• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    理論研究晶體場效應(yīng)和電荷轉(zhuǎn)移效應(yīng)對Co2+的2p電子X射線L2,3吸收邊光譜的影響

    2021-07-11 16:21:10BORADebajeetGLANSPerAndersGUOJinghua
    關(guān)鍵詞:場效應(yīng)電荷轉(zhuǎn)移合肥

    程 效,BORA Debajeet K.,GLANS Per-Anders,GUO Jinghua,羅 毅

    (1.中國科學(xué)技術(shù)大學(xué)合肥微尺度物質(zhì)科學(xué)國家研究中心,合肥230026;2.Advanced Light Source,Lawrence Berkeley National Laboratory,Berkeley CA 94720,USA)

    1 Introduction

    Cobalt-containing materials are receiving renewed interest due to their exotic properties originated from cobalt atom’s partially filled 3dshell in various potential applications,such as renewable energy[1—3],magnetism[4,5],spintronics[6],and catalytic reactions[7—14].Because of the exceptional element-selectivity and locality,X-ray absorption spectroscopy(XAS)is a powerful technology to probe electronic structure of the selected transition metal element in materials of interest.In particular,theL-edge XAS can in principle give the detailed information about the fundamental character of the 3dorbital and the bonding property between the centrally located transition metal and neighboring ligands.The-edges in various cobalt compounds have been extensively studied by different experimental methods,such as soft X-ray absorption spectrum[15—17],X-ray magnetic circular dichroism(XMCD)[18—20],and electron energy loss spectroscopy(EELS)[21—23].Since in various materials the ligands surrounding cobalt cation are either of different kinds or of different symmetrical local structures,the corresponding XAS profiles often show different features with unique characteristics.It becomes essential to find out connections between these specific spectral features and the local electronic structure property around cobalt cation.However,such rich spectral features appearing in the XAS are very difficult to interpret or assign by physical intuition.Advanced theoretical modeling is highly desirable.In this context,multiplet calculation method[24]has been quite successful to explain the interesting features found in the X-ray absorption spectra,especially some new features found in the novel materials[25].The multiplet calculation method uses crystal field cluster model combined with charge transfer multiple configuration interaction to compute the corresponding X-ray absorption spectra,which naturally connects the spectral feature with local electronic structure.

    For cobalt containing materials,the multiplet calculation method is an effective tool to interpretedges X-ray absorption spectra[26—28].The multiplet calculations of Co2+L-edge XAS reveal many unique and interesting physical mechanisms,such as the important role of 3delectron spin-orbit coupling interaction[29,30],the possible mechanisms in chemical reactions[12—14],the origin of magnetism in cobalt doped materials[5,31].The sensitivity of cobalt(Ⅱ)carboxylates XAS to different ligand field has been studied experimentally and theoretically[32].The difference between the XAS of CoO nanocrystal and single crystal was analyzed by crystal field multiplet calculations and the effects of 3delectron spin-orbit coupling,tetragonal distortion,and superexchange interaction have been revealed[33].

    The calculation method based on multiplet effects[24,34]used to study the-edges X-ray absorption spectra[26—28]is a semi-empirical method[35].It requires a good set of semi-empirical parameters for the calculation to describe the crystal field effect and charge transfer process.From as early as 1990s,certain set of multiplet calculation parameters have been found to be preferable for various Co2+systems in X-ray spectroscopy calculations[27,36].In the case of Co2p L2,3-edges XAS due to a number of low-energy excitation factors such as crystal field distortion,3delectron spin-orbit coupling,and temperature effect on population of the excited states,the physical meaning of the parameters and their specific effect on XAS have not been understood well in the previous researches.Therefor rather than to find the better calculation parameter set for certain system,in this work we provide a systematic study of validating the change of-edges X-ray absorption spectrum with respect to different calculation parameters variation.

    The most common type of Co cation’s local structure found in the transition complex is Ohor close to with slight distortion such as CoO and CoCl2.In experimental findings specifically related with CoO and CoCl2,the-edges XAS were carried out to study self-assembled pencil-shaped CoO nanorods[37],electron correlation and charge transfer effect at Ni/Co interface[38],Co2+low spin state in individual Ti0.8Co0.2O2nanosheet[39],formation of CoO at Co2FeAl0.5Si0.5/MgO interface due to high annealing temperature[40]and the atomic structure of CoO nanoparticle as active catalyst for light-driven water oxidation[33].This research will focus on Co2+cation in the Ohsymmetry using CoO and CoCl2as example systems to study the variation ofX-ray absorption spectrum with respect to the change of different calculation parameters.The discussion made on Co2+cation in Ohsymmetry in this research is not only limited to CoO and CoCl2systems,but also can be applied to other similar materials with the same Ohsymmetry.

    Although the Co2+cation share the same Ohsymmetrical local structure in CoO and CoCl2,there are differences between CoO and CoCl2structures.The different structure results in different crystal and charge transfer effects therefor requires different appropriate calculation parameters in multiplet method.As for CoO at room temperature,it is paramagnetic within acubic crystal structure,where Co2+cation sites in an Ohsymmetrical local structure surrounded by six O2-ligand anions.It becomes an antiferromagnetic material with a slight tetragonal distortion for Co2+below its Néel temperature 290 K[41,42].The CoCl2always exists in hydrate form with layer by layer structure,where in each layer Co2+cation sites in Ohsymmetrical local structure formed by six Cl-ligand anions and H2O intercalate between two layers.In other CoCl2hydrate forms or anhydrous form,the local structure around Co2+cation has slight distortion but can still be approximated by Ohsymmetry.

    The configurational energy,Slater-Condon parameters and spin-orbit coupling interactions are calculated inabinitiomethod for 2p63d7as initial state and 2p53d8as final state.Then the crystal field and charge transfer effects are described by several semi-empirical calculation parameters in the following steps.When the crystal field is in the Ohsymmetry,the 3dorbitals of Co atom are split into two groups,t2gandeg.The parameter 10Dqis defined as energy splitting betweent2gandegorbitals and is used to describe the crystal field effect in Ohsymmetry.While the charge transfer effect is treated by inclusion of more configurations in the initial and final state,in a similar manner to configuration-interaction(CI)method.Charge transfer energy(Δ),on-siteCoulomb repulsion(Udd),core-hole potential(Upd),and hopping parameters(T)fort2gandegare used to describe the charge transfer process.The physical meaning of all these parameters used in the calculation will be discussed in details below.

