• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation*

    2017-03-09 09:09:49NoreenSherAkbarAdilWahidButt

    Noreen Sher Akbar, Adil Wahid Butt

    1. DBS & H, CEME, National University of Sciences and Technology, Islamabad, Pakistan, E-mail:noreensher1@gmail.com

    2. DBS & H, MCE, National University of Sciences and Technology, Islamabad, Pakistan

    (Received October 16, 2014, Revised December 24, 2016)

    Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation*

    Noreen Sher Akbar1, Adil Wahid Butt2

    1. DBS & H, CEME, National University of Sciences and Technology, Islamabad, Pakistan, E-mail:noreensher1@gmail.com

    2. DBS & H, MCE, National University of Sciences and Technology, Islamabad, Pakistan

    (Received October 16, 2014, Revised December 24, 2016)

    The purpose of the current investigation is to examine the influence of different physical parameters on the entropy generation. The entropy generation number due to heat transfer and fluid friction is formulated. The velocity and temperature distributions across the tube are presented along with pressure attributes. Exact analytical solution for velocity and temperature profile is obtained. It is found that the entropy generation number attains high values in the region close to the walls of the tube, while it falls to low values near the center of the tube.

    Entropy generation, heat transfer, nanofluid, Cu-water, uniform tube

    Introduction

    The topic of peristaltic flow was first presented and framed by Latham[1]. After the Latham’s study, this topic gained dynamic importance. During the last few years research had been carried out in this area because of its great significance in numerous fields such as manufacturing, physiology and ecology. Such claims for peristaltic flow seem in the transportation of irritability in the wrath duct, vasomotion of the small blood vessels, the transport of urine from kidney to the bladder, the movement of eggs in the fallopian tube, the transport of the spermatozoa in cervical canal, the chyme movement in the intestine, and the transport of intra-uterine fluid within the cavity of the uterus. Several articles discussing the application of peristalsis are given in Refs.[2-8].

    Tryouts have led to the study of flows preceding acquiescent precincts, i.e., blood flow in arteries, dolphin propulsion etc. Srinivasacharya et al.[9]delibera-ted the Stimulus of wall possessions on peristalsis in the occurrence of compelling field. Radhakrishnamacharya and Srinivasulu[10]gave the effect of wall properties on peristaltic transportation with heat transfer. From them originated a theory that heat transmission rises with flexible tautness and mass exemplifying structures. Muthu et al.[11]examined the peristaltic gesticulation of micro glacial fluid in spherical cylindrical pipes with consequence of wall properties. According to them in the situation of viscoelastic wall, wall properties affect the fluid flow significantly. Conclusions about the effect of heat and mass allocation on MHD peristaltic movement in a porous space smeared with slip complaint are drawn by Srinivas and Kothandapani[12]and Srinivas et al.[13]. Heat transfer analysis of the peristaltic instinct of biviscosity fluid with the impact of thermal and velocity slips is studied by Akbar and Khan[14]. Very recently some noteworthy hypothetical exertions depleted the acquiescent walls examination has been done by Nadeem et al.[15].

    In thermodynamics, entropy is a measure of the number of specific ways in which a thermodynamic system may be arranged, often taken to be a measure of disorder, or a measure of progressing towards thermodynamic equilibrium. Non-Newtonian fluid flow in a pipe system with entropy generation has been considered by Pakdemirli and Yilbas[16].According to them entropy number increases with increasing Brinkman number. Souidi et al.[17]discussed entropy generation rate for a peristaltic pump. They also did analytical study. The analysis reveals that peristaltic pumps generate more entropy than steady walled tubes and are not, from this point of view, competitive devices. Abu-Hijleh et al.[18]investigated numerical prediction of entropy generation due to natural convection from a horizontal cylinder. The reason for this high-energy degradation is found in the dynamic behavior. Abu-Nada[19]discussed numerical prediction of entropy generation in separated flows. In another article[20], he presented entropy generation due to heat and fluid flow in backward facing step flow with various expansion ratios. He studied numerical solutions with computational algorithm.

    Entropy generation for peristaltic flow is not explored so far, to fill this gap we have investigated the entropy generation for peristaltic flow in a tube with nanofluid. The coupled differential equations are simplified under long wave length and low Reynolds number assumptions. Exact solutions are obtained for reduced coupled differential equations. The entropy generation is computed by evaluation of thermal and fluid viscosities contribution. The physical features of pertinent parameters have been discussed by plotting the graphs of velocity, temperature, entropy number and stream functions.

