• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence

    2023-09-05 08:48:22LeiHuang黃磊KaiRen任凱HuanpingZhang張煥萍andHuasongQin覃華松
    Chinese Physics B 2023年7期
    關(guān)鍵詞:黃磊

    Lei Huang(黃磊), Kai Ren(任凱),?, Huanping Zhang(張煥萍), and Huasong Qin(覃華松)

    1School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China

    2Laboratory for Multiscale Mechanics and Medical Science,SV LAB,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: two-dimensional,molecular dynamics,mechanical property,heat transport

    1.Introduction

    By using a micromechanical stripping method,graphene has been successfully separated.[1]Due to their remarkable characteristics and numerous possible applications, twodimensional(2D)materials have garnered extensive attention and research interest.[2,3]For example, graphene has excellent electronic,[4]thermal,[5,6]catalytic,[7]mechanical[8]and magnetic[9]properties.Single-layer graphene’s bipolar electric field effect demonstrates that the charge carriers are more mobile than in semiconductors.[10]Graphene also has high thermoelectric power[10,11]and excellent nonlinear optical characteristics combined with fast response and wide wavelength range in optoelectronic and photonic applications.[12]Inspired by such exciting behaviors of graphene and its successful application in various advanced nanotechnology, research on other 2D materials has been explored.[13]Although they present a large specific surface area, these graphene-like materials possess different mechanical,thermal,electrical,optical and catalytic properties.[14–16]

    The electronic, mechanical and thermal performances of the 2D materials have a critical role in the development of atomic devices.For instance, the mechanical properties of borophene are highly anisotropic: in comparison to the armchair direction, the zigzag direction (also known as the buckled direction) has a substantially lower Young’s modulus and fracture strength.[17]The thermal conductance of pure black and blue phosphorene nanoribbons is sensitively affected by edge shape and breadth, and they both have a distinctly anisotropic thermal performance.[18]The mechanical properties of MoS2can determine the fracture strength and fracture strain of MoS2/WSe2lateral heterostructures.These properties are highly temperature sensitive, and when compared to the graphene–hBN heterostructure, the MoS2/WSe2heterostructure exhibits an order of magnitude lower interfacial thermal conductivity.[19]The properties of materials with negative Poisson’s ratio are very necessary for many advanced applications because they typically have enhanced toughness and shear resistance,along with enhanced sound and vibration absorption, such as the puckered atomic structure of singlelayer black phosphorus and B4N monolayer material.Materials that have a negative Poisson ratio are named auxetic materials.They represent an exciting prospect for enhancing mechanical properties and are necessary for many advanced applications.For example, the Poisson ratios of the puckered atomic structure of black phosphorus[20]and B4N[21]are calculated as?0.267 and?0.032, respectively, and these materials can be considered for future nanomechanical devices.Additionally, due to their excellent properties, silicon carbide (SiC) and germanium carbide (GeC) have garnered a lot of interest.[22,23]SiC possesses a large bandgap of about 3.354 eV,[24]a high saturation electron drift velocity (3×107cm/s), a strong electric breakdown field (3×106V/cm),and is used in high-temperature devices suitable for DC to microwave frequencies.[25]SiC is also a potential electromagnetic shielding material and it can be used for electronic packaging of highly integrated circuits, wireless communication,electronic base stations and other electronic equipment.[26,27]Besides,the defects in a SiC monolayer can induce a sizeable spin effect and strong spin–phonon coupling.[28]Furthermore,GeC also acts as a semiconductor with a bandgap of about 2.515 eV,[22]indicating that it is a promising candidate for application in semiconductor devices, crystal diodes, and photovoltaic systems.[29]Due to the exceptional optical performance of 2D GeC, it has undergone substantial research for prospective use in heterostructure devices and solar cells.[30]In comparison to graphene,the mechanical characteristics of a GeC monolayer indicate a low in-plane stiffness(143.8 N/m)and a high Poisson ratio(0.281).[31]Although there have been a large number of studies on the applications of tSiC and GeC monolayers, their mechanical and thermal characteristics are rarely reported and these are crucial properties to explore for further advanced functional nanodevices.

    To explore the mechanical characteristics of SiC and GeC monolayers under uniaxial stress in the armchair and zigzag directions,we conduct molecular dynamics simulations(MD)in this work.The impacts of temperature and already-existing fractures on mechanical characteristics are discussed.Additionally,the heat transport capabilities of SiC and GeC monolayers are investigated.Adjustable mechanical and thermal characteristics of SiC and GeC monolayers point to possible usage in nanodevices.

    2.Simulation methods

    In our work, the zigzag and armchair directions of the SiC and GeC monolayers are oriented along thexandydirections, respectively, as shown in Fig.1.Both the zigzag and armchair directions use periodic boundary conditions, which means a nanosheet structure is obtained.The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)was used for all MD simulations.[32]It uses OVITO software for structural visualization.[33]To ensure the stability of the values and the correctness of the energy conservation,the time step of all MD simulations is set to 1.0 fs.Initially,the whole system is relaxed at a constant temperature and constant pressure for 200 ps through the Nose–Hoover thermostat.The Tersoff potential,which is often employed and taken into consideration owing to correct parameterization,is utilized to represent the interatomic interactions to achieve agreement with the DFT computations and experimental data.

