• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence

    2023-09-05 08:48:22LeiHuang黃磊KaiRen任凱HuanpingZhang張煥萍andHuasongQin覃華松
    Chinese Physics B 2023年7期
    關(guān)鍵詞:黃磊

    Lei Huang(黃磊), Kai Ren(任凱),?, Huanping Zhang(張煥萍), and Huasong Qin(覃華松)

    1School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China

    2Laboratory for Multiscale Mechanics and Medical Science,SV LAB,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: two-dimensional,molecular dynamics,mechanical property,heat transport

    1.Introduction

    By using a micromechanical stripping method,graphene has been successfully separated.[1]Due to their remarkable characteristics and numerous possible applications, twodimensional(2D)materials have garnered extensive attention and research interest.[2,3]For example, graphene has excellent electronic,[4]thermal,[5,6]catalytic,[7]mechanical[8]and magnetic[9]properties.Single-layer graphene’s bipolar electric field effect demonstrates that the charge carriers are more mobile than in semiconductors.[10]Graphene also has high thermoelectric power[10,11]and excellent nonlinear optical characteristics combined with fast response and wide wavelength range in optoelectronic and photonic applications.[12]Inspired by such exciting behaviors of graphene and its successful application in various advanced nanotechnology, research on other 2D materials has been explored.[13]Although they present a large specific surface area, these graphene-like materials possess different mechanical,thermal,electrical,optical and catalytic properties.[14–16]

    The electronic, mechanical and thermal performances of the 2D materials have a critical role in the development of atomic devices.For instance, the mechanical properties of borophene are highly anisotropic: in comparison to the armchair direction, the zigzag direction (also known as the buckled direction) has a substantially lower Young’s modulus and fracture strength.[17]The thermal conductance of pure black and blue phosphorene nanoribbons is sensitively affected by edge shape and breadth, and they both have a distinctly anisotropic thermal performance.[18]The mechanical properties of MoS2can determine the fracture strength and fracture strain of MoS2/WSe2lateral heterostructures.These properties are highly temperature sensitive, and when compared to the graphene–hBN heterostructure, the MoS2/WSe2heterostructure exhibits an order of magnitude lower interfacial thermal conductivity.[19]The properties of materials with negative Poisson’s ratio are very necessary for many advanced applications because they typically have enhanced toughness and shear resistance,along with enhanced sound and vibration absorption, such as the puckered atomic structure of singlelayer black phosphorus and B4N monolayer material.Materials that have a negative Poisson ratio are named auxetic materials.They represent an exciting prospect for enhancing mechanical properties and are necessary for many advanced applications.For example, the Poisson ratios of the puckered atomic structure of black phosphorus[20]and B4N[21]are calculated as?0.267 and?0.032, respectively, and these materials can be considered for future nanomechanical devices.Additionally, due to their excellent properties, silicon carbide (SiC) and germanium carbide (GeC) have garnered a lot of interest.[22,23]SiC possesses a large bandgap of about 3.354 eV,[24]a high saturation electron drift velocity (3×107cm/s), a strong electric breakdown field (3×106V/cm),and is used in high-temperature devices suitable for DC to microwave frequencies.[25]SiC is also a potential electromagnetic shielding material and it can be used for electronic packaging of highly integrated circuits, wireless communication,electronic base stations and other electronic equipment.[26,27]Besides,the defects in a SiC monolayer can induce a sizeable spin effect and strong spin–phonon coupling.[28]Furthermore,GeC also acts as a semiconductor with a bandgap of about 2.515 eV,[22]indicating that it is a promising candidate for application in semiconductor devices, crystal diodes, and photovoltaic systems.[29]Due to the exceptional optical performance of 2D GeC, it has undergone substantial research for prospective use in heterostructure devices and solar cells.[30]In comparison to graphene,the mechanical characteristics of a GeC monolayer indicate a low in-plane stiffness(143.8 N/m)and a high Poisson ratio(0.281).[31]Although there have been a large number of studies on the applications of tSiC and GeC monolayers, their mechanical and thermal characteristics are rarely reported and these are crucial properties to explore for further advanced functional nanodevices.

    To explore the mechanical characteristics of SiC and GeC monolayers under uniaxial stress in the armchair and zigzag directions,we conduct molecular dynamics simulations(MD)in this work.The impacts of temperature and already-existing fractures on mechanical characteristics are discussed.Additionally,the heat transport capabilities of SiC and GeC monolayers are investigated.Adjustable mechanical and thermal characteristics of SiC and GeC monolayers point to possible usage in nanodevices.