    Fig.1 (Color online) Geometry of the problem

    1. Problem formulation

    Let us consider the incompressible, natural convective peristaltic flow of nanofluids in a horizontal tube. A sinusoidal wave is propagating along the walls of the tube. We choose a cylindrical coordinate system (,), where-axis lies along the center line of the tubes and-axis is normal to it. The wave is propagating with a velocitycalong the wall of the tube. With the view of analysis the geometry of the wall surface is defined as whereais the radius of the tube,bis the amplitude of the sinusoidal wave,cis the wave speed andλis the wavelength. The geometry of the flow is shown in Fig.1.

    In the fixed coordinate system (,)flow between the tube is unsteady. It becomes steady in a wave frame(,)moving with the same speed as the wave moves in the-direction. The transformations between the two frames are:

    The governing equations for the flow of an incompressible nanofluid can be written as:

    whereandare the coordinates,-axis is taken as the center line of the tube andtransverse to it,andare the velocity components in theanddirections respectively,is the local temperature of the fluid. Further,ρnfis the effective density,μnfis the effective dynamic viscosity,(ρcp)nfis the heat capacitance,αnfis the effective thermal diffusivity,knfis the effective thermal conductivity of the nanofluid, andis the pressure. We use the following non-dimensional variables:

    With the help of Eq.(7), Eqs.(3)-(6) can be written as follows:

    The non-dimensionless boundary conditions are defined as follows:

    Thermal properties of the fluid are defined as follows[18-20]:

    whereΜis the Hartman number,Bris the Brinkman number,Pris the Prandtl number andφis the nanoparticle volume fraction.

    2. Entropy generation analysis

    Entropy generation can be defined[16,17]as follows

    Dimensionless form of the entropy generation with the help of Eq.(7) due to fluid friction and magnetic field is given as

    The dimensionless form ofSGis known as entropy generation numberNSwhich is the ratio of actual entropy generation rate to the characteristic entropy transfer rateSG0, which is defined as follows:

    The total entropy generation in Eq.(14) can be written as the sum

    whereNHis the entropy generation due to heat transfer,NFis the local entropy generation due to fluid friction irreversibility andNMis the entropy generation due to magnetic field caused by the motion of electrically conducting fluids under the magnetic field inducing electrical currents that circulates in the fluid. Further, the sum of second and third term in Eq.(16) can be treated as the entropy generationNBdue to combined effects of fluid friction and magnetic field

    In order to see whether the one term is dominant to other a criterion namely irreversibility ratio, which is the ratio between entropy generation due to fluid friction and Joule dissipation to the total entropy generation due to heat transfer. The irreversibility ratioξis defined as

    Fig.2 Velocity profilesw(r,z)against the radial distancer(z=1,ε=0.3)

    Fig.4 Pressure rises ΔPagainst the flow rateQ

    Fig.3 Pressure gradients dp/dzversusz(Q=0.1)

    Fig.5 Temperature profilesθ(r,z)(z=1,ε=0.1,Q=0.2)

    Fig.6 EntropiesNSagainst the radial distancesr(z=1)

    Note that heat transfer irreversibility dominates in the range 0<ξ<1whereasξ>1indicates that irreversibility is solely due to the sum of fluid friction and magnetic field irreversibility, The contribution of heat transfer to entropy generation is same to the combined effects of fluid friction and magnetic field whenξ=1.

    Alternatively, another irreversibility parameter is the Bejan number which is the ratio of heat transfer irreversibility to the total irreversibility due to heat transfer, fluid friction and magnetic field. Mathematically

    From Eq.(19), it is clear that Bejan number ranges from 0 to 1. HereBe→0is the limiting case when the entropy generation due to combined effects of fluid friction and magnetic field is dominant,Be→1is the opposite limit where heat transfer irreversibility dominates andBe=0.5is the case where the contributions of both heat and fluid friction to entropy generation are equal.

