• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*

    2017-03-09 09:09:45LiqinLiu劉利琴YanLi李妍LeiHuang黃磊YougangTang唐友剛
    關(guān)鍵詞:李妍黃磊

    Li-qin Liu (劉利琴), Yan Li (李妍), Lei Huang (黃磊), You-gang Tang (唐友剛)

    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, E-mail: liuliqin@tju.edu.cn

    (Received May 4, 2015, Revised March 23, 2016)

    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*

    Li-qin Liu (劉利琴), Yan Li (李妍), Lei Huang (黃磊), You-gang Tang (唐友剛)

    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, E-mail: liuliqin@tju.edu.cn

    (Received May 4, 2015, Revised March 23, 2016)

    The three-dimensional natural vibration characteristics of water inside a moon pool of an ocean structures are studied. The governing equations are derived based on the linear potential flow theory, and the boundary condition of the total opening bottom suggested by Molin is adopted. A semi-analytical method is used to solve the governing equations, and the natural frequencies and the motion modes are obtained. Two types of motions are studied: (1) the piston motion in the vertical direction, and (2) the sloshing motion of the free surface. The influences of moon pool’s structural parameters on the natural frequencies, and the modal shapes are analyzed.

    Moon pool, natural vibration characteristics, semi-analytical method, parameter influences

    Introduction

    The moon pool is an important structure used in the offshore floating structures, such as drilling unit, floating production storage and offloading (FPSO), and Spar platform[1,2]. It goes vertically down through the main structure. The risers and the other important drilling equipment are located in the moon pool to prevent excessive wave and current excitations[3-5]. There are two kinds of natural vibration modes of water in the moon pool: (1) the piston-like motion along the depth direction of the moon pool, and (2) the sloshing motion caused by the free liquid surface[6-8].

    The natural vibration characteristics of water in a moon pool were extensively studies, to predict the coupled motion of the moon pool and the offshore structure in the complicated ocean environment. Based on a series of model tests, Aalbers[9]developed the relativemotion equations of water in a ship’s moon pool. The results show that the natural vibration characteristics of water in the moon pool depend on parameters, such as the depth of the water column, the heave amplitude, and the diameter of the moon pool. By applying a fictitious boundary condition at the bottom of a moon pool, Molin[10]studied the natural frequencies and the modal shapes of both the piston mode and the sloshing mode of water in the moon pool and obtained approximate expressions of natural frequencies. Sphaier et al.[11]carried out the model tests of a mono-column platform with a semi-closed moon pool, the results show that the motion of the water column is smaller for smaller moon pool opening. Hence, the moon pool can be used as an effective device to reduce the vertical motion of a mono-column platform. Faltinsen et al.[12]studied the two-dimensional piston-like motions of the water inside a moon pool with a vertical harmonic motion by the domain-decomposition method. The model experiments were carried out to compare with the analytical results. By applying Newton’s second law, Gupta et al.[13]developed a 2-DOF (degree of freedom) coupled motion equations for the heave of a Spar platform and the vertical oscillation of the water column inside a moon pool. Using the CFD method, Kristiansen and Faltinsen[14,15]investigated the influence of the nonlinear free surface, the damping of the boundary layersand the flow separation on the piston motion of water in a moon pool. It is found that the flow separation is the main cause of the discrepancies between the measured results and those estimated by the linear theory. Tonje[16]studied the influence of the water inside a moon pool on the installation of the cargo oil pump. The results show that in the resonance region, the amplitude of the water movement inside the moon pool is greater than that outside the moon pool. Based on the Navier-Stokes equations and the volume of fluid (VOF) method, Sun et al.[17]developed a 3-DOF numerical wave tank. The interaction between the hull and the water motion inside a moon pool was also analyzed. Liu et al.[18,19]studied the influence of the water motion inside a moon pool on the heave motion of a Spar platform. The model experimental results were used to verify the analytical results.

    The present work studies the three-dimensional natural vibration characteristics of water inside a moon pool, as well as the influences of moon pool’s dimensional parameters on the natural frequencies and the modal shapes of the water motion inside the moon pool. Using the Galerkin method, the semi-analytical solution is obtained.

    1. Solution of governing equations of water in moon pool

    1.1Governing equations

    The Cartesian coordinates and a schematic diagram of a three-dimensional moon pool are shown in Fig.1, wherel,bandhrepresent the length, the width and the water depth of the moon pool, respectively. The main structure is assumed to be motionless, since its scale is much larger than that of the moon pool. Therefore, it is assumed the length and the width of the main structure are infinite. The values ofl,bandhare mainly based on the parameters of the drilling units given in the following sections.