    2.Simulation methods

    In our work, the zigzag and armchair directions of the SiC and GeC monolayers are oriented along thexandydirections, respectively, as shown in Fig.1.Both the zigzag and armchair directions use periodic boundary conditions, which means a nanosheet structure is obtained.The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)was used for all MD simulations.[32]It uses OVITO software for structural visualization.[33]To ensure the stability of the values and the correctness of the energy conservation,the time step of all MD simulations is set to 1.0 fs.Initially,the whole system is relaxed at a constant temperature and constant pressure for 200 ps through the Nose–Hoover thermostat.The Tersoff potential,which is often employed and taken into consideration owing to correct parameterization,is utilized to represent the interatomic interactions to achieve agreement with the DFT computations and experimental data.

    In the mechanical calculations,all the simulations are performed using a 194.5 ?A×198.1 ?A supercell that contains periodic boundary conditions applied in any direction along the plane.Here, the fix/deform method as defined in LAMMPS is used to apply in-plane uniaxial tension with a strain rate of 2×108s?1.The system’s temperature is maintained at a constant level during the tensile deformation process, while the other directions are maintained at zero pressure.During the MD simulations,we examine the normal corresponding forces in the zigzag and armchair directions to obtain the mechanical properties of the two material structures.

    Fig.1.The tensile simulation model of the SiC (or GeC) monolayers with dimensions of 194.5 ?A×198.1 ?A.The figure shows the top and side views, and the zoomed-in views (top and side views) of the interface.Both zigzag and armchair directions use periodic boundary conditions.

    Non-equilibrium molecular dynamics (NEMD) simulations are used in the thermal simulations to calculate the thermal conductivity with the length and the width of the SiC(or GeC)monolayers at about 200.23 ?A and 99.09 ?A,respectively.The studied system was first equilibrated with an NPT ensemble for 100 ps and then the system was relaxed with an NVE ensemble for 2000 ps.The kinetic energy of the hottest atom in the heat sink slab and the coldest atom in the heat source slab are exchanged for 6 ns to produce the heat flux(J).

    3.Results and discussion

    3.1.Mechanical behavior

    Structural integrity is maintained after the total relaxation of the SiC and GeC monolayers,suggesting thermal stability.Next,we investigate the zigzag and armchair direction fracture behaviors of the SiC and GeC monolayers under tensile pressure at 300 K.The obtained deformation and initial crack of the SiC and GeC monolayers are shown in Figs.2(a)and 2(b),where one can see that the atomic stress near the crack has been released, and the fracture strains of SiC and GeC along the zigzag direction are larger than those along the armchair one.Furthermore,the fracture strength of SiC is greater than GeC in both directions, and conversely, the maximal strain that GeC can withstand is greater than SiC in both directions,which is demonstrated by the stress–strain curve of SiC and GeC in Fig.3.

    Fig.2.Deformation and initial crack of zigzag and armchair (a) SiC and (b) GeC structures under tensile loading.The color contour in the image shows how the normal stress is distributed along the direction of tensile tension.

    Fig.3.The mechanical characteristics of SiC and GeC structures: the stress–strain curves for SiC(a),(c)and GeC(b),(d)in the zigzag(a),(b)and armchair(c),(d)directions.

    In Fig.3, it can be seen that the strain in SiC increases from 0 to 39.16% along the zigzag direction, corresponding to the stress increasing from 0 to 103.55 GPa.At the same time,the strain increasing from 0 to 27.54%can induce stress increases from 0 to 73.59 GPa along the armchair direction.Besides, when an external strain is applied to GeC in the zigzag(armchair)direction of up to 42%(29.74%),the stress increases will increase to 87.64 GPa (67.9 GPa).As shown in the stress–strain curves,both materials exhibit much greater zigzag fracture strengths and strain than armchair fracture strengths and strain, indicating anisotropy in their mechanical properties.The strongest 2D material is graphene,which has a fracture strength of 100–130 GPa and a Young’s modulus of about 1.0 TPa.[34]On comparison, SiC and GeC are much weaker than graphene but far more robust than other 2D materials, such as borophene (23.45–55.9 GPa),[19]silicene(12.5 GPa)[35]and MoS2(11–13 GPa).[17]The effect of temperature on the stress–strain curves of SiC and GeC is also addressed in Fig.3.One can see that SiC and GeC behave mechanically similarly in zigzag (or armchair) directions at various temperatures before fracture, which means that the temperature mainly changes the ultimate fracture performance.

    Fig.4.Trends of(a)fracture strength and(b)fracture strain at different temperatures for SiC and GeC.

