• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence

    2023-09-05 08:48:22LeiHuang黃磊KaiRen任凱HuanpingZhang張煥萍andHuasongQin覃華松
    Chinese Physics B 2023年7期
    關(guān)鍵詞:黃磊

    Lei Huang(黃磊), Kai Ren(任凱),?, Huanping Zhang(張煥萍), and Huasong Qin(覃華松)

    1School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China

    2Laboratory for Multiscale Mechanics and Medical Science,SV LAB,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: two-dimensional,molecular dynamics,mechanical property,heat transport

    1.Introduction

    By using a micromechanical stripping method,graphene has been successfully separated.[1]Due to their remarkable characteristics and numerous possible applications, twodimensional(2D)materials have garnered extensive attention and research interest.[2,3]For example, graphene has excellent electronic,[4]thermal,[5,6]catalytic,[7]mechanical[8]and magnetic[9]properties.Single-layer graphene’s bipolar electric field effect demonstrates that the charge carriers are more mobile than in semiconductors.[10]Graphene also has high thermoelectric power[10,11]and excellent nonlinear optical characteristics combined with fast response and wide wavelength range in optoelectronic and photonic applications.[12]Inspired by such exciting behaviors of graphene and its successful application in various advanced nanotechnology, research on other 2D materials has been explored.[13]Although they present a large specific surface area, these graphene-like materials possess different mechanical,thermal,electrical,optical and catalytic properties.[14–16]

    The electronic, mechanical and thermal performances of the 2D materials have a critical role in the development of atomic devices.For instance, the mechanical properties of borophene are highly anisotropic: in comparison to the armchair direction, the zigzag direction (also known as the buckled direction) has a substantially lower Young’s modulus and fracture strength.[17]The thermal conductance of pure black and blue phosphorene nanoribbons is sensitively affected by edge shape and breadth, and they both have a distinctly anisotropic thermal performance.[18]The mechanical properties of MoS2can determine the fracture strength and fracture strain of MoS2/WSe2lateral heterostructures.These properties are highly temperature sensitive, and when compared to the graphene–hBN heterostructure, the MoS2/WSe2heterostructure exhibits an order of magnitude lower interfacial thermal conductivity.[19]The properties of materials with negative Poisson’s ratio are very necessary for many advanced applications because they typically have enhanced toughness and shear resistance,along with enhanced sound and vibration absorption, such as the puckered atomic structure of singlelayer black phosphorus and B4N monolayer material.Materials that have a negative Poisson ratio are named auxetic materials.They represent an exciting prospect for enhancing mechanical properties and are necessary for many advanced applications.For example, the Poisson ratios of the puckered atomic structure of black phosphorus[20]and B4N[21]are calculated as?0.267 and?0.032, respectively, and these materials can be considered for future nanomechanical devices.Additionally, due to their excellent properties, silicon carbide (SiC) and germanium carbide (GeC) have garnered a lot of interest.[22,23]SiC possesses a large bandgap of about 3.354 eV,[24]a high saturation electron drift velocity (3×107cm/s), a strong electric breakdown field (3×106V/cm),and is used in high-temperature devices suitable for DC to microwave frequencies.[25]SiC is also a potential electromagnetic shielding material and it can be used for electronic packaging of highly integrated circuits, wireless communication,electronic base stations and other electronic equipment.[26,27]Besides,the defects in a SiC monolayer can induce a sizeable spin effect and strong spin–phonon coupling.[28]Furthermore,GeC also acts as a semiconductor with a bandgap of about 2.515 eV,[22]indicating that it is a promising candidate for application in semiconductor devices, crystal diodes, and photovoltaic systems.[29]Due to the exceptional optical performance of 2D GeC, it has undergone substantial research for prospective use in heterostructure devices and solar cells.[30]In comparison to graphene,the mechanical characteristics of a GeC monolayer indicate a low in-plane stiffness(143.8 N/m)and a high Poisson ratio(0.281).[31]Although there have been a large number of studies on the applications of tSiC and GeC monolayers, their mechanical and thermal characteristics are rarely reported and these are crucial properties to explore for further advanced functional nanodevices.

    To explore the mechanical characteristics of SiC and GeC monolayers under uniaxial stress in the armchair and zigzag directions,we conduct molecular dynamics simulations(MD)in this work.The impacts of temperature and already-existing fractures on mechanical characteristics are discussed.Additionally,the heat transport capabilities of SiC and GeC monolayers are investigated.Adjustable mechanical and thermal characteristics of SiC and GeC monolayers point to possible usage in nanodevices.

