲av麻豆精品| 大片电影免费在线观看免费| 亚洲欧美成人精品一区二区| 丝袜美足系列| 国产精品av久久久久免费| 亚洲一区中文字幕在线| 国产精品偷伦视频观看了| 国产片特级美女逼逼视频| 2022亚洲国产成人精品| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 免费看不卡的av| 久久久久久久久免费视频了| 精品国产露脸久久av麻豆| 我要看黄色一级片免费的| 亚洲一码二码三码区别大吗| 一边摸一边做爽爽视频免费| 精品久久久久久电影网| 亚洲国产成人一精品久久久| 性少妇av在线| 两个人免费观看高清视频| 一区二区三区四区激情视频| 看十八女毛片水多多多| 久久久久精品性色| 国产精品无大码| videos熟女内射| www.精华液| 久久鲁丝午夜福利片| 欧美 亚洲 国产 日韩一| 欧美精品人与动牲交sv欧美| 男人爽女人下面视频在线观看| 2022亚洲国产成人精品| 亚洲国产精品国产精品| 夫妻午夜视频| 亚洲,欧美,日韩| 最近手机中文字幕大全| freevideosex欧美| 亚洲精品国产av蜜桃| 99热网站在线观看| 1024香蕉在线观看| 欧美日韩国产mv在线观看视频| 精品福利永久在线观看| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 少妇的逼水好多| 国产一区二区 视频在线| 波野结衣二区三区在线| 在线免费观看不下载黄p国产| 欧美日韩一级在线毛片| 久久婷婷青草| 久久99热这里只频精品6学生| 亚洲av电影在线进入| 一二三四在线观看免费中文在| 69精品国产乱码久久久| 美女中出高潮动态图| av天堂久久9| 国产av精品麻豆| 亚洲欧美精品综合一区二区三区 | 欧美 亚洲 国产 日韩一| 国产精品成人在线| 国产深夜福利视频在线观看| 亚洲精品国产一区二区精华液| 久久久久国产网址| 人妻少妇偷人精品九色| 日韩不卡一区二区三区视频在线| 日韩电影二区| 欧美日韩视频高清一区二区三区二| 久久久国产精品麻豆| 九色亚洲精品在线播放| 国产国语露脸激情在线看| 男女无遮挡免费网站观看| 色视频在线一区二区三区| 人体艺术视频欧美日本| 精品国产超薄肉色丝袜足j| 精品久久久久久电影网| 80岁老熟妇乱子伦牲交| 一区二区三区四区激情视频| 高清黄色对白视频在线免费看| 欧美日韩亚洲高清精品| 啦啦啦在线观看免费高清www| 国产精品二区激情视频| 国产老妇伦熟女老妇高清| 免费观看a级毛片全部| 日本欧美视频一区| 综合色丁香网| 纵有疾风起免费观看全集完整版| 欧美成人精品欧美一级黄| 日本猛色少妇xxxxx猛交久久| 在线天堂中文资源库| 国产 精品1| 免费在线观看黄色视频的| 考比视频在线观看| 一级毛片我不卡| 亚洲美女黄色视频免费看| 亚洲少妇的诱惑av| 天堂8中文在线网| 人体艺术视频欧美日本| 成人二区视频| 久久久久国产一级毛片高清牌| 免费大片黄手机在线观看| 女性被躁到高潮视频| 哪个播放器可以免费观看大片| 男女无遮挡免费网站观看| 一区二区三区四区激情视频| 国产女主播在线喷水免费视频网站| 久热久热在线精品观看| 啦啦啦在线观看免费高清www| 美女午夜性视频免费| 国产成人a∨麻豆精品| 国产极品天堂在线| 午夜影院在线不卡| av国产精品久久久久影院| 永久网站在线| 熟妇人妻不卡中文字幕| 欧美另类一区| 国产高清不卡午夜福利| 超碰97精品在线观看| 大码成人一级视频| 在线天堂中文资源库| 一二三四在线观看免费中文在| 桃花免费在线播放| 捣出白浆h1v1| 国产 精品1| 日韩伦理黄色片| 久久精品国产亚洲av天美| 成人漫画全彩无遮挡| 永久网站在线| 丝瓜视频免费看黄片| 久久ye,这里只有精品| 美女脱内裤让男人舔精品视频| 国产亚洲一区二区精品| 国产一区亚洲一区在线观看| 黄色配什么色好看| 最近2019中文字幕mv第一页| 中国三级夫妇交换| 亚洲男人天堂网一区| 人妻少妇偷人精品九色| 亚洲av.av天堂| 看免费成人av毛片| 午夜激情av网站| 一本—道久久a久久精品蜜桃钙片| 国产毛片在线视频|