    Then,we investigated the effect of the mechanical characteristics of the SiC and GeC monolayers at different temperatures.The fracture strength and strain of SiC and GeC possess an obvious dependence on the temperature between 50 K and 500 K, as shown in Fig.4.Besides, nonlinear elastic behavior is observed for SiC and GeC.As shown in Fig.4(a), as the temperature rises, both the fracture strength and fracture strain of SiC (or GeC) considerably decline.In more detail,the fracture strength of SiC reduces by 42.5%and 41.59%in zigzag and armchair directions,respectively,when the temperature rises from 50 K to 500 K.The fracture strength of GeC along the zigzag and armchair directions are likewise reduced by around 41.69%and 39.27%, respectively.In addition, the fracture strain of the SiC decreases by 71.2% and 56.9% for zigzag and armchair directions, respectively, while the GeC reduces by about 70.1%and 59.2%along zigzag and armchair directions,respectively.All of these results show that SiC and GeC are more temperature sensitive in terms of their fracture strength in a zigzag direction.At higher temperatures,the vibrations of atoms are greater,and it is easier for local chemical bonds to attain critical bond lengths and break as a result.This phenomenon is known as temperature-induced softening.This resembles the mechanical characteristics of certain common 2D materials,such as MoS2,[36]graphene[34]and silicene,[35]at different temperatures.

    Defect engineering is a common technique to modify the characteristics of 2D materials,[6,37,38]and defects also can be introduced easily in SiC and GeC during their fabrication processes.Thus,the response of the mechanical behaviors of SiC and GeC to the initial crack is investigated along zigzag and armchair directions,as shown in Fig.5.We perform MD simulations at 300 K and the obtained fracture strain and fracture strength for various crack lengths (L) in SiC and GeC, ranging up to 5 nm,are shown in Figs.5(a)and 5(b),respectively.Interestingly, SiC and GeC fracture strengths can be significantly reduced by a pre-existing crack in both zigzag and armchair orientations.Evidently,the shorter crack length can tune the fracture strength and strain of the SiC and GeC more effectively.

    Fig.5.(a)Schematic of applied stress on SiC(or SiC)with defective structure; the calculated (b) fracture strength and (c) the fracture strain of the SiC and GeC as a function of crack length(L)under tensile loading.

    3.2.Thermal properties

    The SiC and GeC monolayers possess semiconductor characteristics, suggesting desirable applications in nanoelectronics and thermoelectric devices, therefore, their heat transport properties are also critical.The thermal conductivities of SiC and GeC are discussed using NEMD simulations.As shown in Fig.6(a), both ends of the SiC (or GeC) monolayer are fixed, and hot and cold baths are located near the fixed parts.Thus, the heat flux is along thexdirection.The thermal properties in zigzag and armchair directions are investigated by setting them as thexdirection.The temperature profiles, after reaching a steady state, of SiC and GeC in the zigzag direction are demonstrated in Fig.6(b).For pure SiC and GeC,by fitting the linear area(depicted by a straight line)on the temperature profile,the temperature gradient(dT/dx)is derived.Following that, Fourier’s law is used to compute the thermal conductivity(κ)

    whereArepresents the region in cross-section through which the heat flux flows.In order to obtain the thermal conductivity at room temperature (300 K), the hot and cold baths fixed at both ends in Fig.6(a) were set to 320 K and 280 K, respectively.Therefore, the thermal conductivity of pure SiC at a temperature of 300 K is calculated as 16.89 W·m?1·K?1and 18.99 W·m?1·K?1along the zigzag and armchair directions,respectively, which are higher than those of transition metal dichalcogenides materials, such as MoS2(5.93 W·m?1·K?1)and WSe2(7.09 W·m?1·K?1).[19]Additionally,pure GeC has a thermal conductivity of 3.89 W·m?1·K?1in the zigzag direction and 4.49 W·m?1·K?1in the armchair direction.Compared to BCN, which has a thermal conductivity of 28–46 W·m?1·K?1, SiC and GeC exhibit a much lower thermal conductivity.[39]

    Fig.6.(a) Schematic diagram of the heat transfer model and (b) the calculated temperature profiles of pure SiC and GeC monolayers along the zigzag direction.

    Then, to explore the effect of size on the tunable thermal property of SiC and GeC,we fixed the value of the width and changed the length from 200 ?A to 2000 ?A at 300 K.The calculated thermal property of SiC and GeC with different lengths is given in Fig.7(a), which shows that the thermal conductivity of SiC sheet increases from 16.89 W·m?1·K?1to 85.67 W·m?1·K?1along the zigzag direction and from 18.99 W·m?1·K?1to 82.79 W·m?1·K?1along the armchair direction.The thermal conductivity of pure GeC sheet is enhanced from 3.89 W·m?1·K?1to 34.37 W·m?1·K?1along the zigzag direction and from 4.49 W·m?1·K?1to 32.74 W·m?1·K?1along the armchair direction.These results indicate an obvious size dependence of the thermal property of SiC and GeC.

    Fig.7.(a) Thermal conductivity measured in pure SiC and GeC at various lengths; (b)the relationships between the inverse thermal conductivity and the inverse sample length for pure SiC and GeC.