    2.Simulation methods

    In our work, the zigzag and armchair directions of the SiC and GeC monolayers are oriented along thexandydirections, respectively, as shown in Fig.1.Both the zigzag and armchair directions use periodic boundary conditions, which means a nanosheet structure is obtained.The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)was used for all MD simulations.[32]It uses OVITO software for structural visualization.[33]To ensure the stability of the values and the correctness of the energy conservation,the time step of all MD simulations is set to 1.0 fs.Initially,the whole system is relaxed at a constant temperature and constant pressure for 200 ps through the Nose–Hoover thermostat.The Tersoff potential,which is often employed and taken into consideration owing to correct parameterization,is utilized to represent the interatomic interactions to achieve agreement with the DFT computations and experimental data.

    In the mechanical calculations,all the simulations are performed using a 194.5 ?A×198.1 ?A supercell that contains periodic boundary conditions applied in any direction along the plane.Here, the fix/deform method as defined in LAMMPS is used to apply in-plane uniaxial tension with a strain rate of 2×108s?1.The system’s temperature is maintained at a constant level during the tensile deformation process, while the other directions are maintained at zero pressure.During the MD simulations,we examine the normal corresponding forces in the zigzag and armchair directions to obtain the mechanical properties of the two material structures.

    Fig.1.The tensile simulation model of the SiC (or GeC) monolayers with dimensions of 194.5 ?A×198.1 ?A.The figure shows the top and side views, and the zoomed-in views (top and side views) of the interface.Both zigzag and armchair directions use periodic boundary conditions.

    Non-equilibrium molecular dynamics (NEMD) simulations are used in the thermal simulations to calculate the thermal conductivity with the length and the width of the SiC(or GeC)monolayers at about 200.23 ?A and 99.09 ?A,respectively.The studied system was first equilibrated with an NPT ensemble for 100 ps and then the system was relaxed with an NVE ensemble for 2000 ps.The kinetic energy of the hottest atom in the heat sink slab and the coldest atom in the heat source slab are exchanged for 6 ns to produce the heat flux(J).

    3.Results and discussion

    3.1.Mechanical behavior

    Structural integrity is maintained after the total relaxation of the SiC and GeC monolayers,suggesting thermal stability.Next,we investigate the zigzag and armchair direction fracture behaviors of the SiC and GeC monolayers under tensile pressure at 300 K.The obtained deformation and initial crack of the SiC and GeC monolayers are shown in Figs.2(a)and 2(b),where one can see that the atomic stress near the crack has been released, and the fracture strains of SiC and GeC along the zigzag direction are larger than those along the armchair one.Furthermore,the fracture strength of SiC is greater than GeC in both directions, and conversely, the maximal strain that GeC can withstand is greater than SiC in both directions,which is demonstrated by the stress–strain curve of SiC and GeC in Fig.3.

    Fig.2.Deformation and initial crack of zigzag and armchair (a) SiC and (b) GeC structures under tensile loading.The color contour in the image shows how the normal stress is distributed along the direction of tensile tension.

    Fig.3.The mechanical characteristics of SiC and GeC structures: the stress–strain curves for SiC(a),(c)and GeC(b),(d)in the zigzag(a),(b)and armchair(c),(d)directions.

    In Fig.3, it can be seen that the strain in SiC increases from 0 to 39.16% along the zigzag direction, corresponding to the stress increasing from 0 to 103.55 GPa.At the same time,the strain increasing from 0 to 27.54%can induce stress increases from 0 to 73.59 GPa along the armchair direction.Besides, when an external strain is applied to GeC in the zigzag(armchair)direction of up to 42%(29.74%),the stress increases will increase to 87.64 GPa (67.9 GPa).As shown in the stress–strain curves,both materials exhibit much greater zigzag fracture strengths and strain than armchair fracture strengths and strain, indicating anisotropy in their mechanical properties.The strongest 2D material is graphene,which has a fracture strength of 100–130 GPa and a Young’s modulus of about 1.0 TPa.[34]On comparison, SiC and GeC are much weaker than graphene but far more robust than other 2D materials, such as borophene (23.45–55.9 GPa),[19]silicene(12.5 GPa)[35]and MoS2(11–13 GPa).[17]The effect of temperature on the stress–strain curves of SiC and GeC is also addressed in Fig.3.One can see that SiC and GeC behave mechanically similarly in zigzag (or armchair) directions at various temperatures before fracture, which means that the temperature mainly changes the ultimate fracture performance.

    Fig.4.Trends of(a)fracture strength and(b)fracture strain at different temperatures for SiC and GeC.