    3. Exact solutions

    Exact solutions have been evaluated for velocity, temperature and pressure gradient from Eqs.(9) to (11):

    Velocity of the fluid flow is

    The temperature distribution is given as

    this implies that

    where the mean flow rateQis given as

    Integrating Eq.(22) over the interval[0,1], we can find the pressure rise given by the expression

    4. Results and discussions

    In this section, we present a brief g raphical analysis of the exact analytical solutions of the governing problem. Figures 2(a) and 2(b) represent the magnitude of the horizontal velocity of the fluid inside the tube. We see that with the increase in the Hartmann numberM, i.e., ratio of electromagnetic force to the viscous force, the velocity decreases in the center of the tube and increases near the walls of the tube, while as we increase the flow rateQ, the magnitude of velocity takes a positive shift all around the tube. In both cases, it is observed that Cu-water has more variation than that of Pure water. Also we note that the velocity attains its highest values in the center of the tube atr=0, while it sufficiently decreases at the walls of the tube. Figures 3(a) and 3(b) depict that with the addition of copper to the base fluid, the pressure gradually decreases. We note that the pressure gradient certainly decreases with a decrease in the Hartmann number. However a non-uniform behavior is seen in the case ofε. In that case pressure gradient seems to be directly proportional toεfor 0≤z<0.25and inversely proportional for0.25<z<0.75this behavior of pressure gradient is oscillating.

    The pressure rise of in the fluid is shown in Figs.4(a) and 4(b), from the graphical demonstration, it is seen that pressure rise is directly proportional toM,εin the peristaltic pumping region and inversely proportional to the same in the augmented peristaltic region. In both cases, the change in case of Cu-water is observed to be more rapid as compared with Pure water. Temperature of fluid in the tube significantly increases with an increase in Brinkman numberBrand a decrease in Hartmann numberM. However with less copper in the fluid, the temperature substantially decreases inside the tube. In comparison with the walls of the tube, higher temperature exists in the center wherer=0. We note that with higher the values of the Brinkman number, i.e., the ratio of viscous heat generation to external heating, the lesser will be the conduction of heat produced by viscous dissipation and hence the larger the temperature rise see Figs.5(a), 5(b).

    F ig.8 (Color online) Streamlines for pure water and Cu-water

    Figures 6(a)-6(e) are prepared to analyze the entropy generation with respect to change in different physical constraints involved. Figures 6(a)-6(b) depict that entropy generation is directly proportional to both Hartmann number and Brinkman number, and that entropy generation for Cu-water is higher than that of Pure water. It has larger values near the walls of the tube as compared with the center of the tube. It is to be noticed that for significantly larger values of these two parameters, entropy generation can be larger in the center of the tube than those generated at the walls. The similar behavior is seen if we increase the flow rateQ. Nevertheless, the higher the values ofΛ,εthe smaller entropy generation. Rapid change in this case is seen in the center of the tube which implies that characteristic entropy transfer rate is predominant as compared with actual entropy generation rate with the rise inΛ,ε.

    Figures 7(a)-7(e) are prepared to analyze the Bejan number with respect to change in different physical constraints involved. Figures 7(a)-7(e) show that with the increase in Hartmann number, Brinkmannumber, temperature difference, flow rate, and amplitude ratio, the heat transfer irreversibility is high as compare with the total irreversibility due to heat transfer, fluid friction and magnetic field.

    Figure 8 shows streamlines for pure and Cu-water. It is seen that the size of trapped bolus for pure water is greater as compare with Cu-water. Figure 9 shows the entropy generation: (1)Nswith heat transfer, (2)NBwithout heat transfer. It is seen from the figures that the entropy generation with heat transfer is high near the tube walls as compare with the center of the tube, while entropy generation without heat transfer is high at center, and small entropy generation occurs near the tube walls.

    Fig.9 EntropiesNSandNbwith heat transfer for varying Brinkman numbers (z=1,ε=0.1,M=4,Q=0.3,Λ=0.5)

    5. Conclusion

    An analysis of entropy generation in the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation has been made. We have found that with the increase in the Hartmann number the velocity decreases in the center of the tube and increases near the walls of the tube, while as we increase the flow rateQ, the magnitude of velocity takes a positive shift all around the tube. In both cases, it is observed that Cu-water has more variation than that of Pure water. Also we note that the pressure rise is directly proportional toM,εin the peristaltic pumping region and inversely proportional to the same in the augmented peristaltic region. In both cases, the change in the case of Cu-water is observed to be more rapid as compared with Pure water. Temperature of the fluid in the tube significantly increases with an increase in Brinkman numberBrand a decrease in Hartmann numberM. Rapid change in this case is seen in the center of the tube which implies that characteristic entropy transfer rate is predominant as compared with actual entropy generation rate with the rise inΛ,ε.

    [1] Latham T. W. Fluid motion in a peristaltic pump [D]. Master Thesis, Cambridge, USA: MIT, 1966.