    The multiplet calculation on Co2+cation’s 2pX-ray absorption spectrum is performed in atomic model first,then the crystal field and charge transfer effects in Ohsymmetry are introduced into the calculation.The variation of XAS features with respect to the change of 3dspin-orbit coupling,crystal field strength,charge transfer energy,on-siteCoulomb repulsive interaction between 3delectrons,Coulomb interaction between 2pcore-hole and 3delectron,hopping parameters for different 3dorbitals and the temperature effects are discussed systematically in this work.The physics meaning of each parameter is revealed to elaborate the connection between the specific property of Co2+local structure and certain feature in XAS.The analysis routine in the work is not only limited for Co2+cation in Ohsymmetry,but also provides a systematic way on how to apply the multiplet calculation method of X-ray absorption spectrum of other transition metal systems.

    The conventional multiplet method mentioned above is one of the most successful methods for computing X-ray spectra of metals.However,its quality is much dependent on the choice of several semi-empirical parameters we are going to discuss here.In recent years,there are several methods prompted for first-principle calculation of these multiplet theory semi-empirical parameters.Josefessonetal.[43]incorporated atomic multiplet and molecular orbital effectsviaconfiguration interaction for transition metalL-edge X-ray spectra in aqueous ions and molecule.The ligand field DFT method[44,45]implemented in the amsterdam density functional(ADF)program package was used to calculate the multiplet structure of some heavy metal compounds such as Slater-Condon integrals,spin-orbit coupling constants and ligand field potential.The DFT method[46,47]incorporated with Wannier functions is able to provide realistic values for parameters in Anderson impurity model,such as state energies,hopping parameters and Coulomb interactions in transition metals.Many other DFT methods[48—51]with Wannier functions were also reported to be able to determine non-empirically the multiplet energy levels and ligand-field parameters in rare earth elements.What’s more,latest plethora of reviews about different methods used to interpret 2p L-edge XAS of transition metals are presented by various experts in this field[52—54]both in semi-empirical and first-principle codes.Here in present study we just focus on the conventional crystal/ligand-multiplet approach’s semi-empirical parameters physical effects on spectral features,in the future we will introduce the first-principle calculation method to derive these parameters as many as possible non-semi-empirically.

    2 Theory and Computation Details

    The multiplet calculation method is based on Cowan-Butler-Thole code,based on a serial of development of many researchers’work since early 1960s[55—57],including the integration of CTM4XAS software package[35]by Frank de Groot’s group.In the calculation the crystal field effect is taken into consideration by using a symmetry branching method based on group theory.The charge transfer effect is incorporated by including more charge transfer configurations into the initial and final states.In the process of interaction of X-ray with materials,F(xiàn)ermi Golden rule plays an important role in absorption mechanism.The intensity of absorption spectrum(IXAS)of a transition from initial stateto final stateby absorbing an incident photon with energyωphis given under first order dipole transition approximation as[58]:

    whereEiandEfare energies of initial state and final state,respectively;eis electron charge.

    In order to calculate the wavefunctions of the initial and final states,the atomic multiplet calculation is taken under the single impurity Anderson model[59]using Hartree-Fock method following the method introduced by Cowan and modified by Thole[55].In this first atomic model approximation,the system Hamiltonian concerning the center-sited cobalt cation is written as:

    wherepiis momentum ofi-th electron,Zis center metal atom number,Nis total number of the electrons,riis the vector ofi-th electron,rijis the distance betweeni-th electron andj-th electron,ξiis the spin-orbit coupling constant ofi-th electron whose orbital angular momentum isand spin angular momentum isBy solving this equation,the wavefunctions and the Hartree-Fock values of Slater-Condon-Shortley parametersFiandGi,average energy for each configuration and spin-orbit interaction constants are calculated as shown in Table 1.In the Hartree-Fock calculation the energy matrix is diagonalized and gives out energy levels for ground and excited states with atomic term symbol2S+1LJ.

    Table 1 Parameters from Co2+atomic multiplet calculation results*

    For the following calculation steps,Slater integralsFiandGiare all scaled by a 80%factor compensating the excessive electron repulsive interaction calculated from the atomic model so as to give out a better simulated spectrum[27,60].When there is no crystal field,the pure isolated Co2+cation is treated in atomic spherical SO3symmetry group.The Ohsymmetrical crystal field is treated as a perturbation complement to the atomic Hamiltonian(Hatomic).The inclusion of crystal field effect with specific symmetry needs to branch the crystal field perturbation term from SO3group to Ohgroup following Butler’s method[61].The potential of crystal field effect(Hcf)can be written as a serial multipole expansion of spherical harmonic functions and symmetricalJmfactor parts as below[61,62],

    whereMLis the number of the ligand anions around Co2+cation,Zmis them-th ligand anion’s charge,andR→mis the vector ofm-th ligand anion,is the spherical harmonic functionsis the conventional crystal field parameters,X kαβis the coefficient for operatorU kαβof the symmetrical branching chain SO3→G→g(G and g are symmetry symbols)from group theory[61].This equation indicates that the crystal field potential contributed from surrounding ligand anions(first equality)can be expressed in spherical harmonic functions form(second equality)which describes the spectrum terms.The further expression(third equality)is symmetrical branching method form which is used to describe the parameters needed for the code of Butler.By analysis of the equation above,one can tell that in Ohsymmetrical crystal field the five 3dorbitals split into two degenerated groups,threet2gand twoegorbitals.In the detailed calculation,the crystal field strength for this Ohsymmetry is represented as the energy splitting gap 10Dqwith a value between thet2gandegorbitals.