    When the length of the 2D material is shorter than the phonon mean free path(MFP),which is a common approach to optimizing the heat transport performance of 2D materials,the system size has a significant impact on the thermal conductivity of these materials.[40]The following connection between the inverse thermal conductivity and the inverse sample lengthL?1are used to calculate the effective MFP:[41]

    wherelis MFP andκ∞is the thermal conductivity of an infinitely long sample.From the fitting curve shown in Fig.7(b), the obtained effective MFPs for pure SiC and GeC are 109.97 nm and 321.21 nm, respectively.The thermal conductivity of a pure SiC (GeC) infinite-length sample is 126.46 W·m?1·K?1(85.30 W·m?1·K?1).

    Besides, we also calculate the thermal property of SiC and GeC at different temperatures ranging from 100 K to 500 K,as shown in Fig.8(a).One can see that the thermal conductivity of both SiC and GeC in the zigzag and the armchair directions are still almost the same, and the simulation results of SiC show that its thermal conductivity decreases from 29.50 W·m?1·K?1to 13.92 W·m?1·K?1along the zigzag direction, and from 28.60 W·m?1·K?1to 15.23 W·m?1·K?1along the armchair direction,indicating a negative temperature dependence.However,the thermal conductivity of GeC shows no significant difference with temperature.The obtained tunable thermal property of SiC and GeC suggests a promising use for thermoelectric applications.

    In Fig.8(a), the SiC monolayer shows a strong temperature-dependent thermal conductivity, which is related to phonon anharmonicity.To explore the potential physical mechanism of temperature-dependent thermal conductivity in the SiC monolayer, we calculate the vibrational density of states(VDOS)in the SiC monolayer at 100–500 K from

    whereωis the angular frequency andC(t) represents the velocity autocorrelation function.For total VDOS,C(t) =(t)is the velocity of atomjand the symbol〈〉represents the ensemble average.[42]The calculated results are shown as Fig.8(b)with the phonon frequency ranging from 0 to 40 THz.The peak frequency for the SiC monolayer at 300 K is around 11.5 THz.The peak value of VDOS near 25–40 THz varies significantly with temperature,thus, we focus on this range.As shown in Fig.8(b), the increased temperature causes a significant redshift in the high frequency peaks of SiC, induced by an enhanced phonon anharmonicity, reducing the thermal conductivity and therefore exhibiting a temperature dependence.This phenomenon has also been explored in Janus MoSSe and WSSe monolayers.[43]Our simulations are an important reference for the future development of thermal devices and thermoelectric energy conversion.

    4.Conclusion and perspectives

    In this study,molecular dynamics simulations were used to systematically examine the in-plane mechanical and thermal transport characteristics of pure SiC and GeC.Both SiC and GeC demonstrate an excellent toughness with fracture strain of about 0.43 and 0.47 in the zigzag direction at 300 K, respectively, which can be decreased by temperature and the introduced crackle.Furthermore, the thermal conductivities of pure SiC (GeC) are calculated as 16.89 W·m?1·K?1(3.89 W·m?1·K?1)and 18.99 W·m?1·K?1(4.49 W·m?1·K?1) along zigzag and armchair directions, respectively,by a non-equilibrium molecular dynamics method.Additionally,the thermal conductivity of SiC(GeC)can reach 85.67 W·m?1·K?1(34.37 W·m?1·K?1) due to a size effect,although an increase in temperature will reduce that.The obtained size and temperature-tunable mechanical and thermal characteristics of SiC and GeC suggest promising applications as thermoelectric and flexible nanodevices.

    Acknowledgements

    All the authors would like to thank the support of the Natural Science Foundation of Jiangsu(Grant No.BK20220407),the National Natural Science Foundation of China (Grant Nos.12102323, 11890674), the China Postdoctoral Science Foundation (Grant No.2021M692574), and the Fundamental Research Funds for the Central Universities (Grant No.sxzy012022024).This work is also supported by the HPC Center,Nanjing Forestry University,China.