    [2] Akbar N. S. MHD eyring Prandtl fluid flow with convective boundary conditions in small intestines[J].International Journal of Biomathematics, 2013, 6(5): 135-147.

    [3] Akbar N. S. Endoscopic effects on the Peristaltic flow of Cu-water nanofluid [J].Journal of Computational and Theoretical Nanoscience, 2014, 11(4): 1150-1155.

    [4] Akbar N. S. Peristaltic flow with Maxwell carbon nanotubes suspensions [J].Journal of Computational and Theoretical Nanoscience, 2014, 11(7): 1642-1648.

    [5] Akbar N. S. Metallic nanoparticles analysis for the peristaltic flow in an asymmetric channel with MHD [J].IEEE Transactions On Nanotechnology, 2014, 13(2): 357-361.

    [6] Akbar N. S. Heat and mass transfer effects on Careau fluid model for blood flow through tapered arteries with stenosis [J].International Journal of Biomathematics, 2014, 7(1): 1450004.

    [7] Akbar N. S. MHD peristaltic flow with carbon nanotubes in an asymmetric channel [J].Journal of Computational and Theoretical Nanoscience, 2014, 11(5): 1323-1329.

    [8] Akbar N. S. Peristaltic flow of tangent hyperbolic fluid with convective boundary condition [J].The European Physical Journal Plus, 2014, 129(10): ID214.

    [9] Srinivasacharya D., Radhakrishnamarya G., Srinivasulu C. Influence of wall properties on peristalsis in the presence of magnetic field [J].International Journal of Fluid Mechanics Research, 2007,34(4): 374-386.

    [10] RadhakrishnamacharyaG.,SrinivasuluC.Influenceof wall properties on peristaltic transport with heat transfer [J].Comptes Rendus Mecanique, 2007, 335(7): 369-373.

    [11] Muthu P., Rathish B. V. K., Chandra P. Peristaltic motion of micropolar fluid in circular cylindrical tubes: Effect of wall properties [J].Applied Mathematical Modelling, 2008, 32(10): 2019-2033.

    [12] Srinivas S., Kothandapani M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls [J].Applied Mathematics and Computation, 2009, 213(1): 197-208.

    [13] Srinivas S., Gayathri R., Kothandapani M. The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport [J].Computer Physics Commu-nications, 2009, 180(11): 2115-2122.

    [14]Akbar N. S., Khan Z. H. Heat transfer analysis of the peristaltic instinct of biviscosity fluid with the impact of thermal and velocity slips [J].International Communications in Heat and Mass Transfer, 2014, 58: 193-199.

    [15] Nadeem S., Maraj E. N., Akbar N. S. Theoretical analysis for peristaltic flow of Carreau nano fluid in a curved channel with compliant walls [J].Journal of Computational and Theoretical Nanoscience, 2014, 4(1): 85-92.

    [16] Pakdemirli M., Yilbas B. S. Entropy generation in a pipe due to non-Newtonian fluid flow: Constant viscosity case [J].Sadhana, 2006, 31(1): 21-29.

    [17] Souidi F., Ayachi K., Benyahia N. Entropy generation rate for a peristaltic pump [J].Journal of Non-Equilibrium Thermodynamics, 2009, 34(2): 171-194.

    [18] Hijleh B. A., Abu-Qudais M., Abu-Nada E. Numerical prediction of entropy generation due to natural convection from a horizontal cylinder [J].Energy, 1999, 24(4): 327-333.

    [19] Abu-Nada E. Numerical prediction of entropy generation in separated flows [J].Entropy, 2005, 7(4): 234-252.

    [20] Abu-Nada E. Entropy generation due to heat and fluid flow in backward facing step flow with various expansion ratios [J].International Journal of Exergy, 2006, 3(4): 419-435.