    Fig.1 Coordinates of the three-dimensional moon pool

    Assuming that the flow is incompressible, inviscid, irrotational, and the motion of water inside the moon pool can be described by the boundary value problem of Laplace’s equation. At the free surface, the velocity potential function can be expressed in terms of time and space, as follows

    whereΦ(x,y,z,t)is the velocity potential function,ωis the natural frequency of the liquid motion in the moon pool,?(x,y,z)is the velocity potential function in space. According to the potential flow theory, the governing equation of the water motion in a moon pool is

    For a moon pool with impermeable vertical walls, the boundary conditions are

    The linear free surface condition is expressed as

    By taking the fictitious bottom as the boundary condition proposed by Molin[10], the influence of the outlet at the bottom of the moon pool can be described by the following formula

    1.2Semi-analytical solution

    Equations (1)-(4) are solved using the method of separation of variables. Assuming that the fluid velocity potential?can be written as

    Substituting Eq.(6) into Eq.(1), a series of ordinary differential equations are obtained, as follows:

    The general solutions of Eq.(7) can be written as

    With the boundary condition as described by Eq.(3) and the condition of the nontrivial solutions, one obtains

    The general solution of?(x,y,z)can be written as

    Substituting Eq.(14) into the bottom boundary condition Eq.(5), one obtains

    The Galerkin method is then used to integrate Eq.(15). Integrating the left and right sides of Eq.(15) with respect toxandy, respectively, and settingν00=1/h, one obtains

    Multiplying both sides of Eq.(15) with cosλmx?cosμpy, and integrating the left and right sides of the resultant equation with respect toxandy, respectively, we have

    Fig.2 Comparison of the integration values

    Eqs.(16) and (17) can then be rewritten as

    Table 1 Integration results oftmnpq

    whereκ=1/2πbl. Substituting Eq.(14) into the free surface condition Eq.(4), one obtains

    whereωijis the natural frequency of each mode, whereiandjdenote the model orders in length and width directions, respectively. Rewrite Eqs.(21) and (22) into the matrix form, as follows:

    Solving Eq.(23) for the eigenvector matrixesC(2), and substitutingC(2)into Eq.(24), we obtain an expression forC(1). SubstitutingC(1)andC(2)into Eq.(14), and solving it for the fluid velocity potential?, the wave elevationζcan be obtained in the following form

    With Eq.(25), the shape of the free surface will be used to discuss the vibration characteristics of the water inside a moon pool in Section 3.

    2. Numerical results and analyses

    The coefficient matrixtmnpqis calculated numerically by using the Simpson’s method. Calculatingtmnpqis the most important step in the total process. For the two-dimensional coefficient matrixtmn, the dimensionless results calculated in this paper are compared with those of Molin’s[10], as shown in Fig.2. Good agreement can be seen.

    Table 1 shows part of the integration results. It is seen that when both the sum ofmandn, and that ofpandqare even numbers, the integration result is nonzero. Substituting the integration results into Eq.(23), we obtain the matrixC(2)and the natural frequencyωijfor each mode, whereiandj, respectively, denote the model order in the length and width directions of the moon pool. The coefficient matrixC(1)is then determined by solving Eq.(24). The matricesC(1)andC(2)are diagonally dominated, and the velocity potential?of each mode is dominated by the main diagonal elements ofC(1)andC(2).

    2.1Comparing semi-analytical results with CFD results

    To verify the validity of the semi-analytical results, the CFD method is used. To save the calculation time, as shown in Fig.3, a two-dimensional CFD model is developed. In the model, the width of the moon pool,b, is 20 m, the tank’s width is 160 m and the water depth takes values of 2 m and 10 m in the simulation.

    Fig.3 (Color online) CFD model

    Moving the moon pool structure in the vertical direction with a period of 2π/ω0, whereω0is the piston natural period of the water motion in the moon pool, the piston resonance of the water in the moon pool is expected to be excited. Figure 4 shows the comparisons of the free surface calculated by the semianalytical and the CFD methods forh=2 mandh=10 m, where S-A denotes the results calculated by the semi-analytical method. It is apparent that for the piston mode, the free surfaces estimated by the semianalytical method generally agree well with those estimated by the CFD method. There are small differences at the center and at the two boundaries of the moon pool. This is because in the CFD method, the viscosity is included, while in the semi-analytical method, it is not.

    Fig.4 Comparisons of free surface elevation results from semianalytical and CFD methods for the piston mode

    Fig.5 Semi-analytical results vs. CFD results for the first order sloshing mode

    Moving the moon pool structure in the horizontal direction with a period of 2π/ω1, whereω1is the first order sloshing natural frequency of water in the moon pool, the first order sloshing resonance of the water in the moon pool is expected to be excited. Figure 5 shows the comparisons of the first order sloshing mode calculated by the semi-analytical and theCFD methods forh=2 mandh=10 m. It is apparent that for the first order sloshing mode, the free surfaces estimated by the semi-analytical method generally agree well with those estimated by the CFD method.

    2.2Natural frequencies

    The water inside a moon pool has two forms of motion, the piston mode and the sloshing mode, in the length and the width directions.?00is defined as the spatial velocity potential function of the piston mode, which only depends on the variablez, as expressed in Eq.(13). While?nq(nandqcannot be both zero at the same time) relates tox,yandz, as expressed in Eq.(12), and is defined as the sloshing modes. According to the work of Monlin[10], the sloshing modes can be categorized as follows:

    (1) Withm,n,pandqall being even numbers, it is the full symmetric mode. In this mode, the modal shape is symmetrical in both width and the length directions.

    (2) Withmandnbeing odd numbers, andpandqbeing even numbers, it is the longitudinal asymmetric mode. In this mode, the modal shape is symmetrical in the width direction but asymmetrical in the length direction.

    (3) Withmandnbeing even numbers, andpandqbeing odd numbers, it is the transverse asymmetric mode. In this mode, the modal shape is asymmetrical in the width direction but symmetrical in the length direction.

    (4) Withm,n,pandqall being odd numbers, it is the full asymmetric mode. In this mode, the modal shape is asymmetrical in both width and length directions.