    The charge transfer effect is then taken into consideration by introducing multiple configurations similar as configuration-interaction(CI)method.Normally,two configurations are appended in the initial state and final state.The Co2+ground state is then treated as 2p63d7+2p63d8L,whereLrepresents a hole in the ligand state.Then the configurational transition path becomes initial state→final state(2p53d8+2p53d9L).The Thole and Ogasawara’s code[63,64]is used to treat the charge transfer effect in the calculation.The parameters used to describe the charge transfer process are charge transfer energy(Δ),on-siteCoulomb repulsion(Udd)between 3d electrons,core-hole potential(Upd)between 2pcore-hole and 3delectron,hopping parametersT(eg),T(t2g)as hybridization energies between ligand 2porbitals and cobalteg,t2gorbitals.

    The calculation parameters for crystal field and charge transfer effects are chosen literature values initially[27]and then change stepwise to show how the X-ray absorption spectral profile changes as function of each parameter.Finally the adjusted calculation is also compared with the experimental XAS spectra of CoO and CoCl2.In the calculation the Lorentzian broadening half width at half maximum(HWHM)value is set as 0.2 eV forL3edge and 0.4 eV forL2edge.The larger value forL2edge is due to Coster-Kronig decay of the 2p12core hole,a combination of life-time and phonon effect for difference Lorentzian broaden effect inL3andL2edges[65,66].The Gaussian broadening HWHM value for the whole spectrum is set as 0.2 eV.

    3 Results and Discussion

    3.1 Atomic Model Calculation

    In the atomic multiplet calculation without crystal field and charge transfer effect,it is effective to describe the ground state of Co2+cation with the configuration2p63d7.According to Hund’s rules,the ground state atomic term for configuration 2p63d7is4F9/2with high spinS=3/2.

    All dipole-allowed transitions from this ground state to theL-edge photon-excited states are calculated to give out the absorption spectrum as shown in Fig.1.Due to the strong 2pcore-hole spin-orbit interactionthe whole spectrum is divided into two regions,L2andL3edge regions.TheL3-edge region below 787 eV is attributed to transition 2p12→3d,and theL2edge region above 787 eV is attributed to transition 2p32→3d.There are 8 visible transitions from this ground state4F9/2to final states inL3region forming 5 peaks(R0-R4),and 3 visible transitions inL2region forming one peak(R5)and one ignorable transition at R5’s high energy side.The atomic multiplet calculation could provide a clear transition assignment for each peak,as shown in Table 2.It is obvious that the atomic multiplet calculation spectrum doesn’t fit with experimental data,which indicates it is essential to include at least crystal field effect in the calculation in order to be comparable with experimental spectrum.

    Fig.1 Atomic multiplet calculation of Co2+2p L2,3-edges X-ray absorption spectrum

    Table 2 Transition assignment of atomic multiplet calculation

    3.2 Crystal Field Effect

    When the Ohsymmetric crystal field is taken into consideration,the Ohsymmetry is processed by branching SO3→Ohaccording to the group theory[61,65].In this branching,the five degenerated3dorbitals of metal center in SO3group will split into two degenerated levels:eg(d z2,d x2-y2)andt2g(d xy,d xz,d yz)in Ohgroup as shown in Fig.2.The crystal field strength is represented by the energy gap value 10Dqbetweenegandt2g,which is the main control parameter for Ohsymmetric crystal field effect.The crystal field theory only takes the ligands around metal center as point charges.In order to incorporate the covalent interaction between ligands and central metal,the ligand field theory should be considered as an extension from crystal field theory.In the ligand field theory,the electron orbitals between Co2+and O2-are combination of Cobalt and Oxygen atomic orbitals.For the 3dorbitals of our study interest,the ligands O2porbitals are incorporated as group to combine with Co3dorbitals as shown in Fig.2.The O2porbitals from each ligand formsegandt2ggroup orbitals due to the Ohsymmetry as shown in Fig.2.Because of the same symmetry,the ligandegorbitals are able to overlap with Co3d egorbitals asσbonding to combine a bonding orbitaleg(σ)and an anti-bonding orbitaleg(σ*),while the ligandt2gorbitals are able to overlap with Co3d t2gorbitals asπbonding to combine a bonding orbitalt2g(π)and an anti-bonding orbitalt2g(π*).

    Fig.2 Scheme of crystal field splitting and charge transfer effect

    For different materials sharing the same Ohlocal symmetry for the center-sited metal cation such as CoO and CoCl2,the 3dorbitals splitting is the same but the different ligand anions around Co2+induce different crystal field splitting strength.The Tanabe-Sugano diagram(total energy diagram)of Co2+ground state configuration 2p63d7as shown in Fig.3,illustrate the multiplet states energy change at different crystal field splitting strength 10Dqvalues from 0 to 3.0 eV.The energies are calculated without 3dspin-orbit coupling for a simple view.The inclusion of 3dspin-orbit coupling interaction only makes current lines split into more states but the major shape of the lines remains the same.When 10Dq=0 eV,the Co2+is actually in atomic state where there are 8 states represented in atomic term symbol projection as shown in Fig.3.When Ohsymmetric crystal field is applied,these 8 states are split into about 20 states.As shown at 10Dq=3.0 eV in Fig.3,the 20 states are represented in Ohsymmetrical term symbol projection.In the process of 10Dqvariation,the multiplet states energy lines of labile electronic configuration 2p63d7have a singular change around 10Dq=2.77 eV,which is a typical spin-crossover phenomenon.The multiplet states change abruptly in the vicinity of 10Dq=2.77 eV,for example4T1→2Eand2E→4T1as indicated in Fig.3.

    Fig.3 Tanabe-Sugano diagram of Co2+ground state without 3d spin-orbit coupling

    As for CoO system,it is sufficient to choose 10Dq=1.0 eV for crystal field multiplet calculation without considering the charge transfer effect[29,36],the calculated spectrum could be close to the XAS observed in the experiment.The following discussion related to the effect of different physics parameters on XAS profile is not only for CoO and CoCl2,but can also be applied to all kinds of Co2+in an Ohsymmetrical structure with any possible ligands.