    猜你喜歡
    黃磊
    黃磊:穿越人山人海,仍是文藝青年
    黃磊、何炅的千飯之誼
    黃磊 熟男的坐標(biāo)
    北廣人物(2020年22期)2020-06-19 08:09:12
    編讀往來(lái)
    黃磊:我的“麻煩”來(lái)得剛剛好
    金色年華(2017年11期)2017-07-18 11:08:43
    黃磊 愛(ài)需要好好經(jīng)營(yíng)
    海峽姐妹(2017年3期)2017-04-16 03:06:33
    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*
    失去了盛世美顏的胖子黃磊為何還是男神
    意林(2016年21期)2016-11-30 17:05:38
    贊揚(yáng)出來(lái)的大明星
    愿意為你做一輩子的黃小廚
    妹子高潮喷水视频| 90打野战视频偷拍视频| 久久性视频一级片| 久久久精品94久久精品| 亚洲精品一卡2卡三卡4卡5卡| 97在线人人人人妻| 99精国产麻豆久久婷婷| 操出白浆在线播放| 成人精品一区二区免费| 国产深夜福利视频在线观看| 视频区欧美日本亚洲| 欧美精品一区二区免费开放| 50天的宝宝边吃奶边哭怎么回事| 激情视频va一区二区三区| 精品人妻在线不人妻| 欧美激情高清一区二区三区| 日本一区二区免费在线视频| 亚洲成人手机| 大型黄色视频在线免费观看| 91成年电影在线观看| 欧美人与性动交α欧美精品济南到| 久久午夜综合久久蜜桃| 另类精品久久| 十八禁网站免费在线| 免费人妻精品一区二区三区视频| 黄色丝袜av网址大全| 手机成人av网站| 国产日韩欧美在线精品| 欧美精品人与动牲交sv欧美| 自线自在国产av| 老汉色av国产亚洲站长工具| 操出白浆在线播放| 天天躁日日躁夜夜躁夜夜| 欧美+亚洲+日韩+国产| 亚洲成人国产一区在线观看| 亚洲av电影在线进入| 亚洲av欧美aⅴ国产| 精品视频人人做人人爽| 日韩三级视频一区二区三区| 丝袜人妻中文字幕| 欧美成狂野欧美在线观看| 亚洲欧洲日产国产| 9191精品国产免费久久| 少妇 在线观看| 日韩视频在线欧美| 久久人妻福利社区极品人妻图片| 久久性视频一级片| 夜夜夜夜夜久久久久| 久久热在线av| 成年版毛片免费区| 亚洲熟女毛片儿| 国产亚洲精品第一综合不卡| 亚洲精品美女久久av网站| 一边摸一边抽搐一进一小说 | 精品国产乱码久久久久久小说| 国产男女内射视频| 亚洲国产欧美网| 日韩中文字幕欧美一区二区| 丝袜喷水一区| 捣出白浆h1v1| 啪啪无遮挡十八禁网站| 操美女的视频在线观看| 最近最新中文字幕大全电影3 | 国产成人免费观看mmmm| 青青草视频在线视频观看| 五月天丁香电影| www.自偷自拍.com| 国产一卡二卡三卡精品| 18禁美女被吸乳视频| 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 老司机在亚洲福利影院| 亚洲成人免费av在线播放| 国产精品二区激情视频| 国产成人精品无人区| 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 国产黄色免费在线视频| 免费不卡黄色视频| 欧美久久黑人一区二区| 欧美精品啪啪一区二区三区| 女人被躁到高潮嗷嗷叫费观| 91麻豆精品激情在线观看国产 | 18禁观看日本| 少妇被粗大的猛进出69影院| 一夜夜www| 女警被强在线播放| 黑人欧美特级aaaaaa片| 亚洲va日本ⅴa欧美va伊人久久| 国产高清视频在线播放一区| 国产精品免费一区二区三区在线 | 国产男女超爽视频在线观看| 久久精品91无色码中文字幕| av又黄又爽大尺度在线免费看| 久久国产亚洲av麻豆专区| 日日爽夜夜爽网站| 欧美精品亚洲一区二区| 黄色成人免费大全| 妹子高潮喷水视频| 国产免费av片在线观看野外av| 亚洲九九香蕉| 免费在线观看黄色视频的| 淫妇啪啪啪对白视频| 亚洲色图av天堂| av天堂在线播放| 99re6热这里在线精品视频| cao死你这个sao货| 精品熟女少妇八av免费久了| 一级毛片电影观看| 夜夜骑夜夜射夜夜干| 嫩草影视91久久| 黄色视频不卡| 18在线观看网站| 成人国语在线视频| 免费一级毛片在线播放高清视频 | av视频免费观看在线观看| 久久精品人人爽人人爽视色| 1024视频免费在线观看| 一本色道久久久久久精品综合| 日日夜夜操网爽| 天堂俺去俺来也www色官网| 成年动漫av网址| 99精国产麻豆久久婷婷| 无人区码免费观看不卡 | 一本一本久久a久久精品综合妖精| 午夜福利免费观看在线| 欧美成狂野欧美在线观看| 国产成人欧美在线观看 | 精品国产乱子伦一区二区三区| 欧美 亚洲 国产 日韩一| 蜜桃国产av成人99| 亚洲第一av免费看| 露出奶头的视频| 如日韩欧美国产精品一区二区三区| 老司机福利观看| 精品少妇黑人巨大在线播放| 