    Further, Tables 2 and 3 show some natural frequencies of water motions inside a moon pool of a square cross section and a rectangle cross section, respectively.

    The influences of moon pool’s parameters, such as the lengthl, the widthband the depth of water in the moon poolh, on the natural frequencies of the piston mode and the first three orders of sloshing modes are analyzed. The results are shown in Figs.6-9.

    Table 3 Natural frequencies (l=20 m,b=10 m,h=10 m)

    Fig.6 Effect of moon pool’s parameters onω00

    Fig.7 Effect of moon pool’s parameters onω22

    Figure 6 shows the influences of moon pool’s parameters on the natural frequencies of the piston mode. It is apparent thatω00decreases with the increase of the lengthland the widthb. Forh=10 m andl=40 m,ω00is 0.74 rad/s (corresponding to the natural period of 8.49 s), 0.68 rad/s (corresponding to the natural period of 9.24 s) and 0.58 rad/s (corresponding to the natural period of 10.83 s) forb=10 m, 20 m and 40 m, respectively. Forb=10 mandh= 10 m, iflincreases from 10 m to 40 m,ω00decreases from 0.82 rad/s (corresponding to the natural period of 7.66 s) to 0.72 rad/s (corresponding to thenatural period of 8.72 s).ω00decreases with the increase ofh.The influences oflandbonω00become indistinct for highh.With the increase ofl,bandh,the natural frequency of the piston mode of water in the moon pool approaches the characteristic wave frequency of the rough sea. As such, the large amplitude piston motion of water in the moon pool may be excited. In the design of the moon pool, appropriate values ofl,bandhshould be used so as to avoid the large amplitude piston motion of water in the moon pool and to reduce the influence of moon pool’s water motion on the motion of the floating body.

    Fig.8 Effects of moon pool’s parameters on the natural frequencies of the longitudinal asymmetric modes

    Figures 7-9 show the influences of the moon pool’s parameters on the natural frequencies of the sloshing modes. It can be seen that the natural frequencies of the sloshing modes are higher than that of the piston mode. Figure 7 shows thatω22decreases slightly with the increase ofhforh≤3m. It mainly depends on the lengthland the widthbof the moon pool forh>3m. Figure 8 shows the influences of moon pool’s parameters on the natural frequenciesω10andω12of the longitudinal asymmetric modes. Figure 9 shows the influences of moon pool’s parameters on the natural frequenciesω11andω13of the full asymmetric modes. As shown in Figs.8 and 9, it is apparent that whenhis small, the natural frequencies decrease with the increase ofh. However, whenhis large enough, the natural frequencies of the sloshing modes mainly depends on the lengthland the widthbof the moon pool.

    Fig.9 Effects of moon pool’s parameters on the natural frequencies of the full asymmetric modes

    2.3Modal shapes

    By using Eq.(25), the modal shapes of the piston mode and some sloshing modes are analyzed. For the piston mode, the free surface oscillates up and down with respect to the equilibrium position. The sloshing modes are classified into four types: (1) fully symmetric mode, (2) longitudinal asymmetric mode, (3) transverse asymmetric mode, and (4) fully asymmetric mode. The influences of moon pool’s parameters, including the lengthl, the widthb, and the heighthof water in the moon pool on the modal shapes are analyzed in this section. The results are shown in Figs.10-17.

    Figure 10 shows the shapes of the piston mode ofω00for different moon pool’s parameters. It is apparent that the depth of water in the moon pool influences the modal shape significantly. Forh=1m, as shown in Fig.10(a), the modal shape of the piston mode has a peak in the center of the moon pool. The peak value decreas es with the i ncrea se ofh.F orh=5 m, as showninFig.10(b),thepeakvalueisverysmall.Fig.10(d) shows that the shape of the piston mode is symmetrical both inxandydirections.

    As shown in Fig.11, for a moon pool of rectangular cross-section, the modal shapes ofω02andω20are fully symmetrical. Figure 12 shows the second sloshing mode of water in the moon pool. It can be seen that the modal shape ofω22is symmetrical in bothxandydirections.

    Fig.10 (Color online) Shapes of piston mode ofω00

    Fig.11 (Color online) Shapes of fully symmetric mode ofω02andω20(l=20 m,b=10 m,h=1m)

    Fig.12 (Color online) Shapes of fully symmetric modes ofω22(l=20 m,b=10 m,h=1m)

    Figures 13 and 14 show the influences of moon pool parameters on the modal shape ofω10. It is appa-rent that the modal shape ofω10is asymmetrical inxdirection and symmetrical inydirection. For the largerh, the curve of the two-dimensional mode along the longitudinal direction of the moon pool is close to that of the trigonometric function. As such, the function can be determined by the analytical method similar to that for the problem of liquid tank sloshing[20]. With the decrease ofh, as shown in Fig.14(a), the curve becomes irregular near the boundaries ofx= 0 m andx=80 m, which cannot be determined analytically. Figure 14(b) shows the amplitude of the twodimensional modal curve along the transverse direction of the moon pool, which decreases with the increase ofh.

