• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于CH3NH3PbI3單晶的Ta2O5頂柵雙極性場效應(yīng)晶體管

    2017-03-13 09:53:17呂乾睿廉志鵬趙昊巖董桂芳王立鐸嚴(yán)清峰
    物理化學(xué)學(xué)報(bào) 2017年1期
    關(guān)鍵詞:場效應(yīng)遷移率晶體管

    呂乾睿 李 晶 廉志鵬 趙昊巖 董桂芳 李 強(qiáng) 王立鐸 嚴(yán)清峰

    (清華大學(xué)化學(xué)系,北京100084)

    基于CH3NH3PbI3單晶的Ta2O5頂柵雙極性場效應(yīng)晶體管

    呂乾睿 李 晶 廉志鵬 趙昊巖 董桂芳*李 強(qiáng) 王立鐸 嚴(yán)清峰*

    (清華大學(xué)化學(xué)系,北京100084)

    具有無機(jī)-有機(jī)雜化鈣鈦礦結(jié)構(gòu)的CH3NH3PbI3通常偏向于顯示n型半導(dǎo)體特性,本文以五氧化二鉭(Ta2O5)作為絕緣層,制備了基于鈣鈦礦CH3NH3PbI3單晶的頂柵結(jié)構(gòu)場效應(yīng)晶體管,暗態(tài)下更明顯地觀察到了CH3NH3PbI3所具有的p型場效應(yīng)特性,空穴場效應(yīng)遷移率達(dá)到8.7×10-5cm2·V-1·s-1,此暗態(tài)空穴遷移率比原有報(bào)道的基于CH3NH3PbI3多晶薄膜的SiO2底柵場效應(yīng)晶體管提高了一個數(shù)量級。此外,光照對CH3NH3PbI3單晶場效應(yīng)晶體管的性能有強(qiáng)烈影響。與底柵結(jié)構(gòu)CH3NH3PbI3多晶場效應(yīng)晶體管不同,即使有柵極和絕緣層的遮擋,5.00 mW·cm-2的光照仍可使CH3NH3PbI3單晶場效應(yīng)晶體管的空穴電流提高一個數(shù)量級(VGS(柵源電壓)=VDS(漏源電壓)=20 V),光響應(yīng)度達(dá)到2.5 A·W-1。本文工作實(shí)現(xiàn)了對CH3NH3PbI3場效應(yīng)晶體管載流子傳輸?shù)倪x擇性調(diào)控,表明在沒有外部因素的參與下,通過合適的器件設(shè)計(jì),CH3NH3PbI3同樣具有制備成雙極性晶體管的潛力。

    鈣鈦礦;五氧化二鉭;場效應(yīng);遷移率;光照

    1 Introduction

    Methyl ammonium lead iodide(CH3NH3PbI3,MAPbI3)based organic-inorganic hybrid perovskites have attracted much attention in recent years because of their rapid progress in solar cell1-5, light-emitting diodes6,7,memristor8,photodetectors9,etc.Their excellent properties have been ascribed to the appropriate direct band gap10,large absorption coefficient11,long-range balanced electron-and hole-transport lengths12,and high electrical mobility13of the perovskites.In addition,MAPbI3exhibits ambipolar property14,which provides more possibilities for the application in the field of electronic and optoelectronic devices15.Although MAPbI3have achieved tremendous progress in practical application,physical properties of this material,for example the chargetransport mechanisms are still not fully understood16.Field-effect transistors(FETs)are important electrical devices and also have been extensively used to explore the carrier transport characteristics in semiconductor materials.From this point of view,the study on MAPbI3FETs is of paramount importance to deepen the understanding of carrier transport characteristics in MAPbI3material.

    At present,the reported MAPbI3FETs are all based on polycrystalline film and their performances in the dark are still below expectations17-19.Aconsensus is that the low hole mobility(~10-6cm2·V-1·s-1)resulted from the screening effect has impeded the progress of their FET applications17,18.Therefore,improving the FET mobility of MAPbI3,especially the hole mobility,is of great importance to promote the FET application.Chin et al.18reported that increased field-effect carrier mobility by almost two orders of magnitude could be achieved below 200 K,because lowering the operating temperature could effectively eliminate the screening effects.Li et al.19suggested that there was no obvious field effect in MAPbI3polycrystalline film in the dark and the field effect could only be induced under light illumination with the help of the photo-induced carriers.Overall,up to date,in order to observe field effect in the MAPbI3polycrystalline film,appropriate external factor should be applied.Furthermore,as to ambipolar materials,for integrating both devices with p-and n-type conductions on the same material,selectively but not equally regulating the hole or electron transport in FETs according to the actual needs is important20.Unfortunately,the external factors mentioned above resulted in leveling the transport of electron and hole in the same time18.