    The variation of Co2+XAS spectra with 10Dqfrom 0 eV to 3.00 eV shown in Fig.4 demonstrates how different crystal field strength would affect the spectral features.The charge transfer effect is also included in this calculation and described by a set of parameters as used in the previous literature[27,36],where the charge transfer energyΔ=4.0 eV,on-siteCoulomb repulsionU dd=6.0 eV,core-hole potentialU pd=6.0 eV,hopping parametersT(eg)=2.2 eV,T(t2g)=1.1 eV.When the crystal field splitting strength 10Dqis weak,there are two degenerated unoccupiedegorbitals and one unoccupiedt2gorbital in ground state as shown in Fig.2.As the energy gap 10Dqbetweenegandt2gorbitals increases stepwise,the absorption energies for the photon excited 2pelectron transition to these unoccupied orbitals will also expand.As a result in Fig.4,there are more distinct multiplet structures inL2,3-edges as 10Dqincreases from 0 to 1.5 eV.

    Fig.4 Electron distribution for high spin ground state 4T1 with small 10Dq(A)and low spin ground state 2E with large 10Dq(B)and variation of Co2+XAS spectra with 10Dq from 0 to 3.0 eV(C)

    What’s more interesting is when 10Dqincreases over about 1.75 eV,a metamorphosis of the spectral profile is observed in Fig.4.This interesting phenomenon is because that large 10Dqcould induce a ground transition from the high spin(S=3/2)state4T1to the low spin(S=1/2)state2E.Typically the crystal field splitting strength 10Dqis relatively smaller than the inter-electronic repulsion energy,the electrons obey Hund’s first rule and the system prefers a high spin ground state.When 10Dqincreases over inter-electronic repulsion energy,the electrons tend to occupyt2gorbitals with lower energy and the system transfers into a low spin ground state,as shown in Fig.4(A)and(B).Thus,XAS can be a powerful tool for studying magnetic property of the material,for example to detect the artificial controlled spin states inter-conversion occurred in so-called spin crossover complexes[67].

    3.3 Charge Transfer Energy

    The charge transfer effect happens when one electron is transferred from ligand valence orbital to an empty Co3d t2gorbitalviaπbonding interaction as shown in Fig.2.The charge transfer energy(Δ)mentioned above is for the initial state,which defines the energy needed to excite an electron from ligand 2porbital to cobalt 3dorbital in the initial state.The charge transfer energy value depends on bonding property between ligand anions and center-sited metal cation.The higherΔimeans it is more difficult to have charge transferred from ligand to Co2+anion.For ground state with a configuration combination of 3d7+smallerΔiindicates more contribution from configurationwhile largerΔigives more contribution from configuration 3d7.SinceΔicontrols the weight of configurations in ground state,it can be considered as charge transfer initial state effect.

    In Fig.5(A),XAS features vary with charge transfer energyΔifrom-7.0 eV to 7.0 eV,demonstrating how different electronegative ligands would affect the XAS spectral shape.WhenΔiis at a relative large value such as 7.0 eV,the charge transfer effect is very weak due to that the weight ofin the configuration combination is ignorable.IfΔicontinues to increase,the corresponding XAS profile will become more like pure 3d7calculation result in which only crystal field dominates.The charge transfer effect appears gradually in the XAS features,as the charge transfer energyΔidecreases from high value.The weight of 3d7andin the configuration combination becomes comparable to each other.The strong configuration interaction will result in dense mixture of the multiplet states of 3d7andin ground state[24].There will be two specific features appearing in the XAS profile due to this enhanced charge transfer effect.First,multiplet peaks afterL2,3-edges are observed in Fig.5(A).Second,multiplet structure inL3-edge compresses,but it is different compared to the multiplet structure contraction caused by decreased 10Dqin Fig.4.WhenΔidecreases further,the charge transfer effect will be restrained due to the dominant weight ofin the configuration mixture.TheL3-edge continues to compress into one sharp peak.The profile of the XAS will look much like pure 3d8calculation result with only crystal field effect,ifΔidecreases further.

    Fig.5 Variation of Co2+XAS with charge transferenergyΔi and core-hole potential Upd changes

    3.4 The on-site Coulomb repulsion and Core-hole Potential

    Theon-siteCoulomb repulsion(Udd)is also called HubbardUvalue,which is the lowest order term ofd-delectrons Coulomb repulsion integral.The core-hole potential(Upd)is the Coulomb interaction between 2pcore-hole and 3delectron.TheUddis also defined as energy difference[E(3d6)+E(3d8)-2E(3d7)],which describes the charge fluctuation from one Co2+site to the neighboring Co2+site in the impurity model.In the present approximation,the 2pcore-hole is only considered to have interaction with 3delectron.

    Instead of considering each effect ofUddorUpdseparately,only the difference value ofUdd-Updwould affect the XAS spectral profile significantly,for exampleUdd=8.0,Upd=6.0 andUdd=7.0,Upd=5.0 give out the similar XAS spectral profile.The composite valueUdd-Updactually affects the configuration mixturein the final stateviaequationΔf=Δi+(Udd-Upd),when charge transfer energy of initial stateΔiis fixed.Compared toΔieffect mentioned above,the effect ofUdd-Updcan be considered as charge transfer final state effect.Similar asΔi,the small value ofUdd-Updmeans large weight of configurationin the final state.

    In general calculation,theUpdis 1.0 eV or 2.0 eV larger than theUddparameter.WhenUpd-Uddvalue changes in a reasonable range(0.2,3.0 eV),the corresponding X-ray absorption spectra are shown in Fig.5(B)withUdd=6.0.The main shape ofL3-andL2-edges remains almost the same as theUpdchanges from 6.2 to 9.0 eV,but a satellite peak afterL3-edge around 781 eV and a weak satellite peak afterL2-edge appear gradually.The appearance of these interesting satellite peaks is due to the decreasedΔf=Δi+(Udd-Upd)inducing higher weight ofin the final state configurational combination,which gives a strong configuration interaction between them.The decrease ofUdd-Updindicates that theon-siteCoulomb repulsion(Udd)becomes weak while Coulomb attraction(Upd)between 2pcore-hole and 3delectron becomes strong.Both effects enhance the charge transfer from ligand or neighboring cobalt to center-sited Co2+cation’s 3dshell.As compared with the enhanced charge transfer processviaΔiinitial state effect as in Fig.5(A)where mainlyL3-edge profile changes,the increasedUpdhas a different final state effect on XAS profile as shown in Fig.5(B),where the weak satellites peak afterL2,3-edge appears with increasedUpd.The similar phenomenon was also observed in the XAS experiment of cobalt nanoparticles[25].In previous experiment and theoretical study[1],these satellite peaks were attributed toπback-bonding metal-to-ligand charge transfer(MLCT)effect,this work suggests that similar satellite peak may also be induced by enhanced charge transfer effectviaconfigurational interaction in final state.The previous effect is from the neighboring ligand coupling,but the latter one is due to the inner electrons interaction.