    Then,we investigated the effect of the mechanical characteristics of the SiC and GeC monolayers at different temperatures.The fracture strength and strain of SiC and GeC possess an obvious dependence on the temperature between 50 K and 500 K, as shown in Fig.4.Besides, nonlinear elastic behavior is observed for SiC and GeC.As shown in Fig.4(a), as the temperature rises, both the fracture strength and fracture strain of SiC (or GeC) considerably decline.In more detail,the fracture strength of SiC reduces by 42.5%and 41.59%in zigzag and armchair directions,respectively,when the temperature rises from 50 K to 500 K.The fracture strength of GeC along the zigzag and armchair directions are likewise reduced by around 41.69%and 39.27%, respectively.In addition, the fracture strain of the SiC decreases by 71.2% and 56.9% for zigzag and armchair directions, respectively, while the GeC reduces by about 70.1%and 59.2%along zigzag and armchair directions,respectively.All of these results show that SiC and GeC are more temperature sensitive in terms of their fracture strength in a zigzag direction.At higher temperatures,the vibrations of atoms are greater,and it is easier for local chemical bonds to attain critical bond lengths and break as a result.This phenomenon is known as temperature-induced softening.This resembles the mechanical characteristics of certain common 2D materials,such as MoS2,[36]graphene[34]and silicene,[35]at different temperatures.

    Defect engineering is a common technique to modify the characteristics of 2D materials,[6,37,38]and defects also can be introduced easily in SiC and GeC during their fabrication processes.Thus,the response of the mechanical behaviors of SiC and GeC to the initial crack is investigated along zigzag and armchair directions,as shown in Fig.5.We perform MD simulations at 300 K and the obtained fracture strain and fracture strength for various crack lengths (L) in SiC and GeC, ranging up to 5 nm,are shown in Figs.5(a)and 5(b),respectively.Interestingly, SiC and GeC fracture strengths can be significantly reduced by a pre-existing crack in both zigzag and armchair orientations.Evidently,the shorter crack length can tune the fracture strength and strain of the SiC and GeC more effectively.

    Fig.5.(a)Schematic of applied stress on SiC(or SiC)with defective structure; the calculated (b) fracture strength and (c) the fracture strain of the SiC and GeC as a function of crack length(L)under tensile loading.

    3.2.Thermal properties

    The SiC and GeC monolayers possess semiconductor characteristics, suggesting desirable applications in nanoelectronics and thermoelectric devices, therefore, their heat transport properties are also critical.The thermal conductivities of SiC and GeC are discussed using NEMD simulations.As shown in Fig.6(a), both ends of the SiC (or GeC) monolayer are fixed, and hot and cold baths are located near the fixed parts.Thus, the heat flux is along thexdirection.The thermal properties in zigzag and armchair directions are investigated by setting them as thexdirection.The temperature profiles, after reaching a steady state, of SiC and GeC in the zigzag direction are demonstrated in Fig.6(b).For pure SiC and GeC,by fitting the linear area(depicted by a straight line)on the temperature profile,the temperature gradient(dT/dx)is derived.Following that, Fourier’s law is used to compute the thermal conductivity(κ)

    whereArepresents the region in cross-section through which the heat flux flows.In order to obtain the thermal conductivity at room temperature (300 K), the hot and cold baths fixed at both ends in Fig.6(a) were set to 320 K and 280 K, respectively.Therefore, the thermal conductivity of pure SiC at a temperature of 300 K is calculated as 16.89 W·m?1·K?1and 18.99 W·m?1·K?1along the zigzag and armchair directions,respectively, which are higher than those of transition metal dichalcogenides materials, such as MoS2(5.93 W·m?1·K?1)and WSe2(7.09 W·m?1·K?1).[19]Additionally,pure GeC has a thermal conductivity of 3.89 W·m?1·K?1in the zigzag direction and 4.49 W·m?1·K?1in the armchair direction.Compared to BCN, which has a thermal conductivity of 28–46 W·m?1·K?1, SiC and GeC exhibit a much lower thermal conductivity.[39]

    Fig.6.(a) Schematic diagram of the heat transfer model and (b) the calculated temperature profiles of pure SiC and GeC monolayers along the zigzag direction.

    Then, to explore the effect of size on the tunable thermal property of SiC and GeC,we fixed the value of the width and changed the length from 200 ?A to 2000 ?A at 300 K.The calculated thermal property of SiC and GeC with different lengths is given in Fig.7(a), which shows that the thermal conductivity of SiC sheet increases from 16.89 W·m?1·K?1to 85.67 W·m?1·K?1along the zigzag direction and from 18.99 W·m?1·K?1to 82.79 W·m?1·K?1along the armchair direction.The thermal conductivity of pure GeC sheet is enhanced from 3.89 W·m?1·K?1to 34.37 W·m?1·K?1along the zigzag direction and from 4.49 W·m?1·K?1to 32.74 W·m?1·K?1along the armchair direction.These results indicate an obvious size dependence of the thermal property of SiC and GeC.

    Fig.7.(a) Thermal conductivity measured in pure SiC and GeC at various lengths; (b)the relationships between the inverse thermal conductivity and the inverse sample length for pure SiC and GeC.