    Fig.13 (Color online) Shapes of longitudinal asymmetric modes ofω10(l=80 m,b=20 m,h=1m)

    Fig.14 Two-dimensional modal shapes ofω10for differenth(l=80 m,b=20 m)

    Fig.15 (Color online) Shapes of longitudinal asymmetric modes ofω12andω30(l=80 m,b=20 m,h=1m)

    Fig.16 (Color online) Shapes of transverse asymmetric modes ofω01andω21(l=20 m,b=20 m,h=1m)

    Fig.17 (Color online) Shapes of fully symmetric modes ofω11,ω31,ω13andω33(l=20 m,b=20 m,h=1m)

    Figure 15 shows the shapes of the longitudinal asymmetric modes ofω12andω30forl=80 m,b=20 mandh=1m. Figure 16 shows the shapes of the transverse asymmetric modes ofω01andω21. Figure 17 shows the shapes of fully asymmetric modes ofω11,ω31,ω13andω33.

    3.Conclusions

    Using the semi-analytical method, the natural vibration characteristics of water inside a moon pool are studied. The influences of moon pool’s dimensional parameters on the natural frequencies and the modal shapes are also investigated. The modal shapes of the sloshing motion are presented and the influence of moon pool’s structural parameters is analyzed. The conclusions are as follows:

    (1) The natural frequency of the piston mode of water in the moon pool approaches the characteristic wave frequency of the rough sea with the increase ofl,bandh. As such, the large amplitude piston motion of water in the moon pool may be excited in the rough sea. In the design of the moon pool, appropriate values ofl,bandhshould be used so as to avoid the large amplitude piston motion of water in the moon pool.

    (2) The shape of the piston mode is symmetrical both inxandydirections. The depthhinfluences the modal shape significantly. The piston mode has a noticeable peak in the center of the moon pool for smallh,and the peak value decreases with the increase ofh.

    (3) The natural frequencies of the sloshing modes are higher than that of the piston mode. Whenhis small the natural frequencies of the sloshing modes decrease with the increase ofh. However, whenhis high the natural frequencies of the sloshing modes mainly depend on the lengthland the widthbof the moon pool.

    [1]FaltinsenO. M. Hydrodynamics of marine and offshore structures [J].Journal of Hydrodynamics, 2015, 26(6): 835-847.

    [2] Zhang H. S., Zhou H. W.Wave radiation and diffraction by a two-dimensional floating body with an opening near a side wall[J].China Ocean Engineering, 2013, 27(4): 437-450.

    [3] Dong Y. Q. Wave loads and response of the oil-extraction platform in deep ocean [M]. Tianjin, China: Tianjin University Press, 2005(in Chinese).

    [4] Drobyshevski Y. Hydrodynamic coefficients of a twodimensional, truncated rectangular floating structure in shallow water [J].Ocean Engineering, 2004, 31(3-4): 305-341.

    [5] Wei Y., Yang J. and Chen G. et al. Experimental study on the hydrodynamic performance of FDPSO and SRV [J].Ships Offshore Structure, 2012, 7(4): 1-13.

    [6] Faltinsen O. M., Timokha A. Sloshing [M]. Cambridge,UK: Cambridge University Press, 2009.

    [7] Yang S. H., Lee S. B., Park J. H. et al.Experimental study on piston-and sloshing-mode moonpool resonances[J].Journal of Marine Science and Technology, 2016, 21(4): 715-728.

    [8] Servan C. B., Cercos Pita J. L., Colom Cobb J.Time domain simulation of coupled sloshing-seakeeping problems by SPH-FEM coupling[J].Ocean Engineering, 2016, 123: 383-396.

    [9] Aalbers A. The water motions in a moon pool [J].Ocean Engineering, 1984, 11(6): 557-579.

    [10] Molin B. On the piston and sloshing modes in moon pools [J].Journal of Fluid Mechanics, 2001, 430: 27-50.

    [11] Sphaier S., Torres F., Masetti I. et al. Mono-column behavior in waves: Experimental analysis [J].Ocean Engineering, 2007, 34(11-12): 1724-1733.

    [12] Faltinsen O. M., Rognebakke O. F., Timokha A. N. Twodimensional resonant piston-like sloshing in a moon pool [J].Journal of Fluid Mechanics, 2007, 575: 359-397.

    [13] Gupta H., Blevins R., Banon H. Effect of moon pool hydrodynamics on Spar heave [C].Proceedings of the ASME 2008 27th International Conference on Ocean, Offshore and Arctic Engineering. New York, USA: American Society of Mechanical Engineers, 2008, 275-282.

    [14] Kristiansen T., Faltinsen O. M. A two-dimensional numerical and experimental study of resonant coupled ship and piston-mode motion [J].Applied Ocean Research, 2010, 32(2): 158-176.

    [15] Kristiansen T., Faltinsen O. M. Gap resonance analyzed by a new domain-decomposition method combining potential and viscous flow DRAFT [J].Applied Ocean Research, 2012, 34(1): 198-208.

    [16] Tonje C. S. Assessment of critical factors when running and relieving Framo pump modules through moon pool [D]. Master Thesis, Stavanger, Norway: Norway University of Stavanger, 2011.

    [17]Sun C. W., Yang J. M., Lv H. N. Numerical investigation on motions of vessel with moon pool in wave conditions [J].The Ocean Engineering, 2013, 31(4): 21-29(in Chinese).

    [18]Liu L., Incecik A., Zhang Y. Analysis of heave motions of a truss spar platform with semi-closed moon pool [J].Ocean Engineering, 2014, 92: 162-174.

    [19] Liu L., Qiu Y., Li Y.Effects of water inside semiclosed moon pool on the hydrodynamic coefficients and heaving damping of a truss spar platform[J].Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(4): 041302.