    3.5 Hopping Parameters T(e g)and T(t2g)

    The hopping parameterT(eg)orT(t2g)is defined as the hybridization energyV(L)between the 3dorbitalegort2gand the ligand valence orbital.In the charge transfer process,large hopping parameter yields high possibility of the electron transferred from ligand 2porbital to the certain 3dorbitalegort2g.When one electron transfers from ligand anion to center-sited Co2+cation,hopping parameterT(eg)orT(t2g)controls the weight of this electron transferred toegort2gorbital.Since the hopping parameter is always different for each group of degenerated orbitals,this would in some aspects contributes an additional crystal field splitting effect amongorbitals.

    As shown in Fig.6,when the hopping parameterT(t2g)increases from bottom,the multiplet structure inL2,3-edges gradually compress.When one electron transfers from ligand state to Co2+t2gorbital,the resul-ted Coulomb block effect ont2gorbital leaves only two degenerated unoccupiedegorbitals available for the following photon-excited 2pelectron as described in Fig.2.The increase ofT(t2g)will enhance such process,and thus the absorption energies(Ef-Ei)become more degenerated,which reflects as compressed multiplet structure inL2,3-edges as in Fig.6.In contrast,when hopping parameterT(eg)increases from the middle,it broadens the multiplet structures in bothL3-andL2-regions as shown in Fig.6.When one electron transfers from ligand state to Co2+egorbital,the resulted Coulomb block effect onegorbital leaves only two non-degenerated unoccupiedegandt2gorbitals available for the following photon-excited 2pelectron as described in Fig.2.The increasedT(eg)will enhance such process,and results in more non-degenerated absorption energies(Ef-Ei),which reflects as broadening multiplet structure inL2,3-edges as in Fig.6.

    Fig.6 Effeets of hopping parameters on XAS

    3.6 Spin-orbit Coupling and Temperature Effect

    As mentioned above,the 3delectron spin-orbit coupling plays an important role in Co2+L-edge XAS spectral profile.The calculated results for Co2+XAS with and without 3delectron spin-orbit coupling are compared in Fig.7.Unlike 2pcore-hole spin-orbit coupling which cleave the XAS profile intoL2-andL3-edges,the 3delectron spin-orbit coupling changes the features inL2,3-edges obviously.The 3delectron spin-orbit coupling interaction in Co2+will split the ground state4T1into four multiplet states with low energies.If the ground state withE2symmetry is set to be 0 meV,the first excited state with G symmetry has low excitation energy around 44 meV,the second excited state with G′symmetry is at 115 meV,and the third excited state withE1symmetry is at 128 meV[58].As a result,the temperature effect only applies on spectra with spin-orbit coupling interaction at high temperature over 200 K.The inclusion of low energy excited states by increased temperature makes the peaks inL2,3-edges merge together slightly in Fig.7.

    Fig.7 Multiplet calculation of-edges with and without 3d electron spin-orbit coupling interaction

    3.7 Comparison with Experimental Results

    After the systematic discussion about each calculation parameter’s specific effect on XAS features,now we can apply the multiplet calculation to compare with the experimental results.Since Co2+ion in CoO and CoCl2share the same Ohsymmetrical local structure but with different local environments,they will be good systems to compare the correspondingX-ray absorption spectra.TheX-ray absorption spectra of CoO and CoCl2are collected in total electron yield mode as shown in Fig.8.The XAS profiles of CoO and CoCl2share the similar feature,with slight difference due to the same Ohlocal symmetry but different ligand anions O2-and Cl-.Different ligand anions O2-and Cl-have different crystal field strength and charge transfer effect in CoO and CoCl2.Compared to O2-anion,the Cl-anion has stronger charge transfer effect due to its stronger electronegative but weaker crystal field splitting strength.The calculation uses 10Dq=0.5 eV for CoO and 10Dq=0.4 eV for CoCl2to represent the stronger crystal field for O2-,and usesΔ=1.2 eV for CoCl2andΔ=2.4 eV for CoO to describe stronger charge transfer effect in CoCl2.All calculation parameters for CoO and CoCl2are listed in Table 3.Normally,U pdshould be 1 or 2 eV larger thanU dd,but in the present calculation for cobalt dihalides and cobalt oxide systems,it is appropriate to chooseU pdandU ddthe same value[27,28].The calculation results fit well with the experimental data of CoO and CoCl2respectively as shown in Fig.8.

    Fig.8 X-ray absorption spectra of CoO and CoCl2 calculation results compared with the experimental ones

    Table 3 Multiplet calculation parameters for CoO and CoCl2*

    4 Conclusions

    The parameters used in the multiplet calculation ofedges X-ray absorption spectrum in Ohsymmetry are discussed systematically,which revealed the physics mechanism behind each parameter and how they affect the XAS profile in specific pattern.The analysis method for each calculation parameter introduced here can be applied to other transition metals’multiplet calculation to get better XAS profile and understand new features appeared in the XAS of novel transition metal complexes.The multiplet calculation method is also applied on CoO and CoCl2as example systems with the spectra matching to the experimental results successfully.