    When the length of the 2D material is shorter than the phonon mean free path(MFP),which is a common approach to optimizing the heat transport performance of 2D materials,the system size has a significant impact on the thermal conductivity of these materials.[40]The following connection between the inverse thermal conductivity and the inverse sample lengthL?1are used to calculate the effective MFP:[41]

    wherelis MFP andκ∞is the thermal conductivity of an infinitely long sample.From the fitting curve shown in Fig.7(b), the obtained effective MFPs for pure SiC and GeC are 109.97 nm and 321.21 nm, respectively.The thermal conductivity of a pure SiC (GeC) infinite-length sample is 126.46 W·m?1·K?1(85.30 W·m?1·K?1).

    Besides, we also calculate the thermal property of SiC and GeC at different temperatures ranging from 100 K to 500 K,as shown in Fig.8(a).One can see that the thermal conductivity of both SiC and GeC in the zigzag and the armchair directions are still almost the same, and the simulation results of SiC show that its thermal conductivity decreases from 29.50 W·m?1·K?1to 13.92 W·m?1·K?1along the zigzag direction, and from 28.60 W·m?1·K?1to 15.23 W·m?1·K?1along the armchair direction,indicating a negative temperature dependence.However,the thermal conductivity of GeC shows no significant difference with temperature.The obtained tunable thermal property of SiC and GeC suggests a promising use for thermoelectric applications.

    In Fig.8(a), the SiC monolayer shows a strong temperature-dependent thermal conductivity, which is related to phonon anharmonicity.To explore the potential physical mechanism of temperature-dependent thermal conductivity in the SiC monolayer, we calculate the vibrational density of states(VDOS)in the SiC monolayer at 100–500 K from

    whereωis the angular frequency andC(t) represents the velocity autocorrelation function.For total VDOS,C(t) =(t)is the velocity of atomjand the symbol〈〉represents the ensemble average.[42]The calculated results are shown as Fig.8(b)with the phonon frequency ranging from 0 to 40 THz.The peak frequency for the SiC monolayer at 300 K is around 11.5 THz.The peak value of VDOS near 25–40 THz varies significantly with temperature,thus, we focus on this range.As shown in Fig.8(b), the increased temperature causes a significant redshift in the high frequency peaks of SiC, induced by an enhanced phonon anharmonicity, reducing the thermal conductivity and therefore exhibiting a temperature dependence.This phenomenon has also been explored in Janus MoSSe and WSSe monolayers.[43]Our simulations are an important reference for the future development of thermal devices and thermoelectric energy conversion.

    4.Conclusion and perspectives

    In this study,molecular dynamics simulations were used to systematically examine the in-plane mechanical and thermal transport characteristics of pure SiC and GeC.Both SiC and GeC demonstrate an excellent toughness with fracture strain of about 0.43 and 0.47 in the zigzag direction at 300 K, respectively, which can be decreased by temperature and the introduced crackle.Furthermore, the thermal conductivities of pure SiC (GeC) are calculated as 16.89 W·m?1·K?1(3.89 W·m?1·K?1)and 18.99 W·m?1·K?1(4.49 W·m?1·K?1) along zigzag and armchair directions, respectively,by a non-equilibrium molecular dynamics method.Additionally,the thermal conductivity of SiC(GeC)can reach 85.67 W·m?1·K?1(34.37 W·m?1·K?1) due to a size effect,although an increase in temperature will reduce that.The obtained size and temperature-tunable mechanical and thermal characteristics of SiC and GeC suggest promising applications as thermoelectric and flexible nanodevices.

    Acknowledgements

    All the authors would like to thank the support of the Natural Science Foundation of Jiangsu(Grant No.BK20220407),the National Natural Science Foundation of China (Grant Nos.12102323, 11890674), the China Postdoctoral Science Foundation (Grant No.2021M692574), and the Fundamental Research Funds for the Central Universities (Grant No.sxzy012022024).This work is also supported by the HPC Center,Nanjing Forestry University,China.