    In this paper,we report a top-gate FET device based on singlecrystal MAPbI3with Ta2O5as the gate dielectric.Without external factors,we not only observed field effect in the single-crystal MAPbI3transistor,but also achieved selective regulation of the hole mobility.Compared with the polycrystalline MAPbI3,the field effect was more obvious and the hole mobility increased by one order of magnitude at room temperature.These results were significant in the physical property understanding and the application developing of MAPbI3materials.

    2 Experimental

    2.1 Preparation and structural characterization of perovskite MAPbI3single crystal

    The growth of MAPbI3single crystal was based on the method described by Poglitsch and Weber21.All chemicals were used as received without further purification.Pb(CH3COOH)2·3H2O (99.5%)from Sinopharm Chemical Reagent Co.,Ltd.,China.57% HI aqueous solution with 0.75%H3PO2as stabilizer was from Acros,USA and 40%CH3NH2aqueous solution was from Alfa. 7.5 g of Pb(CH3COOH)2·3H2O was dissolved in 30 mL of a 57% HI aqueous solution contained in a Erlenmeyer flask under stirring condition in air.The Erlenmeyer flask was put on a heating plate (Ika C-MAG)and slightly heated to make them dissolve sufficiently and quickly,till the solution turned homogeneous bright yellow.An additional pre-made 6 mL of 57%HI solution with 2 mL of CH3NH240%aqueous solution was added to the solution drop by drop at about 373 K to ensure no black solid appear.The Erlenmeyer flask was put into an oven after sealing.Black single crystals were grown at the bottom of the Erlenmeyer flask by cooling this yellow solution to 333 K in 10 days.After filtered and dried at 333 K in vacuum oven for 12 h,the crystals were collected for structural characterization and device fabrication.The as-grown MAPbI3single crystals were oriented by X-ray crystal diffraction(XRD)instrument(Brüker P4)using Cu Kαradiation at a scan rate of 12(°)·min-1under operation condition of 40 kV and 40 mA.To ensure that the single crystals belong to a pure phase,several crystals were ground to powder and the powder XRD data were collected in the same test conditions.The absorption spectrum was collected on a Perkin Elmer Lambda 950 spectrophotometer.The surface morphology of as-grown MAPbI3single crystals was characterized using an atomic force microscope(AFM,Seiko instrument SPA400).

    2.2 FET device fabrication and characterization

    A fresh MAPbI3single crystal(3 mm×3 mm×1.5 mm)with flat surface was chosen to fabricate the FET.Au strips of 70 nm in thickness were deposited on the upper flat surface of the single crystal by a conventional thermal evaporation method through a stainless steel mask as source electrodes and drain electrodes.The deposition rate was 0.01 nm·s-1and it was suspended several times during the process to protect the single crystal from overheating.The channel width(W)was 800 μm,and the channel length(L)was 50 μm.Ta2O5dielectric layer with a thickness of 300 nm was deposited on the MAPbI3single crystal with source electrodes and drain electrodes by magnetron reactive sputteringin an Ar/O2(1:1(volume ratio))gas mixture.The gate electrode was Au strip,with the same deposition process of the source electrodes and drain electrodes.Au wires were led from three electrodes to facilitate FET testing.By changing the gate-source voltage(VGS)and monitoring the drain-source current(IDS)under different drain-source voltage(VDS),the field-effect was characterized.The output and transfer curves of the FET were measured using a semiconductor characterization system(Keithley 4200) under ambient conditions.The experiment light was from fluorescent lamps and solar simulators(Thermo oriel 91192-1000).The FET was illuminated from the Au gate to the MAPbI3single crystal.

    Fig.1 (a)Photograph of an as-grown MAPbI3single crystal,(b)XRD patterns of MAPbI3single crystal and its powder, (c)atomic force microscope(AFM)height image and(d)the corresponding three-dimensional topographic image of a MAPbI3single crystal