    猜你喜歡
    場效應(yīng)電荷轉(zhuǎn)移合肥
    揭示S型電荷轉(zhuǎn)移機理
    一例具有可逆熱誘導(dǎo)電荷轉(zhuǎn)移行為的二維氰基橋聯(lián)WⅤ?CoⅡ配合物
    合肥的春節(jié)
    場效應(yīng)晶體管短路失效的數(shù)值模型
    基于CH3NH3PbI3單晶的Ta2O5頂柵雙極性場效應(yīng)晶體管
    合肥:打造『中國IC之都』
    常壓微等離子體陽極與離子溶液界面的電荷轉(zhuǎn)移反應(yīng)
    建筑學(xué)專業(yè)設(shè)計系列課程“場效應(yīng)”教學(xué)模式探索與實踐
    生態(tài)合肥
    基于分子內(nèi)電荷轉(zhuǎn)移機制的巰基熒光比色化學(xué)傳感器
    免费人成在线观看视频色| 黄色日韩在线| freevideosex欧美| 黑人猛操日本美女一级片| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 在线观看免费视频网站a站| 女人久久www免费人成看片| 国产一区二区三区av在线| 成人特级av手机在线观看| 亚洲四区av| 高清在线视频一区二区三区| 欧美日韩综合久久久久久| 亚洲精品,欧美精品| 亚洲欧洲日产国产| 男人和女人高潮做爰伦理| 欧美日韩亚洲高清精品| 国产成人精品福利久久| 亚洲欧洲国产日韩| 午夜老司机福利剧场| 免费黄网站久久成人精品| 99国产精品免费福利视频| 边亲边吃奶的免费视频| 精品久久久久久久久av| 国产亚洲精品久久久com| 老师上课跳d突然被开到最大视频| 久久久久久久久久久免费av| 日本vs欧美在线观看视频 | 日本av手机在线免费观看| 久久精品国产亚洲网站| 久久亚洲国产成人精品v| 天天躁夜夜躁狠狠久久av| 亚洲精品色激情综合| 美女福利国产在线 | 大话2 男鬼变身卡| 久久久国产一区二区| 婷婷色综合www| 高清在线视频一区二区三区| 久久久久久久久久人人人人人人| 国产精品秋霞免费鲁丝片| 日本爱情动作片www.在线观看| 色视频www国产| 小蜜桃在线观看免费完整版高清| 欧美精品人与动牲交sv欧美| 亚洲国产精品一区三区| 建设人人有责人人尽责人人享有的 | 久久久久久久国产电影| 国产白丝娇喘喷水9色精品| 欧美bdsm另类| 国产在视频线精品| tube8黄色片| 精品国产一区二区三区久久久樱花 | 日本爱情动作片www.在线观看| 亚洲成人一二三区av| 欧美+日韩+精品| 黄片无遮挡物在线观看| 啦啦啦视频在线资源免费观看| 中文字幕亚洲精品专区| 欧美日韩综合久久久久久| 日日撸夜夜添| 精品久久久精品久久久| 一级爰片在线观看| 日韩人妻高清精品专区| 欧美性感艳星| 国产v大片淫在线免费观看| 99国产精品免费福利视频| 亚洲天堂av无毛| 观看美女的网站| 少妇 在线观看| 18+在线观看网站| 亚洲av中文av极速乱| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站 | av免费在线看不卡| 18禁裸乳无遮挡免费网站照片| 亚洲av不卡在线观看| 国产精品久久久久久久久免| 国产精品一区二区性色av| 亚洲欧美日韩无卡精品| 少妇的逼好多水| 偷拍熟女少妇极品色| 成人18禁高潮啪啪吃奶动态图 | 欧美亚洲 丝袜 人妻 在线| 成人黄色视频免费在线看| 日韩不卡一区二区三区视频在线| 九色成人免费人妻av| 免费观看性生交大片5| av不卡在线播放| 在线亚洲精品国产二区图片欧美 | 久久 成人 亚洲| 乱系列少妇在线播放| 久久精品国产亚洲av天美| 97在线人人人人妻| 免费人成在线观看视频色| 日韩,欧美,国产一区二区三区| 大话2 男鬼变身卡| 最黄视频免费看| 夫妻午夜视频| 一区二区三区免费毛片| 一级av片app| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 插阴视频在线观看视频| 亚洲三级黄色毛片| 国产精品成人在线| 久久97久久精品| 亚洲美女搞黄在线观看| 成年美女黄网站色视频大全免费 | 美女国产视频在线观看| 乱系列少妇在线播放| 国产精品不卡视频一区二区| 国产 一区精品| 女人十人毛片免费观看3o分钟| 直男gayav资源| 精品熟女少妇av免费看| 偷拍熟女少妇极品色| 在线亚洲精品国产二区图片欧美 | 亚洲欧美日韩东京热| 最新中文字幕久久久久| 日韩亚洲欧美综合| 十八禁网站网址无遮挡 | 男男h啪啪无遮挡| 免费黄频网站在线观看国产| 亚洲精品久久久久久婷婷小说| 午夜免费鲁丝| 久久久a久久爽久久v久久| 男女免费视频国产| 高清av免费在线| 在线免费观看不下载黄p国产| 91精品一卡2卡3卡4卡| 亚洲精品日韩av片在线观看| 亚洲综合精品二区| 男女无遮挡免费网站观看| freevideosex欧美| 亚洲国产最新在线播放| 国产精品不卡视频一区二区| 亚洲伊人久久精品综合| 午夜激情福利司机影院| 色综合色国产| 免费av中文字幕在线| 干丝袜人妻中文字幕| 亚洲经典国产精华液单| 欧美国产精品一级二级三级 | 国产欧美亚洲国产| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人午夜福利电影在线观看| 精品国产三级普通话版| 久久久久国产精品人妻一区二区| 看十八女毛片水多多多| 97在线视频观看| 如何舔出高潮| 欧美精品一区二区大全| 一级毛片久久久久久久久女| 一级黄片播放器| 精品视频人人做人人爽| 只有这里有精品99| 中国国产av一级| 超碰97精品在线观看| av福利片在线观看| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 男女边摸边吃奶| 久久久久久久精品精品| 男女无遮挡免费网站观看| 国产黄频视频在线观看| 在现免费观看毛片| 五月开心婷婷网| xxx大片免费视频| 麻豆精品久久久久久蜜桃| 色综合色国产| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影| 91久久精品电影网| 久久韩国三级中文字幕| 少妇的逼水好多| 精品久久久久久久久亚洲| 我要看黄色一级片免费的| 午夜免费男女啪啪视频观看| 日本wwww免费看| 在线 av 中文字幕| 少妇高潮的动态图| 亚洲国产欧美在线一区| 精品99又大又爽又粗少妇毛片| 男女免费视频国产| 午夜免费鲁丝| 日韩一区二区视频免费看| 深夜a级毛片| 美女cb高潮喷水在线观看| 蜜桃在线观看..| 最黄视频免费看| 在线 av 中文字幕| .