    [20] Ibrahim Raouf A. Liquid sloshing dynamics theory and application [M]. Cambridge, UK: Cambridge University Press, 2005.

    * Project supported by the Natural Science Foundation of China (Grant No. 51179125), the Greative Research Groups of the Natural Science Foundation of China (Grant No. 51621092) and the Natural Science Foundation of Tianjin (Grant No. 16JCYBJC21200).

    Biography:Li-qin Liu (1977-), Female, Ph. D., Associate Professor

    猜你喜歡
    李妍黃磊
    Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
    黃磊:穿越人山人海,仍是文藝青年
    時代郵刊(2021年8期)2021-07-21 07:52:30
    論一顆蛀牙的長成
    大眾健康(2019年9期)2019-10-11 04:06:12
    M id-infrared supercontinuum generation and itsapp lication on all-opticalquantization with different inputpulses*
    Sine-Gordon Solitons and Breathers in Rod-like Magnetic Liquid Crystals under External Magnetic Field?
    黃磊:我的“麻煩”來得剛剛好
    金色年華(2017年11期)2017-07-18 11:08:43
    抬頭看看天
    小說月刊(2017年7期)2017-07-10 07:47:58
    黃磊 愛需要好好經(jīng)營
    海峽姐妹(2017年3期)2017-04-16 03:06:33
    What’s the Future of Paper Books(節(jié)選)
    The Broken of the American Dream
    97精品久久久久久久久久精品| 美女高潮到喷水免费观看| 黄色毛片三级朝国网站| av福利片在线| av有码第一页| 国产主播在线观看一区二区 | 天堂俺去俺来也www色官网| 亚洲欧洲精品一区二区精品久久久| 国产精品 国内视频| 午夜免费男女啪啪视频观看| 一边摸一边做爽爽视频免费| 亚洲精品久久午夜乱码| 免费在线观看黄色视频的| 久久久国产精品麻豆| 亚洲国产看品久久| 一级a爱视频在线免费观看| 男女高潮啪啪啪动态图| 制服诱惑二区| 视频区欧美日本亚洲| 91成人精品电影| 又紧又爽又黄一区二区| 在线观看国产h片| 中文字幕人妻熟女乱码| 久久女婷五月综合色啪小说| 国产在线观看jvid| 日韩 亚洲 欧美在线| 久久ye,这里只有精品| 亚洲一卡2卡3卡4卡5卡精品中文| 这个男人来自地球电影免费观看| 亚洲人成网站在线观看播放| 巨乳人妻的诱惑在线观看| 黄色 视频免费看| 国产高清视频在线播放一区 | 男男h啪啪无遮挡| 亚洲成人手机| 亚洲欧美日韩高清在线视频 | 午夜免费男女啪啪视频观看| 国产伦理片在线播放av一区| av天堂在线播放| 亚洲av综合色区一区| 国产精品一区二区精品视频观看| 精品少妇内射三级| 久久青草综合色| 亚洲精品乱久久久久久| 日韩一卡2卡3卡4卡2021年| av福利片在线| 又大又黄又爽视频免费| 亚洲av国产av综合av卡| 午夜福利免费观看在线| 99国产精品免费福利视频| 欧美激情极品国产一区二区三区| a级片在线免费高清观看视频| 国产精品国产av在线观看| 亚洲第一av免费看| 亚洲伊人色综图| 伊人久久大香线蕉亚洲五| www.自偷自拍.com| 亚洲精品成人av观看孕妇| 国产精品久久久久成人av| 久久久久久久精品精品| 久久久国产一区二区| 亚洲精品乱久久久久久| bbb黄色大片| 亚洲欧美成人综合另类久久久| 一区二区三区精品91| 久久免费观看电影| 国产亚洲精品久久久久5区| 一二三四社区在线视频社区8| 久久久精品免费免费高清| 91字幕亚洲| 91字幕亚洲| 男女午夜视频在线观看| 久久久国产欧美日韩av| 国产亚洲av片在线观看秒播厂| 黑人巨大精品欧美一区二区蜜桃| 亚洲少妇的诱惑av| 丰满饥渴人妻一区二区三| 在线观看www视频免费| 欧美 日韩 精品 国产| 亚洲国产毛片av蜜桃av| 国产成人系列免费观看| avwww免费| 成人亚洲精品一区在线观看| 久久免费观看电影| 亚洲成国产人片在线观看| 欧美国产精品一级二级三级| 黄色毛片三级朝国网站| 又紧又爽又黄一区二区| 妹子高潮喷水视频| 水蜜桃什么品种好| 亚洲欧美一区二区三区国产| 亚洲欧美日韩另类电影网站| 精品高清国产在线一区| 男女国产视频网站| 成人国产av品久久久| 国产成人91sexporn| 