    猜你喜歡
    黃磊
    黃磊:穿越人山人海,仍是文藝青年
    黃磊、何炅的千飯之誼
    黃磊 熟男的坐標(biāo)
    北廣人物(2020年22期)2020-06-19 08:09:12
    編讀往來(lái)
    黃磊:我的“麻煩”來(lái)得剛剛好
    金色年華(2017年11期)2017-07-18 11:08:43
    黃磊 愛(ài)需要好好經(jīng)營(yíng)
    海峽姐妹(2017年3期)2017-04-16 03:06:33
    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*
    失去了盛世美顏的胖子黃磊為何還是男神
    意林(2016年21期)2016-11-30 17:05:38
    贊揚(yáng)出來(lái)的大明星
    愿意為你做一輩子的黃小廚
    一个人看的www免费观看视频| 极品少妇高潮喷水抽搐| 久久人人爽人人爽人人片va| 日韩欧美 国产精品| 成人欧美大片| 蜜桃亚洲精品一区二区三区| av一本久久久久| 精品国产三级普通话版| 永久免费av网站大全| 国产欧美日韩精品一区二区| 亚洲成人一二三区av| 午夜亚洲福利在线播放| 少妇丰满av| 久久久亚洲精品成人影院| 精品久久久久久久人妻蜜臀av| 一区二区三区四区激情视频| 国产成人91sexporn| av国产免费在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产精品999| 97在线人人人人妻| 最近的中文字幕免费完整| 日本一二三区视频观看| 亚洲欧美中文字幕日韩二区| 在现免费观看毛片| 春色校园在线视频观看| 亚洲最大成人手机在线| 观看美女的网站| 国产男女内射视频| 精华霜和精华液先用哪个| 国产黄片美女视频| 最近最新中文字幕大全电影3| 国产v大片淫在线免费观看| 午夜亚洲福利在线播放| 一区二区av电影网| 国产乱人视频| 寂寞人妻少妇视频99o| 亚洲成人av在线免费| 人妻少妇偷人精品九色| 啦啦啦在线观看免费高清www| 男人舔奶头视频| 国产一区二区三区综合在线观看 | 伦理电影大哥的女人| 18禁动态无遮挡网站| 王馨瑶露胸无遮挡在线观看| 丰满乱子伦码专区| 少妇人妻 视频| 欧美精品一区二区大全| 人妻 亚洲 视频| 国产精品久久久久久精品古装| 国产乱来视频区| 超碰av人人做人人爽久久| 又粗又硬又长又爽又黄的视频| 你懂的网址亚洲精品在线观看| 成人欧美大片| 高清毛片免费看| 麻豆精品久久久久久蜜桃| 99久久精品国产国产毛片| 久久人人爽av亚洲精品天堂 | 免费看光身美女| 国产毛片在线视频| 熟妇人妻不卡中文字幕| 简卡轻食公司| 一本久久精品| av在线天堂中文字幕| 日韩三级伦理在线观看| 久久99精品国语久久久| 亚洲第一区二区三区不卡| 一个人看视频在线观看www免费| www.色视频.com| 国产成人精品久久久久久| 最近中文字幕2019免费版| 不卡视频在线观看欧美| 国产午夜精品一二区理论片| 韩国av在线不卡| 亚洲欧美一区二区三区黑人 | 国产91av在线免费观看| 国产精品久久久久久精品电影小说 | 高清在线视频一区二区三区| 在线免费观看不下载黄p国产| 亚洲成人久久爱视频| 国产精品熟女久久久久浪| 色播亚洲综合网| 久久ye,这里只有精品| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久电影网| 少妇被粗大猛烈的视频| 国产精品无大码| 久久久亚洲精品成人影院| 熟女电影av网| 国产白丝娇喘喷水9色精品| 久热这里只有精品99| 日韩视频在线欧美| 中文字幕免费在线视频6| 国产美女午夜福利| 97热精品久久久久久| 搡老乐熟女国产| 欧美精品国产亚洲| 草草在线视频免费看| 欧美日韩视频精品一区| 91午夜精品亚洲一区二区三区| 肉色欧美久久久久久久蜜桃 | www.色视频.com| 亚洲成人中文字幕在线播放| freevideosex欧美| 国产午夜福利久久久久久| 国产精品一区二区三区四区免费观看| 高清视频免费观看一区二区| 99热这里只有是精品50| 特大巨黑吊av在线直播| 久久久久性生活片| 18禁裸乳无遮挡免费网站照片| 日韩成人av中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 777米奇影视久久| av免费在线看不卡| 精华霜和精华液先用哪个| 亚洲欧美精品专区久久| 亚洲色图av天堂| 尾随美女入室| 亚洲欧美成人精品一区二区| 日韩欧美一区视频在线观看 | 亚洲美女视频黄频| 免费观看a级毛片全部| 黄片无遮挡物在线观看| 国产高潮美女av| 制服丝袜香蕉在线| 亚洲精华国产精华液的使用体验| 一个人看视频在线观看www免费| 亚洲在久久综合| 大陆偷拍与自拍| 