    In the mechanical calculations,all the simulations are performed using a 194.5 ?A×198.1 ?A supercell that contains periodic boundary conditions applied in any direction along the plane.Here, the fix/deform method as defined in LAMMPS is used to apply in-plane uniaxial tension with a strain rate of 2×108s?1.The system’s temperature is maintained at a constant level during the tensile deformation process, while the other directions are maintained at zero pressure.During the MD simulations,we examine the normal corresponding forces in the zigzag and armchair directions to obtain the mechanical properties of the two material structures.

    Fig.1.The tensile simulation model of the SiC (or GeC) monolayers with dimensions of 194.5 ?A×198.1 ?A.The figure shows the top and side views, and the zoomed-in views (top and side views) of the interface.Both zigzag and armchair directions use periodic boundary conditions.

    Non-equilibrium molecular dynamics (NEMD) simulations are used in the thermal simulations to calculate the thermal conductivity with the length and the width of the SiC(or GeC)monolayers at about 200.23 ?A and 99.09 ?A,respectively.The studied system was first equilibrated with an NPT ensemble for 100 ps and then the system was relaxed with an NVE ensemble for 2000 ps.The kinetic energy of the hottest atom in the heat sink slab and the coldest atom in the heat source slab are exchanged for 6 ns to produce the heat flux(J).

    3.Results and discussion

    3.1.Mechanical behavior

    Structural integrity is maintained after the total relaxation of the SiC and GeC monolayers,suggesting thermal stability.Next,we investigate the zigzag and armchair direction fracture behaviors of the SiC and GeC monolayers under tensile pressure at 300 K.The obtained deformation and initial crack of the SiC and GeC monolayers are shown in Figs.2(a)and 2(b),where one can see that the atomic stress near the crack has been released, and the fracture strains of SiC and GeC along the zigzag direction are larger than those along the armchair one.Furthermore,the fracture strength of SiC is greater than GeC in both directions, and conversely, the maximal strain that GeC can withstand is greater than SiC in both directions,which is demonstrated by the stress–strain curve of SiC and GeC in Fig.3.

    Fig.2.Deformation and initial crack of zigzag and armchair (a) SiC and (b) GeC structures under tensile loading.The color contour in the image shows how the normal stress is distributed along the direction of tensile tension.

    Fig.3.The mechanical characteristics of SiC and GeC structures: the stress–strain curves for SiC(a),(c)and GeC(b),(d)in the zigzag(a),(b)and armchair(c),(d)directions.

    In Fig.3, it can be seen that the strain in SiC increases from 0 to 39.16% along the zigzag direction, corresponding to the stress increasing from 0 to 103.55 GPa.At the same time,the strain increasing from 0 to 27.54%can induce stress increases from 0 to 73.59 GPa along the armchair direction.Besides, when an external strain is applied to GeC in the zigzag(armchair)direction of up to 42%(29.74%),the stress increases will increase to 87.64 GPa (67.9 GPa).As shown in the stress–strain curves,both materials exhibit much greater zigzag fracture strengths and strain than armchair fracture strengths and strain, indicating anisotropy in their mechanical properties.The strongest 2D material is graphene,which has a fracture strength of 100–130 GPa and a Young’s modulus of about 1.0 TPa.[34]On comparison, SiC and GeC are much weaker than graphene but far more robust than other 2D materials, such as borophene (23.45–55.9 GPa),[19]silicene(12.5 GPa)[35]and MoS2(11–13 GPa).[17]The effect of temperature on the stress–strain curves of SiC and GeC is also addressed in Fig.3.One can see that SiC and GeC behave mechanically similarly in zigzag (or armchair) directions at various temperatures before fracture, which means that the temperature mainly changes the ultimate fracture performance.

    Fig.4.Trends of(a)fracture strength and(b)fracture strain at different temperatures for SiC and GeC.

    Then,we investigated the effect of the mechanical characteristics of the SiC and GeC monolayers at different temperatures.The fracture strength and strain of SiC and GeC possess an obvious dependence on the temperature between 50 K and 500 K, as shown in Fig.4.Besides, nonlinear elastic behavior is observed for SiC and GeC.As shown in Fig.4(a), as the temperature rises, both the fracture strength and fracture strain of SiC (or GeC) considerably decline.In more detail,the fracture strength of SiC reduces by 42.5%and 41.59%in zigzag and armchair directions,respectively,when the temperature rises from 50 K to 500 K.The fracture strength of GeC along the zigzag and armchair directions are likewise reduced by around 41.69%and 39.27%, respectively.In addition, the fracture strain of the SiC decreases by 71.2% and 56.9% for zigzag and armchair directions, respectively, while the GeC reduces by about 70.1%and 59.2%along zigzag and armchair directions,respectively.All of these results show that SiC and GeC are more temperature sensitive in terms of their fracture strength in a zigzag direction.At higher temperatures,the vibrations of atoms are greater,and it is easier for local chemical bonds to attain critical bond lengths and break as a result.This phenomenon is known as temperature-induced softening.This resembles the mechanical characteristics of certain common 2D materials,such as MoS2,[36]graphene[34]and silicene,[35]at different temperatures.