欧美激情高清一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产色婷婷电影| 欧美性长视频在线观看| 久久精品国产a三级三级三级| 亚洲av美国av| 久久久久久久精品吃奶| 菩萨蛮人人尽说江南好唐韦庄| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影 | 亚洲男人天堂网一区| 狠狠狠狠99中文字幕| 99久久国产精品久久久| 国产激情久久老熟女| 真人做人爱边吃奶动态| 亚洲欧美激情在线| 久久狼人影院| 叶爱在线成人免费视频播放| 99精品久久久久人妻精品| 国产一区二区 视频在线| 激情在线观看视频在线高清 | 国产欧美日韩一区二区三| 色94色欧美一区二区| 亚洲天堂av无毛| 黄色a级毛片大全视频| 亚洲三区欧美一区| 久久狼人影院| 少妇裸体淫交视频免费看高清 | 黄色毛片三级朝国网站| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 91成年电影在线观看| 两性夫妻黄色片| 丰满人妻熟妇乱又伦精品不卡| 美女国产高潮福利片在线看| 日韩欧美国产一区二区入口| 91成年电影在线观看| 人人妻人人澡人人看| 亚洲av片天天在线观看| 大型黄色视频在线免费观看| 啦啦啦 在线观看视频| 99精品久久久久人妻精品| 青青草视频在线视频观看| 999久久久精品免费观看国产| 在线永久观看黄色视频| 人成视频在线观看免费观看| 中文字幕色久视频| 99国产精品99久久久久| 女人被躁到高潮嗷嗷叫费观| 黄色视频不卡| 欧美日韩视频精品一区| 久久久久久久久免费视频了| 一区二区三区激情视频| 亚洲精品国产精品久久久不卡| 亚洲天堂av无毛| 午夜免费鲁丝| 免费在线观看视频国产中文字幕亚洲| 精品人妻1区二区| 90打野战视频偷拍视频| tocl精华| 国精品久久久久久国模美| 亚洲精品中文字幕在线视频| 免费少妇av软件| 99国产综合亚洲精品| 国产精品美女特级片免费视频播放器 | 亚洲一码二码三码区别大吗| 亚洲免费av在线视频| 免费在线观看视频国产中文字幕亚洲| 免费看a级黄色片| 91av网站免费观看| 国产一区二区在线观看av| 欧美日韩国产mv在线观看视频| 成人av一区二区三区在线看| 亚洲精品美女久久av网站| 日韩有码中文字幕| 真人做人爱边吃奶动态| 亚洲伊人色综图| 在线永久观看黄色视频| 国产精品 国内视频| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| 精品人妻在线不人妻| 成年人免费黄色播放视频| 国产熟女午夜一区二区三区| 看免费av毛片| 欧美成人午夜精品| 久久精品熟女亚洲av麻豆精品| 亚洲中文av在线| 69精品国产乱码久久久| 黄色怎么调成土黄色| 麻豆成人av在线观看| 欧美午夜高清在线| 久久精品91无色码中文字幕| 老司机福利观看| 亚洲自偷自拍图片 自拍| 老熟女久久久| 午夜福利免费观看在线| 国产极品粉嫩免费观看在线| 在线观看免费高清a一片| 精品国产超薄肉色丝袜足j| 人妻一区二区av| 中文欧美无线码| 日本av手机在线免费观看| 成年人午夜在线观看视频| av线在线观看网站| kizo精华| 久久久久国内视频| 多毛熟女@视频| 女性被躁到高潮视频| 巨乳人妻的诱惑在线观看| 性色av乱码一区二区三区2| 无人区码免费观看不卡 | 国产一卡二卡三卡精品| 免费看十八禁软件| 国产区一区二久久| av一本久久久久| a级毛片黄视频| av欧美777| 人成视频在线观看免费观看| 夫妻午夜视频| 成年版毛片免费区| 日韩欧美一区视频在线观看| 久久久久久久精品吃奶| 成人三级做爰电影| 色老头精品视频在线观看| 国产在线观看jvid| 大型av网站在线播放| 午夜激情久久久久久久| 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 99精国产麻豆久久婷婷| 国产成人免费观看mmmm| 美国免费a级毛片| 一区福利在线观看| 久久亚洲真实| 搡老乐熟女国产| 成人av一区二区三区在线看| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 丰满少妇做爰视频| 丁香欧美五月| 欧美在线一区亚洲| 一级毛片电影观看| 国产亚洲精品一区二区www | 国产精品98久久久久久宅男小说| 1024香蕉在线观看| 国产三级黄色录像| 波多野结衣一区麻豆| 久久精品国产综合久久久| 亚洲欧美色中文字幕在线| 午夜福利在线观看吧| 久久影院123| 12—13女人毛片做爰片一| 99国产综合亚洲精品| av网站在线播放免费| 高清欧美精品videossex| av视频免费观看在线观看| 亚洲av国产av综合av卡| 一级毛片女人18水好多| 97在线人人人人妻| 99国产精品一区二区蜜桃av | 国产99久久九九免费精品| 乱人伦中国视频| 亚洲av欧美aⅴ国产| 精品国内亚洲2022精品成人 | 一级黄色大片毛片| 