国产爱豆传媒在线观看| 精华霜和精华液先用哪个| 日日撸夜夜添| 欧美精品国产亚洲| 男女边吃奶边做爰视频| 2018国产大陆天天弄谢| 国产亚洲最大av| 一级毛片久久久久久久久女| 久久精品久久精品一区二区三区| 国产亚洲精品久久久com| av女优亚洲男人天堂| 能在线免费看毛片的网站| 男人爽女人下面视频在线观看| 国产亚洲av嫩草精品影院| 秋霞在线观看毛片| 免费看av在线观看网站| 丝袜喷水一区| 赤兔流量卡办理| 日韩强制内射视频| 久久久久久久精品精品| 久久午夜福利片| 色婷婷久久久亚洲欧美| 亚洲人成网站在线播| 免费黄频网站在线观看国产| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品999| 亚洲经典国产精华液单| 肉色欧美久久久久久久蜜桃 | 有码 亚洲区| 国产亚洲最大av| 日日摸夜夜添夜夜爱| 最近2019中文字幕mv第一页| 日韩一区二区三区影片| 在线观看人妻少妇| 国产免费又黄又爽又色| 亚洲性久久影院| 在线天堂最新版资源| 日韩av在线免费看完整版不卡| 国产爱豆传媒在线观看| av网站免费在线观看视频| 麻豆久久精品国产亚洲av| 黄片wwwwww| 国产一区二区亚洲精品在线观看| 夫妻午夜视频| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区成人| 亚洲国产精品成人久久小说| 国产人妻一区二区三区在| 精品人妻熟女av久视频| 啦啦啦啦在线视频资源| 日本黄色片子视频| 亚洲成人一二三区av| 直男gayav资源| 国产精品麻豆人妻色哟哟久久| 日韩电影二区| 看黄色毛片网站| 在线播放无遮挡| 免费大片黄手机在线观看| 在线a可以看的网站| 成人毛片60女人毛片免费| av网站免费在线观看视频| 久久精品人妻少妇| 国产黄频视频在线观看| 中文欧美无线码| 日韩不卡一区二区三区视频在线| 免费不卡的大黄色大毛片视频在线观看| 高清av免费在线| 久久精品综合一区二区三区| 91在线精品国自产拍蜜月| 最后的刺客免费高清国语| 晚上一个人看的免费电影| 久久久精品免费免费高清| 成人亚洲精品一区在线观看 | 婷婷色综合www| 久久久久性生活片| 亚洲人成网站在线播| 国产亚洲av片在线观看秒播厂| 国产精品国产av在线观看| 十八禁网站网址无遮挡 | 亚洲av免费在线观看| 精品一区二区免费观看| 国产成人福利小说| 久久精品国产自在天天线| 麻豆国产97在线/欧美| 能在线免费看毛片的网站| 国产精品三级大全| 亚洲精品乱久久久久久| av播播在线观看一区| 国产精品国产三级专区第一集| 少妇被粗大猛烈的视频| 亚洲av福利一区| 久久ye,这里只有精品| 欧美zozozo另类| 国内精品宾馆在线| 99热这里只有是精品在线观看| 久久精品国产亚洲av天美| av线在线观看网站| 国产淫语在线视频| 中文资源天堂在线| 黄色配什么色好看| 99视频精品全部免费 在线| 成年女人看的毛片在线观看| 2021天堂中文幕一二区在线观| 国产精品秋霞免费鲁丝片| 观看美女的网站| 最近2019中文字幕mv第一页| 狠狠精品人妻久久久久久综合| 亚洲丝袜综合中文字幕| 成人亚洲精品一区在线观看 | 晚上一个人看的免费电影| 久久久久久久国产电影| 国产精品99久久久久久久久| 日本黄大片高清| 2021天堂中文幕一二区在线观| 99热网站在线观看| 国产男女内射视频| 国产成人a∨麻豆精品| 亚洲欧美日韩另类电影网站 | 精品久久久久久久久av| 一本色道久久久久久精品综合| 亚洲av一区综合| 熟女人妻精品中文字幕| 熟妇人妻不卡中文字幕| 乱码一卡2卡4卡精品| 国产探花在线观看一区二区| 亚洲国产日韩一区二区| 永久网站在线| 成人黄色视频免费在线看| 最近最新中文字幕免费大全7| 18禁在线播放成人免费| 美女cb高潮喷水在线观看| 啦啦啦啦在线视频资源| 又黄又爽又刺激的免费视频.| 人人妻人人爽人人添夜夜欢视频 | 亚洲一区二区三区欧美精品 | 能在线免费看毛片的网站| 亚洲精品第二区| 老师上课跳d突然被开到最大视频| 在线观看人妻少妇| 最近中文字幕2019免费版| 看非洲黑人一级黄片| 国国产精品蜜臀av免费| 麻豆成人午夜福利视频| 新久久久久国产一级毛片| 人人妻人人爽人人添夜夜欢视频 | 3wmmmm亚洲av在线观看| 少妇的逼好多水| 在线 av 中文字幕| 男人添女人高潮全过程视频| 国产午夜福利久久久久久| 少妇人妻久久综合中文| 一级毛片久久久久久久久女| 亚洲综合精品二区| 久久久久性生活片| 久热这里只有精品99| 午夜福利高清视频| 97超视频在线观看视频| 国精品久久久久久国模美| 国产v大片淫在线免费观看| 亚洲av在线观看美女高潮| 日韩,欧美,国产一区二区三区| 亚洲一区二区三区欧美精品 | 国产乱来视频区| 午夜精品一区二区三区免费看| 伊人久久精品亚洲午夜| 交换朋友夫妻互换小说| 日日撸夜夜添| 亚洲欧美日韩卡通动漫| 麻豆精品久久久久久蜜桃| 天堂网av新在线| 国产精品.