    * Biography:Noreen Sher Akbar (1984-), Female, Ph. D., Assistant Professor

    Adil Wahid Butt, E-mail: adil.maths86@gmail.com

    村上凉子中文字幕在线| 国产亚洲精品av在线| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 黄色视频,在线免费观看| 一进一出抽搐动态| a级一级毛片免费在线观看| 国产精品久久久久久久电影| 国产主播在线观看一区二区| 91久久精品国产一区二区成人| 干丝袜人妻中文字幕| 麻豆一二三区av精品| 亚洲一区二区三区色噜噜| 他把我摸到了高潮在线观看| 日韩欧美精品免费久久| 亚洲在线自拍视频| 日本黄大片高清| 男女做爰动态图高潮gif福利片| 少妇裸体淫交视频免费看高清| 欧美xxxx性猛交bbbb| 可以在线观看毛片的网站| 身体一侧抽搐| 九色成人免费人妻av| 国内精品宾馆在线| 国产精品一区二区免费欧美| 看十八女毛片水多多多| 他把我摸到了高潮在线观看| 国产亚洲av嫩草精品影院| 日韩欧美国产在线观看| 亚洲一区二区三区色噜噜| 久久久久久久久久黄片| 国产淫片久久久久久久久| 男女那种视频在线观看| 不卡一级毛片| 亚洲精品粉嫩美女一区| 很黄的视频免费| 在线国产一区二区在线| 国产一区二区三区av在线 | 少妇丰满av| 日韩欧美免费精品| 欧美另类亚洲清纯唯美| 亚洲人成网站在线播放欧美日韩| 黄色女人牲交| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 国产一级毛片七仙女欲春2| 久久精品国产清高在天天线| 1024手机看黄色片| 18+在线观看网站| 男人舔奶头视频| 国国产精品蜜臀av免费| 干丝袜人妻中文字幕| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9| 中国美白少妇内射xxxbb| 自拍偷自拍亚洲精品老妇| 偷拍熟女少妇极品色| aaaaa片日本免费| 搡老熟女国产l中国老女人| 亚洲精品在线观看二区| 狠狠狠狠99中文字幕| 女的被弄到高潮叫床怎么办 | 亚洲va在线va天堂va国产| 午夜久久久久精精品| 国产高清不卡午夜福利| 亚州av有码| 久久午夜亚洲精品久久| 色综合婷婷激情| 一进一出抽搐gif免费好疼| АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 欧美日韩国产亚洲二区| 亚洲精品成人久久久久久| 日本a在线网址| 91精品国产九色| 成年版毛片免费区| 久久久久久久久久黄片| 熟女人妻精品中文字幕| 真人做人爱边吃奶动态| www日本黄色视频网| 岛国在线免费视频观看| 国产综合懂色| 999久久久精品免费观看国产| 欧美黑人欧美精品刺激| 97超级碰碰碰精品色视频在线观看| 亚洲国产日韩欧美精品在线观看| 3wmmmm亚洲av在线观看| 性插视频无遮挡在线免费观看| 国内久久婷婷六月综合欲色啪| 欧美最新免费一区二区三区| 亚洲精品粉嫩美女一区| 在线免费观看不下载黄p国产 | 久久天躁狠狠躁夜夜2o2o| 国产精品永久免费网站| 亚洲成人久久性| 国产精品三级大全| 女人被狂操c到高潮| 国产精品国产高清国产av| 久久久成人免费电影| 99久久无色码亚洲精品果冻| 国产精品电影一区二区三区| 亚洲成人中文字幕在线播放| 午夜福利视频1000在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲精品亚洲一区二区| 欧美成人性av电影在线观看| 日本一本二区三区精品| 日本与韩国留学比较| 搡老妇女老女人老熟妇| 久久久久久久亚洲中文字幕| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 亚洲精华国产精华液的使用体验 | ponron亚洲| or卡值多少钱| 欧洲精品卡2卡3卡4卡5卡区| 国产老妇女一区| 亚洲精品色激情综合| 国产淫片久久久久久久久| 免费av观看视频| 日本色播在线视频| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 亚洲真实伦在线观看| 男女之事视频高清在线观看| 亚洲欧美日韩高清在线视频| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| 最近最新中文字幕大全电影3| 欧美一区二区精品小视频在线| 久久久精品欧美日韩精品| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 18禁在线播放成人免费| 国产在视频线在精品| 国内精品美女久久久久久| 色综合站精品国产| 日本在线视频免费播放| 不卡一级毛片| 欧美激情在线99| 