    Defect engineering is a common technique to modify the characteristics of 2D materials,[6,37,38]and defects also can be introduced easily in SiC and GeC during their fabrication processes.Thus,the response of the mechanical behaviors of SiC and GeC to the initial crack is investigated along zigzag and armchair directions,as shown in Fig.5.We perform MD simulations at 300 K and the obtained fracture strain and fracture strength for various crack lengths (L) in SiC and GeC, ranging up to 5 nm,are shown in Figs.5(a)and 5(b),respectively.Interestingly, SiC and GeC fracture strengths can be significantly reduced by a pre-existing crack in both zigzag and armchair orientations.Evidently,the shorter crack length can tune the fracture strength and strain of the SiC and GeC more effectively.

    Fig.5.(a)Schematic of applied stress on SiC(or SiC)with defective structure; the calculated (b) fracture strength and (c) the fracture strain of the SiC and GeC as a function of crack length(L)under tensile loading.

    3.2.Thermal properties

    The SiC and GeC monolayers possess semiconductor characteristics, suggesting desirable applications in nanoelectronics and thermoelectric devices, therefore, their heat transport properties are also critical.The thermal conductivities of SiC and GeC are discussed using NEMD simulations.As shown in Fig.6(a), both ends of the SiC (or GeC) monolayer are fixed, and hot and cold baths are located near the fixed parts.Thus, the heat flux is along thexdirection.The thermal properties in zigzag and armchair directions are investigated by setting them as thexdirection.The temperature profiles, after reaching a steady state, of SiC and GeC in the zigzag direction are demonstrated in Fig.6(b).For pure SiC and GeC,by fitting the linear area(depicted by a straight line)on the temperature profile,the temperature gradient(dT/dx)is derived.Following that, Fourier’s law is used to compute the thermal conductivity(κ)

    whereArepresents the region in cross-section through which the heat flux flows.In order to obtain the thermal conductivity at room temperature (300 K), the hot and cold baths fixed at both ends in Fig.6(a) were set to 320 K and 280 K, respectively.Therefore, the thermal conductivity of pure SiC at a temperature of 300 K is calculated as 16.89 W·m?1·K?1and 18.99 W·m?1·K?1along the zigzag and armchair directions,respectively, which are higher than those of transition metal dichalcogenides materials, such as MoS2(5.93 W·m?1·K?1)and WSe2(7.09 W·m?1·K?1).[19]Additionally,pure GeC has a thermal conductivity of 3.89 W·m?1·K?1in the zigzag direction and 4.49 W·m?1·K?1in the armchair direction.Compared to BCN, which has a thermal conductivity of 28–46 W·m?1·K?1, SiC and GeC exhibit a much lower thermal conductivity.[39]

    Fig.6.(a) Schematic diagram of the heat transfer model and (b) the calculated temperature profiles of pure SiC and GeC monolayers along the zigzag direction.

    Then, to explore the effect of size on the tunable thermal property of SiC and GeC,we fixed the value of the width and changed the length from 200 ?A to 2000 ?A at 300 K.The calculated thermal property of SiC and GeC with different lengths is given in Fig.7(a), which shows that the thermal conductivity of SiC sheet increases from 16.89 W·m?1·K?1to 85.67 W·m?1·K?1along the zigzag direction and from 18.99 W·m?1·K?1to 82.79 W·m?1·K?1along the armchair direction.The thermal conductivity of pure GeC sheet is enhanced from 3.89 W·m?1·K?1to 34.37 W·m?1·K?1along the zigzag direction and from 4.49 W·m?1·K?1to 32.74 W·m?1·K?1along the armchair direction.These results indicate an obvious size dependence of the thermal property of SiC and GeC.

    Fig.7.(a) Thermal conductivity measured in pure SiC and GeC at various lengths; (b)the relationships between the inverse thermal conductivity and the inverse sample length for pure SiC and GeC.

    When the length of the 2D material is shorter than the phonon mean free path(MFP),which is a common approach to optimizing the heat transport performance of 2D materials,the system size has a significant impact on the thermal conductivity of these materials.[40]The following connection between the inverse thermal conductivity and the inverse sample lengthL?1are used to calculate the effective MFP:[41]

    wherelis MFP andκ∞is the thermal conductivity of an infinitely long sample.From the fitting curve shown in Fig.7(b), the obtained effective MFPs for pure SiC and GeC are 109.97 nm and 321.21 nm, respectively.The thermal conductivity of a pure SiC (GeC) infinite-length sample is 126.46 W·m?1·K?1(85.30 W·m?1·K?1).