国产精品成人在线| 满18在线观看网站| 人人妻人人澡人人爽人人夜夜| 亚洲第一青青草原| 日韩欧美一区视频在线观看| 新久久久久国产一级毛片| 免费少妇av软件| 国产免费又黄又爽又色| 在线观看免费视频网站a站| 80岁老熟妇乱子伦牲交| 国产欧美日韩一区二区三 | 97人妻天天添夜夜摸| 国产片特级美女逼逼视频| 欧美精品啪啪一区二区三区 | 午夜老司机福利片| 黄色片一级片一级黄色片| 大码成人一级视频| 日韩制服骚丝袜av| 国产亚洲欧美精品永久| 国产亚洲午夜精品一区二区久久| 国产日韩一区二区三区精品不卡| 啦啦啦在线免费观看视频4| 成人影院久久| 黄片小视频在线播放| h视频一区二区三区| 欧美激情 高清一区二区三区| www.av在线官网国产| 色网站视频免费| 国产免费福利视频在线观看| 51午夜福利影视在线观看| 纵有疾风起免费观看全集完整版| 欧美人与性动交α欧美精品济南到| 99香蕉大伊视频| 国产极品粉嫩免费观看在线| 99热国产这里只有精品6| av福利片在线| 午夜老司机福利片| 精品久久久久久电影网| 国产成人免费观看mmmm| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 国产淫语在线视频| 精品一品国产午夜福利视频| 青春草视频在线免费观看| 欧美黄色片欧美黄色片| 19禁男女啪啪无遮挡网站| 老司机影院毛片| 成在线人永久免费视频| 国产成人精品久久久久久| 大型av网站在线播放| 国产免费福利视频在线观看| 国产成人精品无人区| av福利片在线| 久久综合国产亚洲精品| 五月天丁香电影| 老汉色∧v一级毛片| 午夜福利乱码中文字幕| 亚洲成人国产一区在线观看 | 亚洲人成电影免费在线| 精品久久久久久电影网| 国产精品欧美亚洲77777| 亚洲av电影在线观看一区二区三区| 脱女人内裤的视频| 日韩免费高清中文字幕av| 一边摸一边做爽爽视频免费| 亚洲av在线观看美女高潮| 日本五十路高清| 国产深夜福利视频在线观看| 国产精品麻豆人妻色哟哟久久| 人妻 亚洲 视频| 精品一区二区三卡| 国产精品二区激情视频| 亚洲中文av在线| 亚洲一码二码三码区别大吗| 大香蕉久久成人网| 菩萨蛮人人尽说江南好唐韦庄| av网站在线播放免费| 青青草视频在线视频观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 国产日韩欧美在线精品| 久久久精品免费免费高清| 午夜免费男女啪啪视频观看| 岛国毛片在线播放| 免费高清在线观看日韩| 国产精品一区二区在线观看99| a级毛片在线看网站| 天天躁夜夜躁狠狠久久av| 日本vs欧美在线观看视频| 久久久精品94久久精品| 男男h啪啪无遮挡| 高清欧美精品videossex| 每晚都被弄得嗷嗷叫到高潮| www.av在线官网国产| 波多野结衣一区麻豆| 国产欧美日韩综合在线一区二区| 成人影院久久| 水蜜桃什么品种好| 国产真人三级小视频在线观看| 精品人妻熟女毛片av久久网站| 男女边摸边吃奶| av又黄又爽大尺度在线免费看| 在线观看免费高清a一片| 久久久精品区二区三区| 欧美老熟妇乱子伦牲交| 久久精品成人免费网站| 男女国产视频网站| 午夜激情av网站| 免费少妇av软件| 成人亚洲欧美一区二区av| 久9热在线精品视频| 国产成人av激情在线播放| 男人爽女人下面视频在线观看| 女人高潮潮喷娇喘18禁视频| 91精品三级在线观看| 老鸭窝网址在线观看| 美女主播在线视频| 一本色道久久久久久精品综合| 一级毛片电影观看| 国产一区二区 视频在线| 男女国产视频网站| 黑人猛操日本美女一级片| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久亚洲精品国产蜜桃av| 国产成人91sexporn| 只有这里有精品99| 纵有疾风起免费观看全集完整版| 高清黄色对白视频在线免费看| 日本午夜av视频| 亚洲国产av影院在线观看| 中文精品一卡2卡3卡4更新| 国精品久久久久久国模美| 久久九九热精品免费| 大话2 男鬼变身卡| 免费看十八禁软件| 欧美日韩一级在线毛片| 国产精品 欧美亚洲| 欧美 亚洲 国产 日韩一| 日韩制服丝袜自拍偷拍| 视频区欧美日本亚洲| 免费在线观看黄色视频的| 菩萨蛮人人尽说江南好唐韦庄| 777米奇影视久久| 黑人猛操日本美女一级片| 黑人欧美特级aaaaaa片| 青青草视频在线视频观看| 校园人妻丝袜中文字幕| 午夜久久久在线观看| 美女扒开内裤让男人捅视频| 爱豆传媒免费全集在线观看| 亚洲伊人久久精品综合| 极品人妻少妇av视频| 久久久久视频综合| 七月丁香在线播放| 亚洲欧洲精品一区二区精品久久久| 91精品伊人久久大香线蕉| www日本在线高清视频| 悠悠久久av| tube8黄色片| 午夜福利,免费看| 九草在线视频观看| av有码第一页| 中文字幕另类日韩欧美亚洲嫩草| 久久中文字幕一级| 51午夜福利影视在线观看| 亚洲欧美精品自产自拍| 亚洲国产欧美一区二区综合| 久久99精品国语久久久| 免费看十八禁软件| 亚洲色图 男人天堂 中文字幕| bbb黄色大片| 99热国产这里只有精品6| 中文精品一卡2卡3卡4更新| 亚洲 欧美一区二区三区| av不卡在线播放| 亚洲国产欧美日韩在线播放| 在线观看一区二区三区激情| 免费在线观看完整版高清| 深夜精品福利| 