国产 一区 欧美 日韩| 悠悠久久av| 99九九线精品视频在线观看视频| 久久国产精品人妻蜜桃| 成人三级黄色视频| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 少妇的逼水好多| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡免费网站照片| 99热精品在线国产| 草草在线视频免费看| 99在线视频只有这里精品首页| netflix在线观看网站| www日本黄色视频网| 男插女下体视频免费在线播放| 亚洲三级黄色毛片| 成人三级黄色视频| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 亚洲自偷自拍三级| 亚洲精品456在线播放app | 一级黄片播放器| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片 | 日本撒尿小便嘘嘘汇集6| 欧美不卡视频在线免费观看| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 成人国产一区最新在线观看| 午夜老司机福利剧场| 成人精品一区二区免费| 国产精品一及| 国产精品伦人一区二区| 国产一区二区三区视频了| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 午夜福利欧美成人| 国产精品美女特级片免费视频播放器| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 干丝袜人妻中文字幕| 夜夜看夜夜爽夜夜摸| 露出奶头的视频| 亚洲男人的天堂狠狠| av在线蜜桃| 我要搜黄色片| 麻豆一二三区av精品| 国内揄拍国产精品人妻在线| 成年免费大片在线观看| 国产精品一区二区性色av| 天美传媒精品一区二区| 窝窝影院91人妻| 日本色播在线视频| 最近在线观看免费完整版| 熟妇人妻久久中文字幕3abv| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 午夜福利在线观看免费完整高清在 | 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 黄色丝袜av网址大全| 国产精品久久久久久亚洲av鲁大| 国内精品宾馆在线| 亚洲专区国产一区二区| 最近中文字幕高清免费大全6 | 精品国产三级普通话版| 色视频www国产| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 亚洲性久久影院| 在线免费观看的www视频| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 99久国产av精品| 老熟妇仑乱视频hdxx| 丝袜美腿在线中文| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看 | 国产精品伦人一区二区| 嫩草影视91久久| 毛片一级片免费看久久久久 | 免费高清视频大片| 亚洲第一电影网av| 亚洲成人中文字幕在线播放| 亚洲成a人片在线一区二区| 亚洲第一区二区三区不卡| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 深夜a级毛片| 午夜精品久久久久久毛片777| 又黄又爽又免费观看的视频| 18禁在线播放成人免费| 亚洲av中文字字幕乱码综合| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| 亚洲精品一区av在线观看| 亚洲va在线va天堂va国产| 老司机深夜福利视频在线观看| 精品午夜福利在线看| 午夜福利成人在线免费观看| 精品人妻视频免费看| 男插女下体视频免费在线播放| 国产免费男女视频| 国产精品精品国产色婷婷| 又黄又爽又刺激的免费视频.| www日本黄色视频网| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 搡老妇女老女人老熟妇| 国产亚洲精品av在线| 国产精品一区二区三区四区久久| 国产精品久久电影中文字幕| 18禁黄网站禁片免费观看直播| 国产老妇女一区| 欧美日韩乱码在线| 91在线观看av| 国产精品三级大全| 99热精品在线国产| 天堂动漫精品| 精品久久久久久久久久久久久| 深夜a级毛片| 一本一本综合久久| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 久久久久久久久中文| 日本精品一区二区三区蜜桃| av黄色大香蕉| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 久久热精品热| 乱系列少妇在线播放| 国产老妇女一区| 成人午夜高清在线视频| 欧美人与善性xxx| 