    Besides, we also calculate the thermal property of SiC and GeC at different temperatures ranging from 100 K to 500 K,as shown in Fig.8(a).One can see that the thermal conductivity of both SiC and GeC in the zigzag and the armchair directions are still almost the same, and the simulation results of SiC show that its thermal conductivity decreases from 29.50 W·m?1·K?1to 13.92 W·m?1·K?1along the zigzag direction, and from 28.60 W·m?1·K?1to 15.23 W·m?1·K?1along the armchair direction,indicating a negative temperature dependence.However,the thermal conductivity of GeC shows no significant difference with temperature.The obtained tunable thermal property of SiC and GeC suggests a promising use for thermoelectric applications.

    In Fig.8(a), the SiC monolayer shows a strong temperature-dependent thermal conductivity, which is related to phonon anharmonicity.To explore the potential physical mechanism of temperature-dependent thermal conductivity in the SiC monolayer, we calculate the vibrational density of states(VDOS)in the SiC monolayer at 100–500 K from

    whereωis the angular frequency andC(t) represents the velocity autocorrelation function.For total VDOS,C(t) =(t)is the velocity of atomjand the symbol〈〉represents the ensemble average.[42]The calculated results are shown as Fig.8(b)with the phonon frequency ranging from 0 to 40 THz.The peak frequency for the SiC monolayer at 300 K is around 11.5 THz.The peak value of VDOS near 25–40 THz varies significantly with temperature,thus, we focus on this range.As shown in Fig.8(b), the increased temperature causes a significant redshift in the high frequency peaks of SiC, induced by an enhanced phonon anharmonicity, reducing the thermal conductivity and therefore exhibiting a temperature dependence.This phenomenon has also been explored in Janus MoSSe and WSSe monolayers.[43]Our simulations are an important reference for the future development of thermal devices and thermoelectric energy conversion.

    4.Conclusion and perspectives

    In this study,molecular dynamics simulations were used to systematically examine the in-plane mechanical and thermal transport characteristics of pure SiC and GeC.Both SiC and GeC demonstrate an excellent toughness with fracture strain of about 0.43 and 0.47 in the zigzag direction at 300 K, respectively, which can be decreased by temperature and the introduced crackle.Furthermore, the thermal conductivities of pure SiC (GeC) are calculated as 16.89 W·m?1·K?1(3.89 W·m?1·K?1)and 18.99 W·m?1·K?1(4.49 W·m?1·K?1) along zigzag and armchair directions, respectively,by a non-equilibrium molecular dynamics method.Additionally,the thermal conductivity of SiC(GeC)can reach 85.67 W·m?1·K?1(34.37 W·m?1·K?1) due to a size effect,although an increase in temperature will reduce that.The obtained size and temperature-tunable mechanical and thermal characteristics of SiC and GeC suggest promising applications as thermoelectric and flexible nanodevices.

    Acknowledgements

    All the authors would like to thank the support of the Natural Science Foundation of Jiangsu(Grant No.BK20220407),the National Natural Science Foundation of China (Grant Nos.12102323, 11890674), the China Postdoctoral Science Foundation (Grant No.2021M692574), and the Fundamental Research Funds for the Central Universities (Grant No.sxzy012022024).This work is also supported by the HPC Center,Nanjing Forestry University,China.