国产精品久久| 国产精品三级大全| 精品亚洲成a人片在线观看 | 亚洲人成网站高清观看| 国产真实伦视频高清在线观看| av国产久精品久网站免费入址| 一级毛片aaaaaa免费看小| 日韩中字成人| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 丰满乱子伦码专区| 亚洲国产精品国产精品| 精品人妻视频免费看| 18禁裸乳无遮挡免费网站照片| 日韩在线高清观看一区二区三区| 欧美精品国产亚洲| 亚洲av不卡在线观看| 国产精品一区二区性色av| 天美传媒精品一区二区| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 三级国产精品片| av天堂中文字幕网| 久久青草综合色| 中文字幕久久专区| 国产成人91sexporn| 亚洲欧美日韩另类电影网站 | 亚洲真实伦在线观看| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 三级国产精品片| 欧美人与善性xxx| 亚洲欧美精品自产自拍| 又粗又硬又长又爽又黄的视频| 欧美xxxx黑人xx丫x性爽| 国产精品伦人一区二区| av网站免费在线观看视频| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 亚洲天堂av无毛| av女优亚洲男人天堂| 久久国产精品大桥未久av | 一级黄片播放器| 欧美区成人在线视频| 精品一区在线观看国产| 99热这里只有是精品50| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 久久久久国产网址| 我要看日韩黄色一级片| 国产免费又黄又爽又色| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 久久久久久九九精品二区国产| 卡戴珊不雅视频在线播放| av视频免费观看在线观看| 亚洲怡红院男人天堂| 久久99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 国产亚洲欧美精品永久| 国产亚洲av片在线观看秒播厂| 免费人妻精品一区二区三区视频| 乱系列少妇在线播放| 九九在线视频观看精品| 啦啦啦视频在线资源免费观看| 小蜜桃在线观看免费完整版高清| 一级片'在线观看视频| 国产爽快片一区二区三区| 男女边摸边吃奶| 最近手机中文字幕大全| 波野结衣二区三区在线| av在线播放精品| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 国产 精品1| 九九在线视频观看精品| 王馨瑶露胸无遮挡在线观看| 久久鲁丝午夜福利片| 国产精品三级大全| 男女无遮挡免费网站观看| 国产伦精品一区二区三区视频9| 99热全是精品| 久久热精品热| 国产老妇伦熟女老妇高清| 网址你懂的国产日韩在线| 亚洲国产精品一区三区| 亚洲精华国产精华液的使用体验| 日韩av免费高清视频| 久久精品国产a三级三级三级| 国产精品成人在线| 国产精品国产三级国产专区5o| 亚洲av日韩在线播放| av国产久精品久网站免费入址| 久久精品国产亚洲av涩爱| 欧美另类一区| 秋霞伦理黄片| 免费久久久久久久精品成人欧美视频 | 欧美+日韩+精品| 精品久久国产蜜桃| 成人一区二区视频在线观看| 97超视频在线观看视频| 国产大屁股一区二区在线视频| 日韩伦理黄色片| 热re99久久精品国产66热6| 久久久亚洲精品成人影院| 国产免费一区二区三区四区乱码| 亚洲成色77777| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 老熟女久久久| 久久久成人免费电影| 久久久久久久大尺度免费视频| 自拍偷自拍亚洲精品老妇| 人妻少妇偷人精品九色| 边亲边吃奶的免费视频| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 一级毛片我不卡| 伦理电影大哥的女人| 视频中文字幕在线观看| 内射极品少妇av片p| 国产高清国产精品国产三级 | 一区二区三区四区激情视频| 在线精品无人区一区二区三 | .国产精品久久| 久久97久久精品| 麻豆成人av视频| 精品一区在线观看国产| 欧美高清成人免费视频www| 国产男女内射视频| 日韩欧美一区视频在线观看 | 精品一区二区三区视频在线| 制服丝袜香蕉在线| 国产亚洲精品久久久com| 色网站视频免费| 男男h啪啪无遮挡| 九草在线视频观看| 在线观看免费高清a一片| 99国产精品免费福利视频| 中国国产av一级| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 亚洲av成人精品一二三区| 18禁动态无遮挡网站| 成人黄色视频免费在线看| 久久精品久久久久久久性| 汤姆久久久久久久影院中文字幕| 青春草国产在线视频| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 男人舔奶头视频| 黄色视频在线播放观看不卡| 日韩一本色道免费dvd| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 亚洲精品日本国产第一区| 亚洲第一区二区三区不卡| 春色校园在线视频观看| 亚洲av日韩在线播放| 国内精品宾馆在线| 交换朋友夫妻互换小说| 最近2019中文字幕mv第一页| 国产精品国产三级专区第一集| 日韩 亚洲 欧美在线| 永久免费av网站大全| 老司机影院成人| 精品熟女少妇av免费看| 麻豆成人午夜福利视频| 久久热精品热| 国产视频内射| 国产一区二区三区av在线| 干丝袜人妻中文字幕| 亚洲美女黄色视频免费看| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 国产v大片淫在线免费观看| av免费观看日本| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区视频9| 老熟女久久久| 一级毛片 在线播放| 国产 一区 欧美 日韩| 一本—道久久a久久精品蜜桃钙片| 最近最新中文字幕大全电影3| 97超视频在线观看视频| 欧美一级a爱片免费观看看| 日韩中文字幕视频在线看片 | 久久人人爽av亚洲精品天堂 | 午夜老司机福利剧场| 国产有黄有色有爽视频| 日韩亚洲欧美综合| 日韩av在线免费看完整版不卡| 99热6这里只有精品| 欧美亚洲 丝袜 人妻 在线| 国产69精品久久久久777片| 国产真实伦视频高清在线观看| 国产精品伦人一区二区| 精品国产三级普通话版| 观看免费一级毛片| 亚洲内射少妇av| 久久这里有精品视频免费| 欧美另类一区| 国产午夜精品一二区理论片| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 