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 热re99久久精品国产66热6| 极品教师在线免费播放| 亚洲成国产人片在线观看| 国产精品熟女久久久久浪| 国产免费av片在线观看野外av| 国产成人影院久久av| 国产aⅴ精品一区二区三区波| 欧美日韩黄片免| 国产免费现黄频在线看| 亚洲国产欧美在线一区| 亚洲中文字幕日韩| 国产一区二区激情短视频| 777米奇影视久久| 精品少妇一区二区三区视频日本电影| 一二三四社区在线视频社区8| 精品国产一区二区久久| 久久久久网色| 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 中文亚洲av片在线观看爽 | 亚洲欧美一区二区三区黑人| 成人影院久久| 中文字幕制服av| 满18在线观看网站| 我的亚洲天堂| 精品亚洲成国产av| 一边摸一边抽搐一进一小说 | 国产成+人综合+亚洲专区| 欧美黄色片欧美黄色片| 日本vs欧美在线观看视频| 黄色成人免费大全| 国产成人精品在线电影| 欧美国产精品一级二级三级| 男人舔女人的私密视频| 69av精品久久久久久 | 亚洲,欧美精品.| 国产成人免费观看mmmm| 变态另类成人亚洲欧美熟女 | 日韩一卡2卡3卡4卡2021年| 一级黄色大片毛片| 老司机影院毛片| 国产成人啪精品午夜网站| 老司机靠b影院| 久久人妻熟女aⅴ| 成人影院久久| 久久久国产欧美日韩av| 黄片大片在线免费观看| 午夜91福利影院| 久久av网站| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费午夜福利视频| 在线 av 中文字幕| 99在线人妻在线中文字幕 | 真人做人爱边吃奶动态| 精品国产一区二区三区四区第35| 国产精品成人在线| 一本综合久久免费| 日韩欧美三级三区| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| 国产福利在线免费观看视频| 亚洲欧洲日产国产| 成人国产一区最新在线观看| 满18在线观看网站| 国产成人免费无遮挡视频| 国产主播在线观看一区二区| 成年人黄色毛片网站| 丰满迷人的少妇在线观看| 日韩成人在线观看一区二区三区| 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 久久久久久亚洲精品国产蜜桃av| 亚洲熟女毛片儿| 最近最新中文字幕大全免费视频| 久久99热这里只频精品6学生| 精品国产一区二区三区四区第35| 国产极品粉嫩免费观看在线| 黄色成人免费大全| 久久中文字幕一级| 日本av手机在线免费观看| 大香蕉久久成人网| 日日爽夜夜爽网站| 少妇被粗大的猛进出69影院| 日本撒尿小便嘘嘘汇集6| 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| 精品第一国产精品| 精品亚洲成国产av| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| videosex国产| svipshipincom国产片| 日韩制服丝袜自拍偷拍| 大香蕉久久成人网| 免费在线观看视频国产中文字幕亚洲| 在线天堂中文资源库| 亚洲欧洲日产国产| tube8黄色片| 国产国语露脸激情在线看| 国产视频一区二区在线看| 国产av精品麻豆| 久久久久久久久免费视频了| 天天影视国产精品| av福利片在线| 亚洲欧美日韩另类电影网站| 天堂中文最新版在线下载| xxxhd国产人妻xxx| 久久亚洲精品不卡| aaaaa片日本免费| 黄网站色视频无遮挡免费观看| 精品免费久久久久久久清纯 | 一本综合久久免费| 91精品三级在线观看| 国产成人啪精品午夜网站| 国产男靠女视频免费网站| 两性夫妻黄色片| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 人人澡人人妻人| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 欧美亚洲日本最大视频资源| 性高湖久久久久久久久免费观看| 狂野欧美激情性xxxx| 香蕉久久夜色| 精品人妻1区二区| 一个人免费在线观看的高清视频| 久9热在线精品视频| 国产一区二区 视频在线| 欧美激情久久久久久爽电影 | 欧美日韩亚洲高清精品| 蜜桃在线观看..