    猜你喜歡
    黃磊
    黃磊:穿越人山人海,仍是文藝青年
    黃磊、何炅的千飯之誼
    黃磊 熟男的坐標(biāo)
    北廣人物(2020年22期)2020-06-19 08:09:12
    編讀往來(lái)
    黃磊:我的“麻煩”來(lái)得剛剛好
    金色年華(2017年11期)2017-07-18 11:08:43
    黃磊 愛(ài)需要好好經(jīng)營(yíng)
    海峽姐妹(2017年3期)2017-04-16 03:06:33
    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*
    失去了盛世美顏的胖子黃磊為何還是男神
    意林(2016年21期)2016-11-30 17:05:38
    贊揚(yáng)出來(lái)的大明星
    愿意為你做一輩子的黃小廚
    免费观看人在逋| 动漫黄色视频在线观看| 亚洲中文日韩欧美视频| 免费一级毛片在线播放高清视频 | av视频免费观看在线观看| 日韩欧美一区二区三区在线观看| 亚洲激情在线av| 日韩三级视频一区二区三区| 一个人免费在线观看的高清视频| 亚洲av熟女| 最近最新免费中文字幕在线| 亚洲人成电影观看| 日韩一卡2卡3卡4卡2021年| 国内精品久久久久精免费| 亚洲国产精品合色在线| 久热爱精品视频在线9| 国产xxxxx性猛交| 丝袜美腿诱惑在线| 日本撒尿小便嘘嘘汇集6| 久久 成人 亚洲| 久久婷婷成人综合色麻豆| 在线免费观看的www视频| 欧美成人性av电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 99国产精品99久久久久| 日本免费一区二区三区高清不卡 | 亚洲精品av麻豆狂野| 亚洲中文字幕一区二区三区有码在线看 | 国内毛片毛片毛片毛片毛片| 国产亚洲欧美98| 在线国产一区二区在线| 神马国产精品三级电影在线观看 | 黑人巨大精品欧美一区二区蜜桃| 国产精品av久久久久免费| 热99re8久久精品国产| 亚洲精品av麻豆狂野| 少妇粗大呻吟视频| 午夜免费观看网址| 亚洲一卡2卡3卡4卡5卡精品中文| 成人欧美大片| 国产一级毛片七仙女欲春2 | 一级片免费观看大全| 91麻豆av在线| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 大型av网站在线播放| 婷婷丁香在线五月| 黑人巨大精品欧美一区二区mp4| 久久精品aⅴ一区二区三区四区| 日韩av在线大香蕉| 天堂影院成人在线观看| 悠悠久久av| 老汉色av国产亚洲站长工具| www.www免费av| 国产熟女午夜一区二区三区| 无人区码免费观看不卡| 婷婷丁香在线五月| 最近最新中文字幕大全电影3 | 女生性感内裤真人,穿戴方法视频| 亚洲av成人av| 国产三级黄色录像| 两个人视频免费观看高清| 久久性视频一级片| 人妻久久中文字幕网| 制服人妻中文乱码| 国内精品久久久久精免费| 亚洲av片天天在线观看| 亚洲精品一卡2卡三卡4卡5卡| 别揉我奶头~嗯~啊~动态视频| 亚洲精品美女久久久久99蜜臀| 男女床上黄色一级片免费看| 日本a在线网址| 视频在线观看一区二区三区| bbb黄色大片| 免费在线观看日本一区| 无限看片的www在线观看| 伦理电影免费视频| 最近最新免费中文字幕在线| 国内精品久久久久久久电影| 亚洲精品国产一区二区精华液| 脱女人内裤的视频| 又黄又粗又硬又大视频| 日韩中文字幕欧美一区二区| 成人三级黄色视频| 十八禁网站免费在线| 91av网站免费观看| 亚洲五月婷婷丁香| 大码成人一级视频| 一级毛片精品| 一二三四在线观看免费中文在| 亚洲国产中文字幕在线视频| 午夜日韩欧美国产| 欧美成人午夜精品| 久久精品国产清高在天天线| 如日韩欧美国产精品一区二区三区| 久久久久久久久免费视频了| 午夜免费成人在线视频| 久久亚洲真实| 国产精品电影一区二区三区| 国产精品久久久av美女十八| cao死你这个sao货| 9色porny在线观看| 国产精品影院久久| 少妇裸体淫交视频免费看高清 | 午夜福利,免费看| 男人操女人黄网站| 无限看片的www在线观看| 国产一区在线观看成人免费| 一本久久中文字幕| 一级毛片高清免费大全| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看视频国产中文字幕亚洲| av视频免费观看在线观看| 国产精品久久视频播放| 夜夜夜夜夜久久久久| 久久久国产欧美日韩av| 中文字幕色久视频| 成人欧美大片| 成人特级黄色片久久久久久久| 国产精品香港三级国产av潘金莲| 一二三四社区在线视频社区8| 国产精品自产拍在线观看55亚洲| АⅤ资源中文在线天堂| 丝袜美腿诱惑在线| 女生性感内裤真人,穿戴方法视频| 色播亚洲综合网| 在线观看免费午夜福利视频| svipshipincom国产片| 精品高清国产在线一区| 