日本黄大片高清| 18禁在线无遮挡免费观看视频| 内射极品少妇av片p| 亚洲精品国产色婷婷电影| 国产免费又黄又爽又色| 亚洲美女黄色视频免费看| 亚洲av免费高清在线观看| 欧美区成人在线视频| 丰满乱子伦码专区| 成年免费大片在线观看| 成人高潮视频无遮挡免费网站| 日本wwww免费看| 国产视频内射| 成人毛片60女人毛片免费| 天天躁日日操中文字幕| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 如何舔出高潮| 91午夜精品亚洲一区二区三区| 丰满少妇做爰视频| 久久鲁丝午夜福利片| 激情 狠狠 欧美| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 一级av片app| 久久热精品热| 一级毛片我不卡| 国产熟女欧美一区二区| 女性被躁到高潮视频| 日韩av不卡免费在线播放| 少妇 在线观看| 亚洲美女黄色视频免费看| 中文字幕免费在线视频6| 99久久精品热视频| 在线观看一区二区三区激情| 国产精品欧美亚洲77777| kizo精华| 卡戴珊不雅视频在线播放| 人体艺术视频欧美日本| 国产精品99久久99久久久不卡 | 永久网站在线| 国产乱来视频区| 3wmmmm亚洲av在线观看| 新久久久久国产一级毛片| 久久久国产一区二区| 97超碰精品成人国产| 久久青草综合色| 黑丝袜美女国产一区| 在线 av 中文字幕| 黄片无遮挡物在线观看| 精品亚洲乱码少妇综合久久| 久久久国产一区二区| 久久亚洲国产成人精品v| 高清不卡的av网站| 免费黄色在线免费观看| 男女免费视频国产| 韩国高清视频一区二区三区| 国产精品秋霞免费鲁丝片| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩一区二区| 成人无遮挡网站| 亚洲第一区二区三区不卡| 51国产日韩欧美| av免费观看日本| videos熟女内射| 麻豆国产97在线/欧美| 欧美+日韩+精品| 王馨瑶露胸无遮挡在线观看| 久久久久久九九精品二区国产| 干丝袜人妻中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲三级黄色毛片| 日韩成人av中文字幕在线观看| 久久国产精品大桥未久av | a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 免费av不卡在线播放| 国产淫片久久久久久久久| freevideosex欧美| 久久精品国产亚洲av天美| 一级片'在线观看视频| 亚洲性久久影院| 久久午夜福利片| 亚洲av欧美aⅴ国产| 国产精品伦人一区二区| 97超视频在线观看视频| 亚洲人成网站高清观看| 一本色道久久久久久精品综合| 乱码一卡2卡4卡精品| 最近最新中文字幕免费大全7| 蜜桃久久精品国产亚洲av| 亚洲美女黄色视频免费看| 少妇 在线观看| 久久久亚洲精品成人影院| 亚洲国产色片| 欧美xxⅹ黑人| 99久久精品国产国产毛片| 日本-黄色视频高清免费观看| 国产在视频线精品| 人体艺术视频欧美日本| 成人漫画全彩无遮挡| 精品一区二区三卡| 日本vs欧美在线观看视频 | 欧美高清性xxxxhd video| av国产免费在线观看| 国产精品伦人一区二区| 中文欧美无线码| 青春草国产在线视频| 只有这里有精品99| 免费在线观看成人毛片| 亚洲av中文av极速乱| 久久精品夜色国产| 亚洲一区二区三区欧美精品| 水蜜桃什么品种好| 成人毛片a级毛片在线播放| 国产精品一区www在线观看| 亚洲精品aⅴ在线观看| 麻豆成人午夜福利视频| 日韩人妻高清精品专区| 午夜激情福利司机影院| 2022亚洲国产成人精品| 久久人人爽人人片av| 在线观看免费日韩欧美大片 | 人人妻人人添人人爽欧美一区卜 | 天天躁日日操中文字幕| 男女边摸边吃奶| 丝瓜视频免费看黄片| 免费av中文字幕在线| 国产精品.久久久| 国产人妻一区二区三区在| 欧美bdsm另类| a级一级毛片免费在线观看| 久久韩国三级中文字幕| 亚洲激情五月婷婷啪啪| 熟妇人妻不卡中文字幕| 99久久精品热视频| 国产高清三级在线| 在线观看三级黄色| 欧美一级a爱片免费观看看| 又粗又硬又长又爽又黄的视频| 男女无遮挡免费网站观看| 亚洲国产欧美人成| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 18+在线观看网站| 免费大片18禁| 伦精品一区二区三区| 亚洲精品久久午夜乱码| 欧美激情极品国产一区二区三区 | 一级黄片播放器| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久久免| 日韩精品有码人妻一区| 久久久久久久久久久丰满| 日韩大片免费观看网站| 日韩视频在线欧美| 多毛熟女@视频| 97超碰精品成人国产| 嫩草影院新地址| 亚洲成色77777| 一级毛片我不卡| 在线看a的网站| 午夜激情福利司机影院| av播播在线观看一区| 一级av片app| 亚洲怡红院男人天堂| 在线观看一区二区三区激情| 精品久久国产蜜桃| 日日摸夜夜添夜夜添av毛片| 国产高清有码在线观看视频| 欧美日韩综合久久久久久| 成年人午夜在线观看视频| av国产免费在线观看| 久热这里只有精品99| 成人无遮挡网站| 欧美精品一区二区免费开放| 联通29元200g的流量卡| 亚洲精品国产色婷婷电影| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 色5月婷婷丁香| 女人十人毛片免费观看3o分钟| 国产精品一区二区在线观看99| 春色校园在线视频观看| 91久久精品电影网| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 国产乱人偷精品视频| 亚洲精品色激情综合| 国产av一区二区精品久久 | 日本黄色片子视频| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 久久99精品国语久久久| 欧美极品一区二区三区四区| 欧美精品一区二区免费开放| 亚洲精品成人av观看孕妇| 国产精品福利在线免费观看| 欧美高清性xxxxhd video| 国产精品人妻久久久影院| 久久久欧美国产精品| 亚洲,一卡二卡三卡| 夜夜看夜夜爽夜夜摸| 最近2019中文字幕mv第一页| 国产精品无大码| 蜜桃久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片| h视频一区二区三区| 少妇裸体淫交视频免费看高清| 久久女婷五月综合色啪小说| 女性被躁到高潮视频| 蜜臀久久99精品久久宅男|