久久精品综合一区二区三区| 日日夜夜操网爽| 国产精品免费一区二区三区在线| 婷婷丁香在线五月| 国产午夜精品久久久久久一区二区三区 | 欧美激情在线99| 尾随美女入室| 极品教师在线免费播放| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 午夜日韩欧美国产| 欧美日韩中文字幕国产精品一区二区三区| 美女被艹到高潮喷水动态| 久久久久久伊人网av| 老司机福利观看| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 男人的好看免费观看在线视频| 成人高潮视频无遮挡免费网站| 亚洲无线在线观看| 日韩一区二区视频免费看| 亚洲自偷自拍三级| 精品久久久噜噜| 黄色女人牲交| 99久久成人亚洲精品观看| 美女免费视频网站| 成年女人毛片免费观看观看9| 亚洲精品在线观看二区| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| 999久久久精品免费观看国产| 日韩欧美精品免费久久| 国产亚洲精品久久久久久毛片| 夜夜爽天天搞| .国产精品久久| 两个人视频免费观看高清| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 亚洲午夜理论影院| 舔av片在线| 成人欧美大片| 麻豆国产97在线/欧美| 国产精品一区二区免费欧美| 国产高清视频在线观看网站| 大又大粗又爽又黄少妇毛片口| 免费不卡的大黄色大毛片视频在线观看 | 人妻丰满熟妇av一区二区三区| 久久99热这里只有精品18| 老司机福利观看| 搡老岳熟女国产| 性欧美人与动物交配| av在线观看视频网站免费| 在线免费观看不下载黄p国产 | 校园春色视频在线观看| 一区福利在线观看| 亚洲久久久久久中文字幕| 婷婷色综合大香蕉| 蜜桃久久精品国产亚洲av| 少妇丰满av| 人妻久久中文字幕网| 精品久久久久久,| 日本黄色片子视频| 村上凉子中文字幕在线| 极品教师在线视频| 成人国产麻豆网| 校园春色视频在线观看| 国产蜜桃级精品一区二区三区| 亚洲不卡免费看| www日本黄色视频网| 国产v大片淫在线免费观看| 久久人人精品亚洲av| 国产69精品久久久久777片| 日本与韩国留学比较| 99热这里只有是精品在线观看| 男人舔奶头视频| 在线免费观看不下载黄p国产 | 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 亚洲国产精品久久男人天堂| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 日韩精品有码人妻一区| 别揉我奶头 嗯啊视频| 九九久久精品国产亚洲av麻豆| 亚洲不卡免费看| 久久99热这里只有精品18| 99久久成人亚洲精品观看| 99热网站在线观看| 亚洲欧美日韩高清在线视频| 久久久久久国产a免费观看| 亚洲av中文字字幕乱码综合| 亚洲性夜色夜夜综合| 18+在线观看网站| 舔av片在线| 国产午夜精品论理片| 欧美一区二区亚洲| 黄色一级大片看看| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 真人一进一出gif抽搐免费| 两个人的视频大全免费| 亚洲成人久久爱视频| 此物有八面人人有两片| 夜夜夜夜夜久久久久| 日韩欧美精品v在线| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 国产在视频线在精品| 免费不卡的大黄色大毛片视频在线观看 | 色综合婷婷激情| 乱人视频在线观看| 亚洲国产精品合色在线| 在线观看午夜福利视频| 日本-黄色视频高清免费观看| 男人和女人高潮做爰伦理| 久久精品91蜜桃| 在现免费观看毛片| 身体一侧抽搐| 少妇人妻精品综合一区二区 | 久久国产精品人妻蜜桃| 亚洲国产欧洲综合997久久,| 免费在线观看日本一区| 有码 亚洲区| 国产激情偷乱视频一区二区| 欧美一区二区国产精品久久精品| 亚洲国产日韩欧美精品在线观看| 91在线精品国自产拍蜜月| 看免费成人av毛片| 色精品久久人妻99蜜桃| 全区人妻精品视频| 久久久色成人| 嫩草影视91久久| 99热6这里只有精品| av中文乱码字幕在线| 国产亚洲欧美98| 美女免费视频网站| 亚洲图色成人| 99热网站在线观看| 国产色婷婷99| 成年女人永久免费观看视频| 91在线观看av| 99国产精品一区二区蜜桃av| 在线天堂最新版资源| 亚洲最大成人手机在线| 精品人妻偷拍中文字幕| 国内精品久久久久久久电影| 一级a爱片免费观看的视频| 老司机福利观看| 草草在线视频免费看| 国产色爽女视频免费观看| 亚洲国产欧洲综合997久久,| 日韩欧美在线乱码| 成人午夜高清在线视频| 中文亚洲av片在线观看爽| 男人和女人高潮做爰伦理| 成人毛片a级毛片在线播放| 国产精品一区二区三区四区久久| 