成人特级黄色片久久久久久久| 美女午夜性视频免费| 国产亚洲欧美在线一区二区| 波多野结衣一区麻豆| 在线播放国产精品三级| 欧美乱码精品一区二区三区| 99久久久亚洲精品蜜臀av| 国产精品久久久人人做人人爽| 一夜夜www| 99在线视频只有这里精品首页| 在线播放国产精品三级| 欧美国产精品va在线观看不卡| 国产精品久久久久久亚洲av鲁大| 国产成年人精品一区二区| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕人妻熟女乱码| 日韩国内少妇激情av| 国产主播在线观看一区二区| 午夜老司机福利片| 久久国产精品影院| 欧美日韩亚洲综合一区二区三区_| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 国产欧美日韩一区二区三| 国产高清有码在线观看视频 | 亚洲电影在线观看av| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久男人| 亚洲男人的天堂狠狠| 精品国产亚洲在线| 男女之事视频高清在线观看| 国产日韩一区二区三区精品不卡| 国产精品久久久久久亚洲av鲁大| 高清毛片免费观看视频网站| 国产成+人综合+亚洲专区| 久久婷婷人人爽人人干人人爱 | 午夜免费成人在线视频| 十八禁人妻一区二区| 国产激情欧美一区二区| 91成人精品电影| 国产精品 国内视频| 亚洲欧美日韩高清在线视频| 在线观看一区二区三区| 人人妻人人澡人人看| 最新美女视频免费是黄的| 亚洲精品中文字幕一二三四区| 日本免费a在线| 国产精品一区二区三区四区久久 | 人人妻人人澡人人看| 久久 成人 亚洲| 日本黄色视频三级网站网址| av视频免费观看在线观看| 国产精品av久久久久免费| 一进一出抽搐动态| 中文字幕久久专区| 一二三四在线观看免费中文在| 亚洲自拍偷在线| 国产精品爽爽va在线观看网站 | 精品久久久久久久久久免费视频| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 中文字幕久久专区| 夜夜看夜夜爽夜夜摸| 宅男免费午夜| 一本久久中文字幕| 欧美成人免费av一区二区三区| 色综合婷婷激情| 欧美日韩黄片免| 久久精品国产清高在天天线| 大型av网站在线播放| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日本亚洲视频在线播放| 久久精品人人爽人人爽视色| 国产熟女午夜一区二区三区| 人人澡人人妻人| 亚洲中文字幕一区二区三区有码在线看 | 自线自在国产av| 欧美日本中文国产一区发布| 久久久久九九精品影院| 日本在线视频免费播放| av免费在线观看网站| 啦啦啦免费观看视频1| 久久久久久久精品吃奶| 精品欧美一区二区三区在线| 少妇 在线观看| 91成年电影在线观看| 国产精品永久免费网站| 999久久久国产精品视频| 最近最新中文字幕大全免费视频| 久久青草综合色| 97人妻精品一区二区三区麻豆 | 国产亚洲欧美98| 亚洲欧美激情在线| 久久精品国产亚洲av高清一级| 日韩大尺度精品在线看网址 | 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 在线观看日韩欧美| 精品不卡国产一区二区三区| 国产成人精品无人区| 亚洲精品av麻豆狂野| 男女做爰动态图高潮gif福利片 | 悠悠久久av| 亚洲av熟女| 99精品在免费线老司机午夜| 两个人免费观看高清视频| 日韩有码中文字幕| 亚洲人成网站在线播放欧美日韩| 男女之事视频高清在线观看| 午夜日韩欧美国产| 国产欧美日韩精品亚洲av| 欧美一级毛片孕妇| 神马国产精品三级电影在线观看 | 99国产精品一区二区蜜桃av| 黑人操中国人逼视频| 欧美老熟妇乱子伦牲交| 国产精品久久电影中文字幕| 美女大奶头视频| 国产欧美日韩一区二区精品| 中文亚洲av片在线观看爽| 亚洲九九香蕉| 9色porny在线观看| 亚洲 国产 在线| 黄色视频,在线免费观看| 免费不卡黄色视频| 亚洲国产日韩欧美精品在线观看 | 免费在线观看亚洲国产| 亚洲国产日韩欧美精品在线观看 | 欧美日韩精品网址| 日韩欧美一区视频在线观看| 黄片大片在线免费观看| 日韩大尺度精品在线看网址 | 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 久久久久久大精品| 国产单亲对白刺激| 欧美日韩精品网址| 黄片小视频在线播放| 欧美色视频一区免费| 欧美精品啪啪一区二区三区| 19禁男女啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 嫩草影视91久久| 一区二区三区精品91| 亚洲一区中文字幕在线| 日本a在线网址| 亚洲中文日韩欧美视频| 久久精品影院6| 久久久久精品国产欧美久久久| 波多野结衣av一区二区av| 一级作爱视频免费观看| 亚洲精品国产区一区二| 禁无遮挡网站| 午夜两性在线视频| 中国美女看黄片| 国产精品乱码一区二三区的特点 | 少妇熟女aⅴ在线视频| 久久香蕉国产精品| 亚洲色图综合在线观看| 亚洲久久久国产精品| svipshipincom国产片| 亚洲国产毛片av蜜桃av| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 欧美乱妇无乱码| 国产精品1区2区在线观看.