| 99久久精品国产亚洲精品| 亚洲三区欧美一区| 天天操日日干夜夜撸| 香蕉久久夜色| 日韩熟女老妇一区二区性免费视频| 国产精品一区二区免费欧美| 在线观看免费视频网站a站| 国产97色在线日韩免费| 91字幕亚洲| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 国产福利在线免费观看视频| 香蕉久久夜色| 色94色欧美一区二区| 看免费av毛片| 国产不卡av网站在线观看| 国产男女内射视频| 色在线成人网| 99热国产这里只有精品6| 成人特级黄色片久久久久久久 | 十八禁高潮呻吟视频| 久久久水蜜桃国产精品网| 久久影院123| 80岁老熟妇乱子伦牲交| 91麻豆av在线| 欧美av亚洲av综合av国产av| 精品久久久久久电影网| 飞空精品影院首页| 中文欧美无线码| 又紧又爽又黄一区二区| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 久久国产精品大桥未久av| 国产成人免费无遮挡视频| 国产精品二区激情视频| 最新美女视频免费是黄的| 久久久欧美国产精品| 免费久久久久久久精品成人欧美视频| 免费黄频网站在线观看国产| 黄色片一级片一级黄色片| 欧美亚洲日本最大视频资源| 又大又爽又粗| 黄色成人免费大全| 老鸭窝网址在线观看| www日本在线高清视频| 大陆偷拍与自拍| 啦啦啦在线免费观看视频4| 久久久久精品人妻al黑| 两个人看的免费小视频| 久久久精品免费免费高清| www.精华液| 免费看a级黄色片| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久小说| 久久婷婷成人综合色麻豆| 久久精品亚洲av国产电影网| 国产精品98久久久久久宅男小说| 男女下面插进去视频免费观看| 亚洲自偷自拍图片 自拍| 国产有黄有色有爽视频| 精品少妇内射三级| 19禁男女啪啪无遮挡网站| 一级毛片精品| 久久久水蜜桃国产精品网| 啦啦啦在线免费观看视频4| 捣出白浆h1v1| 50天的宝宝边吃奶边哭怎么回事| 午夜福利,免费看| 搡老乐熟女国产| 日韩欧美三级三区| 成人18禁高潮啪啪吃奶动态图| 亚洲成人国产一区在线观看| 国产aⅴ精品一区二区三区波| 91麻豆精品激情在线观看国产 | 成在线人永久免费视频| 午夜91福利影院| 国产精品av久久久久免费| 一本综合久久免费| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| 国产一区二区三区在线臀色熟女 | 久久免费观看电影| av免费在线观看网站| 一级片免费观看大全| 在线观看66精品国产| 亚洲五月婷婷丁香| 国产一区二区三区视频了| 成人黄色视频免费在线看| 另类精品久久| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| 99香蕉大伊视频| 男人舔女人的私密视频| 亚洲人成伊人成综合网2020| 亚洲中文日韩欧美视频| 国产欧美亚洲国产| 在线观看免费高清a一片| 99精国产麻豆久久婷婷| 又黄又粗又硬又大视频| 久久中文字幕人妻熟女| 夜夜骑夜夜射夜夜干| 在线看a的网站| av免费在线观看网站| 99riav亚洲国产免费| 不卡一级毛片| 国产国语露脸激情在线看| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 亚洲国产成人一精品久久久| 国产成人一区二区三区免费视频网站| 精品亚洲乱码少妇综合久久| 可以免费在线观看a视频的电影网站| 精品国产一区二区三区四区第35| svipshipincom国产片| 少妇被粗大的猛进出69影院| 亚洲欧洲精品一区二区精品久久久| 欧美黄色片欧美黄色片| 看免费av毛片| 色94色欧美一区二区| 久久精品亚洲精品国产色婷小说| 久久久久久久精品吃奶| 女同久久另类99精品国产91| 如日韩欧美国产精品一区二区三区| 12—13女人毛片做爰片一| 一区二区av电影网| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9 | 婷婷成人精品国产| 美女主播在线视频| 新久久久久国产一级毛片| 亚洲综合色网址| 欧美变态另类bdsm刘玥| 精品一区二区三区av网在线观看 | 亚洲国产av影院在线观看| 丝袜喷水一区| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| 国精品久久久久久国模美| 日韩视频一区二区在线观看| 国产精品国产高清国产av | 极品人妻少妇av视频| 免费少妇av软件| 亚洲欧洲精品一区二区精品久久久| 天堂动漫精品| 色综合婷婷激情| 久久精品国产亚洲av高清一级| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区精品| 97在线人人人人妻| 国产激情久久老熟女| 亚洲av美国av| 男男h啪啪无遮挡| 亚洲精品中文字幕一二三四区 | 一边摸一边抽搐一进一小说 | 欧美 日韩 精品 国产| 女人精品久久久久毛片| h视频一区二区三区| 国产一区二区 视频在线| 亚洲中文av在线| 在线十欧美十亚洲十日本专区| 欧美精品人与动牲交sv欧美| 亚洲中文字幕日韩| 一区二区av电影网| 久久精品熟女亚洲av麻豆精品| 国产aⅴ精品一区二区三区波| 五月开心婷婷网| av不卡在线播放| 中国美女看黄片| 18禁观看日本| 欧美一级毛片孕妇| a级片在线免费高清观看视频| 久久 成人 亚洲| 黄频高清免费视频| 亚洲熟女毛片儿| 久久这里只有精品19|