久久久| 日日啪夜夜撸| 午夜激情久久久久久久| 精品久久久久久久末码| 蜜桃亚洲精品一区二区三区| 成人午夜精彩视频在线观看| 全区人妻精品视频| 视频区图区小说| 视频中文字幕在线观看| 最近2019中文字幕mv第一页| 欧美97在线视频| 国产成人精品福利久久| 日本与韩国留学比较| 久久综合国产亚洲精品| 日韩一区二区三区影片| 特级一级黄色大片| 黄片无遮挡物在线观看| 99九九线精品视频在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 国产成人a区在线观看| av.在线天堂| 亚洲伊人久久精品综合| 亚洲国产精品成人综合色| 成年av动漫网址| 国产成人精品福利久久| 久久久久精品久久久久真实原创| 美女xxoo啪啪120秒动态图| 最近2019中文字幕mv第一页| 国产高清三级在线| 国产精品久久久久久久电影| 在线观看一区二区三区| 午夜福利视频精品| 亚洲av不卡在线观看| 亚洲国产精品999| 亚洲成人中文字幕在线播放| 精品一区在线观看国产| 国产黄片视频在线免费观看| 久久久久性生活片| 少妇的逼水好多| 亚洲av欧美aⅴ国产| av又黄又爽大尺度在线免费看| 欧美xxxx黑人xx丫x性爽| 男人狂女人下面高潮的视频| 日韩成人伦理影院| 亚洲一区二区三区欧美精品 | 成人鲁丝片一二三区免费| 国产在线男女| 亚洲精品视频女| 狂野欧美激情性xxxx在线观看| 亚洲欧美中文字幕日韩二区| 中文字幕久久专区| 亚洲欧美精品自产自拍| 精品久久国产蜜桃| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| 久久久亚洲精品成人影院| 国产亚洲午夜精品一区二区久久 | 国产成人freesex在线| 日本色播在线视频| 久久精品综合一区二区三区| 久久久久性生活片| 精品少妇黑人巨大在线播放| 欧美极品一区二区三区四区| 可以在线观看毛片的网站| 免费观看av网站的网址| 日韩中字成人| av在线天堂中文字幕| 晚上一个人看的免费电影| 国产探花极品一区二区| 少妇人妻 视频| 97热精品久久久久久| 80岁老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 美女xxoo啪啪120秒动态图| 蜜桃久久精品国产亚洲av| 最近中文字幕2019免费版| 有码 亚洲区| 97精品久久久久久久久久精品| av在线老鸭窝| 交换朋友夫妻互换小说| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| 亚洲精品一二三| 看非洲黑人一级黄片| 男人爽女人下面视频在线观看| 伦理电影大哥的女人| 我的女老师完整版在线观看| 久久久久九九精品影院| 国产免费又黄又爽又色| av在线观看视频网站免费| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 亚洲最大成人中文| 久久久成人免费电影| 一本久久精品| 国产成人精品一,二区| 国产高潮美女av| 丰满乱子伦码专区| 干丝袜人妻中文字幕| 免费看光身美女| 99热国产这里只有精品6| 欧美成人一区二区免费高清观看| 丝袜喷水一区| 成人毛片a级毛片在线播放| 国产视频首页在线观看| 久热久热在线精品观看| 看十八女毛片水多多多| 国产精品一及| 国产精品熟女久久久久浪| 亚洲av中文字字幕乱码综合| 国产黄频视频在线观看| 春色校园在线视频观看| 欧美极品一区二区三区四区| h日本视频在线播放| 一级片'在线观看视频| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 亚洲怡红院男人天堂| 在现免费观看毛片| 国产毛片在线视频| 视频区图区小说| 毛片女人毛片| 岛国毛片在线播放| 国产黄a三级三级三级人| 婷婷色av中文字幕| 全区人妻精品视频| 国产视频首页在线观看| 中文字幕免费在线视频6| 在线a可以看的网站| 亚洲欧洲日产国产| 香蕉精品网在线| 欧美激情久久久久久爽电影| 在线观看一区二区三区| 午夜激情福利司机影院| 国产一区二区三区综合在线观看 | 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| 交换朋友夫妻互换小说| 日韩成人av中文字幕在线观看| 亚洲图色成人| 寂寞人妻少妇视频99o| 国产精品爽爽va在线观看网站| 如何舔出高潮| 精品少妇黑人巨大在线播放| 久久久久久伊人网av| 水蜜桃什么品种好| 日韩,欧美,国产一区二区三区| 97超视频在线观看视频| 免费在线观看成人毛片| 亚洲成色77777| 国产亚洲午夜精品一区二区久久 | 大话2 男鬼变身卡| 久久6这里有精品| av专区在线播放| 97人妻精品一区二区三区麻豆| 春色校园在线视频观看| 中文资源天堂在线| 各种免费的搞黄视频| 91精品国产九色| 国产成人精品久久久久久| 亚洲av一区综合| 日日啪夜夜爽| 男女边摸边吃奶| av国产久精品久网站免费入址| 少妇的逼水好多| 久久久成人免费电影| 狂野欧美白嫩少妇大欣赏| 白带黄色成豆腐渣| 激情 狠狠 欧美| 日本一本二区三区精品| 日日啪夜夜撸| 一本一本综合久久| 国产精品.