| 中文字幕另类日韩欧美亚洲嫩草| 美国免费a级毛片| 婷婷精品国产亚洲av在线| 精品久久久久久久人妻蜜臀av | 久久婷婷人人爽人人干人人爱 | 一级a爱视频在线免费观看| 日韩欧美一区视频在线观看| 精品久久久久久久毛片微露脸| 久热这里只有精品99| av视频在线观看入口| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 88av欧美| 老司机午夜十八禁免费视频| 在线十欧美十亚洲十日本专区| av视频免费观看在线观看| 国产精华一区二区三区| 看片在线看免费视频| 亚洲精品一区av在线观看| videosex国产| 日韩大码丰满熟妇| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 国产一区二区三区在线臀色熟女| 久久久久国内视频| 中文字幕最新亚洲高清| 欧美不卡视频在线免费观看 | 久久久久国产精品人妻aⅴ院| 黄色视频,在线免费观看| 看片在线看免费视频| 亚洲av成人av| 99精品在免费线老司机午夜| 国产一区二区在线av高清观看| 午夜久久久久精精品| 久热这里只有精品99| 成人亚洲精品av一区二区| 欧美av亚洲av综合av国产av| 国产区一区二久久| 亚洲欧美日韩无卡精品| 91麻豆av在线| 久久狼人影院| 日本在线视频免费播放| 久久精品国产清高在天天线| 9色porny在线观看| 亚洲精品美女久久久久99蜜臀| 人人澡人人妻人| 亚洲成人国产一区在线观看| 精品久久久久久久久久免费视频| 91精品三级在线观看| 欧美久久黑人一区二区| 99国产精品免费福利视频| 9色porny在线观看| 日韩大尺度精品在线看网址 | 韩国av一区二区三区四区| 亚洲精品国产精品久久久不卡| 亚洲欧美日韩高清在线视频| 黄色视频不卡| 色综合婷婷激情| 视频区欧美日本亚洲| 人妻丰满熟妇av一区二区三区| 88av欧美| 可以在线观看毛片的网站| 亚洲熟妇熟女久久| 九色国产91popny在线| 亚洲视频免费观看视频| 久久热在线av| 亚洲熟妇熟女久久| 中文字幕高清在线视频| 日韩视频一区二区在线观看| 成人永久免费在线观看视频| 欧美激情极品国产一区二区三区| 一区二区三区国产精品乱码| 亚洲av日韩精品久久久久久密| 看片在线看免费视频| 亚洲精品国产精品久久久不卡| 可以在线观看毛片的网站| 国产黄a三级三级三级人| 亚洲 欧美一区二区三区| 99在线人妻在线中文字幕| 欧美最黄视频在线播放免费| 久久久久久久午夜电影| 亚洲午夜理论影院| 少妇裸体淫交视频免费看高清 | 亚洲成国产人片在线观看| 人人妻,人人澡人人爽秒播| 精品国产一区二区久久| 国产男靠女视频免费网站| 国产97色在线日韩免费| 美女午夜性视频免费| 熟女少妇亚洲综合色aaa.| 欧美黑人精品巨大| 91大片在线观看| 亚洲激情在线av| 精品第一国产精品| 黄片小视频在线播放| 久久久久久久久免费视频了| 久久香蕉国产精品| 精品久久久精品久久久| 精品免费久久久久久久清纯| 亚洲av五月六月丁香网| 久久久久九九精品影院| 女人被躁到高潮嗷嗷叫费观| 极品人妻少妇av视频| 91成人精品电影| 精品久久蜜臀av无| 久久精品国产亚洲av香蕉五月| 高清在线国产一区| 国产精品一区二区三区四区久久 | 超碰成人久久| 亚洲五月天丁香| 欧美成人午夜精品| 99精品久久久久人妻精品| 大型黄色视频在线免费观看| 在线av久久热| 一a级毛片在线观看| www.精华液| 久久天堂一区二区三区四区| 看免费av毛片| 成在线人永久免费视频| 又黄又爽又免费观看的视频| 99riav亚洲国产免费| 不卡一级毛片| 精品一区二区三区四区五区乱码| 亚洲第一av免费看| 日韩欧美国产在线观看| 欧美激情极品国产一区二区三区| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 久久久久国产精品人妻aⅴ院| 国产精品 国内视频| 欧美乱色亚洲激情| 久久精品国产亚洲av高清一级| 亚洲av五月六月丁香网| 久久性视频一级片| 好男人电影高清在线观看| 欧美色欧美亚洲另类二区 | 亚洲欧洲精品一区二区精品久久久| 日韩欧美三级三区| 黄色丝袜av网址大全| 久久狼人影院| 国产精品亚洲av一区麻豆| 欧美日韩黄片免| 两个人视频免费观看高清| 亚洲av片天天在线观看| 亚洲成av片中文字幕在线观看| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐gif免费好疼| 桃红色精品国产亚洲av| 老司机在亚洲福利影院| 欧美日韩亚洲综合一区二区三区_| 免费一级毛片在线播放高清视频 | 日韩欧美国产在线观看| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 国产三级在线视频| 在线观看免费午夜福利视频| 激情视频va一区二区三区| 色精品久久人妻99蜜桃| 色婷婷久久久亚洲欧美| 国产精品精品国产色婷婷| 日日夜夜操网爽| 精品国产美女av久久久久小说| 精品日产1卡2卡| 精品国产亚洲在线| 国产成人精品久久二区二区91| 少妇 在线观看| 久久香蕉激情| 亚洲国产毛片av蜜桃av| 国产aⅴ精品一区二区三区波| 女生性感内裤真人,穿戴方法视频| 一本综合久久免费| 一边摸一边抽搐一进一小说| 日韩免费av在线播放| 国产成人欧美在线观看| 黄片小视频在线播放| 中文字幕高清在线视频| 啪啪无遮挡十八禁网站| 每晚都被弄得嗷嗷叫到高潮| 可以免费在线观看a视频的电影网站| 国产蜜桃级精品一区二区三区| 一级毛片女人18水好多| 久久中文字幕一级| 精品不卡国产一区二区三区| 精品国产一区二区久久| 在线观看免费视频网站a站| 91老司机精品| 极品教师在线免费播放| 变态另类成人亚洲欧美熟女 | 丁香欧美五月| 久久人人爽av亚洲精品天堂| 久久中文字幕人妻熟女| 在线观看66精品国产| 日韩有码中文字幕| 美女午夜性视频免费| 久久久久久久久免费视频了| 欧美日韩亚洲综合一区二区三区_| 黄色成人免费大全| 国产欧美日韩综合在线一区二区| 中文字幕人成人乱码亚洲影| 黄片播放在线免费| 久久人妻福利社区极品人妻图片| 久久国产精品影院| 精品国产一区二区久久| 两个人免费观看高清视频| 成人欧美大片| 久久久久久久精品吃奶| 女人被躁到高潮嗷嗷叫费观| 老司机福利观看| 亚洲久久久国产精品| 国产伦一二天堂av在线观看| 一区二区三区精品91| 日本五十路高清| 在线播放国产精品三级| 国产成人精品在线电影| 一二三四在线观看免费中文在| 可以在线观看的亚洲视频| 国产又爽黄色视频| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区在线臀色熟女| 久久国产精品影院| 国内精品久久久久久久电影| 久久天堂一区二区三区四区| 亚洲国产日韩欧美精品在线观看 | 久久国产精品人妻蜜桃| 久久中文字幕人妻熟女| 成人特级黄色片久久久久久久| 99久久精品国产亚洲精品| 在线永久观看黄色视频| 热re99久久国产66热| av超薄肉色丝袜交足视频| 国产欧美日韩一区二区三区在线| 亚洲精品国产一区二区精华液| 日韩欧美三级三区| 一本大道久久a久久精品| 禁无遮挡网站| 成人三级黄色视频| 午夜免费鲁丝| 亚洲精品中文字幕一二三四区| 亚洲精品中文字幕在线视频| 中出人妻视频一区二区| 国产私拍福利视频在线观看| 久久精品国产综合久久久| 日韩高清综合在线| 亚洲美女黄片视频| 精品一区二区三区av网在线观看| 国产亚洲精品久久久久5区| 在线观看www视频免费| 欧美中文日本在线观看视频| 亚洲av成人av| 一边摸一边抽搐一进一出视频| 69精品国产乱码久久久| 在线观看一区二区三区| 黄色毛片三级朝国网站| 中亚洲国语对白在线视频| 乱人伦中国视频| 亚洲男人的天堂狠狠| 久久久国产精品麻豆| 亚洲欧美日韩另类电影网站| 夜夜夜夜夜久久久久| 99精品欧美一区二区三区四区| 99国产精品一区二区三区| 欧美人与性动交α欧美精品济南到| 日本欧美视频一区| 亚洲精品av麻豆狂野| 中亚洲国语对白在线视频| 婷婷精品国产亚洲av在线| 久久国产精品人妻蜜桃| 一夜夜www| 欧美一区二区精品小视频在线| 多毛熟女@视频| 天天添夜夜摸| 在线观看www视频免费| 亚洲欧美精品综合久久99| 国产精品九九99| 少妇熟女aⅴ在线视频| 操出白浆在线播放| 一进一出好大好爽视频| 欧美乱色亚洲激情| 一级作爱视频免费观看| 国产真人三级小视频在线观看| 91老司机精品| 色播亚洲综合网| 亚洲精品在线观看二区| 亚洲在线自拍视频| 亚洲黑人精品在线| 婷婷精品国产亚洲av在线| 久久久久久久久免费视频了| 69av精品久久久久久| 神马国产精品三级电影在线观看 | 欧美中文综合在线视频| 日韩视频一区二区在线观看| 国产一级毛片七仙女欲春2 | 国产人伦9x9x在线观看| 久久中文字幕人妻熟女| 悠悠久久av| 高清在线国产一区| 日本免费a在线| 国产欧美日韩一区二区三区在线| 高清在线国产一区| 国产伦人伦偷精品视频| 18禁观看日本| 国产人伦9x9x在线观看| 精品免费久久久久久久清纯| 大型黄色视频在线免费观看| 久久国产精品人妻蜜桃| cao死你这个sao货| 精品人妻1区二区| 怎么达到女性高潮| 国产精品久久视频播放| 亚洲国产精品sss在线观看| 久久 成人 亚洲| 大香蕉久久成人网| 在线观看免费视频网站a站| 韩国av一区二区三区四区| 久久久国产成人免费|