99国产精品免费福利视频| 国产亚洲欧美在线一区二区| 国产免费现黄频在线看| 中文字幕另类日韩欧美亚洲嫩草| 伊人亚洲综合成人网| 亚洲精品久久久久久婷婷小说| 午夜av观看不卡| 视频区图区小说| 七月丁香在线播放| 激情五月婷婷亚洲| 欧美日韩视频高清一区二区三区二| 老司机深夜福利视频在线观看 | 亚洲成国产人片在线观看| 搡老乐熟女国产| 亚洲欧美清纯卡通| 精品国产超薄肉色丝袜足j| 日本91视频免费播放| 在线观看免费视频网站a站| 在线天堂中文资源库| 日本黄色日本黄色录像| 免费高清在线观看日韩| 久久免费观看电影| 青草久久国产| 日韩大片免费观看网站| 多毛熟女@视频| 久久国产精品人妻蜜桃| 一区二区三区四区激情视频| 欧美国产精品va在线观看不卡| 精品国产超薄肉色丝袜足j| 亚洲少妇的诱惑av| 亚洲人成网站在线观看播放| 亚洲九九香蕉| 中文欧美无线码| 大片电影免费在线观看免费| 国产人伦9x9x在线观看| 精品卡一卡二卡四卡免费| 久久精品亚洲熟妇少妇任你| 一边摸一边做爽爽视频免费| 国产精品麻豆人妻色哟哟久久| 久久久精品免费免费高清| 19禁男女啪啪无遮挡网站| 99国产综合亚洲精品| 欧美精品人与动牲交sv欧美| 中文字幕人妻熟女乱码| 国产人伦9x9x在线观看| 老司机深夜福利视频在线观看 | 高清不卡的av网站| 国产精品国产三级国产专区5o| 国产日韩欧美在线精品| 国产欧美日韩精品亚洲av| 欧美精品人与动牲交sv欧美| 日韩大码丰满熟妇| 国产一区二区在线观看av| 多毛熟女@视频| 久久青草综合色| 精品卡一卡二卡四卡免费| 国产精品99久久99久久久不卡| 91字幕亚洲| 欧美在线黄色| 夫妻性生交免费视频一级片| 久久久久久免费高清国产稀缺| 丁香六月天网| 成年人免费黄色播放视频| 日韩av在线免费看完整版不卡| 18禁裸乳无遮挡动漫免费视频| 久久精品国产综合久久久| 三上悠亚av全集在线观看| 欧美激情极品国产一区二区三区| 亚洲精品日韩在线中文字幕| 成年女人毛片免费观看观看9 | 午夜福利免费观看在线| 久久99一区二区三区| 日韩制服骚丝袜av| 国产日韩一区二区三区精品不卡| 精品卡一卡二卡四卡免费| 国产精品国产三级国产专区5o| 亚洲伊人色综图| 久久天堂一区二区三区四区| 国产熟女欧美一区二区| 成人黄色视频免费在线看| 国产男人的电影天堂91| 国产成人a∨麻豆精品| 少妇粗大呻吟视频| 青春草视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 欧美日韩视频精品一区| 欧美日韩视频高清一区二区三区二| 亚洲欧美激情在线| 亚洲少妇的诱惑av| 亚洲男人天堂网一区| 又大又爽又粗| 国产成人啪精品午夜网站| 国产成人a∨麻豆精品| 国产精品久久久久久精品古装| 国产亚洲av片在线观看秒播厂| 啦啦啦 在线观看视频| 香蕉国产在线看| 日本猛色少妇xxxxx猛交久久| 亚洲中文日韩欧美视频| 国产一级毛片在线| 赤兔流量卡办理| 久久精品国产亚洲av高清一级| 国产成人91sexporn| 国产免费一区二区三区四区乱码| 一级黄色大片毛片| 久久av网站| 最新的欧美精品一区二区| 脱女人内裤的视频| 精品亚洲成a人片在线观看| 欧美在线一区亚洲| 国产高清国产精品国产三级| 晚上一个人看的免费电影| 亚洲九九香蕉| 夫妻午夜视频| 国产无遮挡羞羞视频在线观看| 亚洲国产日韩一区二区| 国产成人av教育| 老司机在亚洲福利影院| 国产在线视频一区二区| 成人国产av品久久久| 亚洲专区中文字幕在线| 国产av精品麻豆| 精品久久蜜臀av无| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| 99久久精品国产亚洲精品| 亚洲欧美中文字幕日韩二区| 亚洲男人天堂网一区| 少妇人妻 视频| 欧美精品啪啪一区二区三区 | 女性被躁到高潮视频| 久久av网站| 69精品国产乱码久久久| 国产日韩欧美视频二区| 国产熟女欧美一区二区| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| 免费高清在线观看视频在线观看| 精品卡一卡二卡四卡免费| 欧美97在线视频| 在线观看免费日韩欧美大片| 50天的宝宝边吃奶边哭怎么回事| av线在线观看网站| 你懂的网址亚洲精品在线观看| 国产一区亚洲一区在线观看| 777久久人妻少妇嫩草av网站| 欧美人与善性xxx| 亚洲成国产人片在线观看| 亚洲中文字幕日韩| 久久鲁丝午夜福利片| 免费不卡黄色视频| 老司机影院成人| 久久毛片免费看一区二区三区| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| 91成人精品电影| 天堂中文最新版在线下载| 熟女少妇亚洲综合色aaa.