成人精品一区二区免费| 两个人视频免费观看高清| h日本视频在线播放| 99riav亚洲国产免费| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看 | 欧美成人性av电影在线观看| 三级男女做爰猛烈吃奶摸视频| 中国美女看黄片| 精品福利观看| 嫁个100分男人电影在线观看| 身体一侧抽搐| 亚洲欧美激情综合另类| 一级a爱片免费观看的视频| 亚洲久久久久久中文字幕| 国产精品免费一区二区三区在线| 中文字幕久久专区| 欧美性猛交黑人性爽| 国产精品不卡视频一区二区| 嫩草影院新地址| 免费av不卡在线播放| 午夜精品在线福利| av在线观看视频网站免费| 如何舔出高潮| 免费av毛片视频| 国产色婷婷99| 国产精品精品国产色婷婷| 亚洲最大成人中文| 日本欧美国产在线视频| 欧美又色又爽又黄视频| 日韩欧美在线二视频| 欧美精品国产亚洲| 国产精品99久久久久久久久| 午夜福利在线观看吧| 亚洲中文字幕日韩| 韩国av在线不卡| 国产不卡一卡二| 老女人水多毛片| 91久久精品国产一区二区三区| 久久久久国产精品人妻aⅴ院| 春色校园在线视频观看| 亚洲真实伦在线观看| 国产久久久一区二区三区| 哪里可以看免费的av片| 亚洲欧美日韩东京热| 男插女下体视频免费在线播放| 97碰自拍视频| 亚洲不卡免费看| 哪里可以看免费的av片| 一个人看视频在线观看www免费| 久久久久国内视频| 欧美又色又爽又黄视频| 直男gayav资源| 国产一区二区亚洲精品在线观看| 成人国产综合亚洲| 亚洲国产色片| 少妇人妻一区二区三区视频| 久久久久久久亚洲中文字幕| 免费大片18禁| 久久精品91蜜桃| 两人在一起打扑克的视频| 国产伦精品一区二区三区视频9| 亚洲欧美日韩高清在线视频| 搡老妇女老女人老熟妇| 国产午夜福利久久久久久| 亚洲成a人片在线一区二区| 久久99热这里只有精品18| 真人做人爱边吃奶动态| 欧美成人a在线观看| 国产爱豆传媒在线观看| 亚洲av电影不卡..在线观看| 国产黄a三级三级三级人| 久久精品国产亚洲av涩爱 | 欧美成人a在线观看| 老熟妇仑乱视频hdxx| 午夜福利成人在线免费观看| 变态另类丝袜制服| 日本熟妇午夜| 国产精品嫩草影院av在线观看 | 无人区码免费观看不卡| 国产精品av视频在线免费观看| 联通29元200g的流量卡| 日本a在线网址| 日本黄大片高清| 中出人妻视频一区二区| 国产av不卡久久| 日韩,欧美,国产一区二区三区 | 精品人妻视频免费看| 亚洲人成网站高清观看| 男女之事视频高清在线观看| 三级国产精品欧美在线观看| 免费看日本二区| 亚洲熟妇中文字幕五十中出| 欧美日韩瑟瑟在线播放| av女优亚洲男人天堂| 一级a爱片免费观看的视频| 欧美一级a爱片免费观看看| 亚洲av第一区精品v没综合| 精品一区二区三区人妻视频| 精品日产1卡2卡| 十八禁网站免费在线| 亚洲国产精品合色在线| 精品人妻熟女av久视频| 日韩精品有码人妻一区| 赤兔流量卡办理| 亚洲精华国产精华精| 亚洲精品在线观看二区| 真实男女啪啪啪动态图| 男女之事视频高清在线观看| 99久久久亚洲精品蜜臀av| 精品久久久久久成人av| 久久精品综合一区二区三区| 一级黄色大片毛片| 免费在线观看成人毛片| 97超视频在线观看视频| 欧美激情国产日韩精品一区| 精品一区二区三区视频在线| 久久精品夜夜夜夜夜久久蜜豆| 成人精品一区二区免费| 日韩高清综合在线| 自拍偷自拍亚洲精品老妇| 国产成人a区在线观看| 狠狠狠狠99中文字幕| 国产爱豆传媒在线观看| 国产av一区在线观看免费| 久久久精品欧美日韩精品| 夜夜看夜夜爽夜夜摸| 蜜桃亚洲精品一区二区三区| 免费高清视频大片| h日本视频在线播放| 欧美色欧美亚洲另类二区| 亚洲自偷自拍三级| 婷婷亚洲欧美| 免费在线观看成人毛片| 深夜精品福利| 欧美不卡视频在线免费观看| 精品无人区乱码1区二区| 精品乱码久久久久久99久播| 人妻制服诱惑在线中文字幕| 99在线视频只有这里精品首页| 久久亚洲精品不卡| 中国美白少妇内射xxxbb| 精品欧美国产一区二区三| 久久精品夜夜夜夜夜久久蜜豆| 国产精品人妻久久久久久| 嫁个100分男人电影在线观看| 18禁黄网站禁片免费观看直播| a级一级毛片免费在线观看| 日韩高清综合在线| 美女免费视频网站| 小蜜桃在线观看免费完整版高清| 午夜免费激情av| eeuss影院久久| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看| 一a级毛片在线观看| 在线播放无遮挡| 日韩亚洲欧美综合| 黄色女人牲交| 欧美绝顶高潮抽搐喷水| 一进一出抽搐动态| 在线免费观看的www视频| 99久久九九国产精品国产免费| 韩国av在线不卡| 国产亚洲91精品色在线| av天堂中文字幕网| 美女高潮的动态| 国产国拍精品亚洲av在线观看| 又紧又爽又黄一区二区| 极品教师在线视频|