久久久| 国产亚洲最大av| 尤物成人国产欧美一区二区三区| 亚洲精品亚洲一区二区| av女优亚洲男人天堂| 欧美激情久久久久久爽电影| 18禁在线播放成人免费| 久久久久久久亚洲中文字幕| 精品久久久久久久久亚洲| 久久久久精品性色| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 一级爰片在线观看| 26uuu在线亚洲综合色| 久久久久国产精品人妻一区二区| 成人亚洲欧美一区二区av| 亚洲av电影在线观看一区二区三区 | 久久久a久久爽久久v久久| av免费观看日本| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 在线观看国产h片| 久久久欧美国产精品| 国产亚洲91精品色在线| 涩涩av久久男人的天堂| 看非洲黑人一级黄片| 亚洲精品成人av观看孕妇| 99视频精品全部免费 在线| 午夜免费鲁丝| 午夜免费男女啪啪视频观看| 国产国拍精品亚洲av在线观看| 国产爽快片一区二区三区| 免费看a级黄色片| 日韩亚洲欧美综合| www.av在线官网国产| 国产亚洲最大av| 男女那种视频在线观看| 久久精品国产自在天天线| 在线免费观看不下载黄p国产| 夜夜看夜夜爽夜夜摸| av在线播放精品| 国产午夜精品一二区理论片| 美女国产视频在线观看| 国产精品伦人一区二区| 男的添女的下面高潮视频| 97热精品久久久久久| 久久久久国产网址| 搡老乐熟女国产| 天堂网av新在线| 精品久久久久久电影网| 亚洲成人一二三区av| 精品人妻偷拍中文字幕| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 综合色丁香网| 亚洲精品一二三| 久久久久久久午夜电影| 欧美一级a爱片免费观看看| 日日撸夜夜添| 欧美极品一区二区三区四区| 久久精品国产自在天天线| 男人狂女人下面高潮的视频| 国产精品偷伦视频观看了| 少妇 在线观看| 日韩欧美 国产精品| 日本欧美国产在线视频| 美女脱内裤让男人舔精品视频| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线观看播放| 亚洲av免费在线观看| 99久久人妻综合| 国产一区二区在线观看日韩| 成人鲁丝片一二三区免费| 亚洲精品久久久久久婷婷小说| 简卡轻食公司| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 免费高清在线观看视频在线观看| 干丝袜人妻中文字幕| 精品国产三级普通话版| 丝袜喷水一区| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| 一二三四中文在线观看免费高清| 国产精品.久久久| 国内精品宾馆在线| 久久热精品热| 成人鲁丝片一二三区免费| 亚洲欧洲国产日韩| 国产精品麻豆人妻色哟哟久久| 夫妻午夜视频| 特级一级黄色大片| 亚洲婷婷狠狠爱综合网| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产欧美在线一区| 精品久久久噜噜| 久久久精品94久久精品| 人人妻人人看人人澡| 欧美少妇被猛烈插入视频| 少妇的逼水好多| 黄色怎么调成土黄色| av天堂中文字幕网| 插阴视频在线观看视频| 久久久久久九九精品二区国产| 一级黄片播放器| 国内揄拍国产精品人妻在线| 国产色爽女视频免费观看| xxx大片免费视频| 国产又色又爽无遮挡免| 亚洲精品久久午夜乱码| 伦理电影大哥的女人| 亚洲精品国产av成人精品| 成人毛片a级毛片在线播放| 成年免费大片在线观看| 男女下面进入的视频免费午夜| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 国产精品国产av在线观看| av在线播放精品| 国产精品一区二区在线观看99| 久久久久九九精品影院| 日韩一本色道免费dvd| 男人狂女人下面高潮的视频| 国产伦精品一区二区三区视频9| av在线老鸭窝| 久久久国产一区二区| 午夜视频国产福利| 亚洲,一卡二卡三卡| 99视频精品全部免费 在线| 亚洲欧美日韩卡通动漫| 亚洲国产高清在线一区二区三| 在线 av 中文字幕| 日韩一本色道免费dvd| 99热全是精品| 久久国产乱子免费精品| 欧美日韩亚洲高清精品| 少妇人妻 视频| 国产乱人偷精品视频| 99久久中文字幕三级久久日本| 国产亚洲av片在线观看秒播厂| 久久精品久久久久久噜噜老黄|