| 秋霞在线观看毛片| 老汉色av国产亚洲站长工具| 一区二区av电影网| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 99久久精品国产亚洲精品| av不卡在线播放| 国产欧美亚洲国产| 一级毛片电影观看| 亚洲精品一区蜜桃| 免费看十八禁软件| 国产免费一区二区三区四区乱码| 国产主播在线观看一区二区 | 久久久久网色| 亚洲成av片中文字幕在线观看| 首页视频小说图片口味搜索 | 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 欧美 亚洲 国产 日韩一| 一本综合久久免费| 乱人伦中国视频| 高清黄色对白视频在线免费看| 高潮久久久久久久久久久不卡| 日韩制服丝袜自拍偷拍| 国产福利在线免费观看视频| 亚洲 欧美一区二区三区| 1024香蕉在线观看| 日韩av免费高清视频| 久久国产精品男人的天堂亚洲| 色婷婷av一区二区三区视频| 久久久久网色| 一二三四社区在线视频社区8| 一级毛片 在线播放| 亚洲专区国产一区二区| 性色av乱码一区二区三区2| 亚洲,一卡二卡三卡| 国产免费又黄又爽又色| 亚洲国产av新网站| 在线观看www视频免费| 母亲3免费完整高清在线观看| 精品高清国产在线一区| 国产一卡二卡三卡精品| 欧美黄色淫秽网站| 亚洲欧美日韩另类电影网站| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 久久久国产欧美日韩av| 最黄视频免费看| 亚洲欧美激情在线| 男的添女的下面高潮视频| 热99国产精品久久久久久7| 岛国毛片在线播放| 高潮久久久久久久久久久不卡| 午夜免费观看性视频| 国产成人av教育| 亚洲欧美激情在线| 大话2 男鬼变身卡| 国产成人免费无遮挡视频| 久久久欧美国产精品| 成人国产av品久久久| 一区二区日韩欧美中文字幕| 极品人妻少妇av视频| 另类精品久久| 亚洲黑人精品在线| 91九色精品人成在线观看| 亚洲精品美女久久av网站| 丰满人妻熟妇乱又伦精品不卡| 丝袜喷水一区| 欧美日韩一级在线毛片| 欧美成人午夜精品| 国产免费福利视频在线观看| 好男人视频免费观看在线| www.999成人在线观看| 男女高潮啪啪啪动态图| 午夜影院在线不卡| 18禁黄网站禁片午夜丰满| 激情视频va一区二区三区| cao死你这个sao货| 无限看片的www在线观看| 啦啦啦 在线观看视频| av天堂久久9| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 日本午夜av视频| 韩国高清视频一区二区三区| 精品福利永久在线观看| 精品久久久精品久久久| 国产免费现黄频在线看| 亚洲精品av麻豆狂野| 亚洲av美国av| 精品一区在线观看国产| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站| 亚洲精品一区蜜桃| 精品国产一区二区久久| 三上悠亚av全集在线观看| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 麻豆av在线久日| a 毛片基地| 国产精品久久久久久人妻精品电影 | 午夜福利影视在线免费观看| 成人免费观看视频高清| 久久青草综合色| 亚洲男人天堂网一区| av天堂久久9| 精品人妻在线不人妻| 777米奇影视久久| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 欧美精品一区二区免费开放| 国产视频一区二区在线看| 亚洲精品日韩在线中文字幕| 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| 国产老妇伦熟女老妇高清| 狠狠婷婷综合久久久久久88av| 国产1区2区3区精品| 亚洲中文av在线| 91老司机精品| 亚洲第一青青草原| 国产一区二区 视频在线| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 国产精品国产三级国产专区5o| 亚洲av欧美aⅴ国产| 99国产精品一区二区三区| 免费观看av网站的网址| 天天躁日日躁夜夜躁夜夜| videosex国产| 中文字幕高清在线视频| 欧美日本中文国产一区发布| 国产99久久九九免费精品| 国产三级黄色录像| 亚洲精品av麻豆狂野| 久久精品国产亚洲av涩爱| 国产成人av激情在线播放| 久久久久精品人妻al黑| 国产av国产精品国产| 国产一区二区三区综合在线观看| 青青草视频在线视频观看| 深夜精品福利| 黑人欧美特级aaaaaa片| 亚洲国产精品999| 天堂8中文在线网| 在线精品无人区一区二区三| 久久99热这里只频精品6学生| 深夜精品福利| 人人澡人人妻人| 久久久欧美国产精品| av一本久久久久| 国产91精品成人一区二区三区 | 日韩视频在线欧美| 欧美日韩亚洲国产一区二区在线观看 | 国产成人av教育| 亚洲av在线观看美女高潮| 99久久精品国产亚洲精品| 国产日韩欧美亚洲二区| 99久久精品国产亚洲精品| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 国产亚洲精品第一综合不卡| 十分钟在线观看高清视频www| 国产日韩欧美在线精品| 日韩大片免费观看网站| 国产一区有黄有色的免费视频| 国产精品人妻久久久影院| 巨乳人妻的诱惑在线观看| av一本久久久久| 欧美激情 高清一区二区三区| 欧美日韩视频高清一区二区三区二| 精品少妇黑人巨大在线播放| 免费在线观看日本一区| 视频区欧美日本亚洲| 美国免费a级毛片| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| 国产精品久久久久久人妻精品电影 | 国产成人系列免费观看| 国产男女内射视频|