    3 Results and discussion

    A MAPbI3single crystal of~3 mm×3 mm×1.5 mm in dimension is shown in Fig.1(a).The obvious mirror-like surfaces indicate that the crystal tends to exhibit their natural rhombic and parallelogram facets.As shown in Fig.1(b),the diffraction signal of the top facet of the single crystal contains only two sharp peaks, which is identified to be the(200)and(400)diffractions.Thus,the top natural facet of the crystal was determined to be(100).The orientation result matches with previous report22.The powder X-ray diffraction patterns of the ground crystals demonstrate a classic tetragonal perovskite structure,which is in good agreement with the patterns of MAPbI3polycrystalline films23.The absorption spectrum is shown in Fig.S1(Supporting Information),which confirms the 1.49 eV bulk band gap.More detailed structural and optical characterization of the as-grown single crystals can be found in our previous report24.Furthermore,as shown in Fig.1(c) and Fig.1(d),the single crystal surface displays a root-meansquare roughness of 1.36 nm in a typical scanning area of 5 μm× 5 μm,which is far lower than that of usual MAPbI3polycrystalline films19.There are some circular holes on the single crystal surface, which might be caused by the erosion from the residual growth solution during the post-growth treatment.

    A FET with the top-gate structure as schematically shown in Fig.2(a)was fabricated on the(100)facet of the MAPbI3single crystal.Each layer constituting the FET can be clearly observed under the optical microscope(Fig.2(b)).Fig.3 shows FET characteristics of the device.The hole transport properties are presented in Fig.3(a)and Fig.3(c)while Fig.3(b)and Fig.3(d)reflect the electron transport properties.The field effect can be observed, indicating that both electrons and holes could be induced as charge carriers under electric field.This result is in accordance with the ambipolar transport property as previously reported in polycrystalline films18.The IDSis higher than that in polycrystalline films.It is worth noting that the field effect could be observed in the dark condition in a MAPbI3single crystal,which was barely observed in the MAPbI3polycrystalline film18,19.In the polycrystalline film,the grain boundary gives rise to a large concentration of traps or ion vacancies and the screen effect is remarkable.These factors overshadowed the field effect of its own.Previous study has shown that the perovksite film having fewer grain boundaries and thus less ion vacancies resulted in smaller ion drift velocity25.Considering that single crystals can decrease the concentration of traps or ion vacancies and eliminate the screening effect to the greatest extent because of the absence of grain boundaries,it is expected that the single-crystal FET may reflect the intrinsic property of MAPbI3.That′s also why one may observe the field effect even in the dark condition in a MAPbI3single crystal FET.It should be noted that a lot of destructive testing experiments showed that the IDSreached saturation quickly, and the saturation region of the FET was very short,which could be ascribed to the high permittivity of Ta2O5.When the VDSreached about 25 V,the FETs went into the breakdown region and the device was destroyed(see Fig.S2,Supporting Information).The field-effect mobility(μ)of the FET device was calculated through the slope in the linear region in the transfer curve(Fig.3(c,d))by using the following equation:

    Fig.2 (a)Sketch and(b)optical microscope image of the FET based on a MAPbI3single crystal

    Fig.3 FET characteristics of MAPbI3single crystal

    where Ci(6.6×10-8F·cm-2)is the unit area capacitance of the Ta2O5dielectric layer,which is from our previous experimental data26.The mobility extracted from transfer characteristics in the dark is 8.7×10-5cm2·V-1·s-1for holes and 2.6×10-5cm2·V-1· s-1for electrons,respectively.The hole mobility in the single crystal is more than 3 times than the electron mobility.Compared with the MAPbI3polycrystalline film,the field effect is more obvious and the hole mobility increases by one order of magnitude than that in polycrystalline FETs at room temperature.The on/off current ratio is less than 2.Although this on/off current ratio in the dark is much lower than conventional FETs such as Si/Ge FET,it is a breakthrough for this perovskite material because the field effect in the dark was difficult to be observed in previously reported MAPbI3polycrystalline film FET because of the lack of movable carriers.In addition,in MAPbI3polycrystalline film FET with SiO2as the gate dielectric,the electron mobility was larger than the hole mobility18,while in the bulk crystals with Ta2O5as the gate dielectric,the holes were more easily transported than theelectrons.This result might be caused by the electron trapping sites from the vacant Ta orbits in Ta2O5,which could serve as electron acceptors26,27.As a result,the transport of holes was enhanced.It is expected that by selecting a suitable insulating layer or gate patterning,p-channel or other custom-made MAPbI3FET may be achieved,which will help the device integration to a large extent.Further improving the contact conditions and the quality of the crystal surface may dramatically improve the carrier mobility and on/off current ratio,which is worthy of study in the future.

    Fig.4 Output characteristics of the FET under the fluorescent lamp condition

    To further validate this conjecture,the effect of light illumination on the MAPbI3single crystal FET was also studied.The output characteristic curves of electrons and holes under a fluorescent lamp were shown in Fig.4.The power density was 0.04 mW·cm-2,which was far lower than that required by a MAPbI3polycrystalline film phototransistor19.In addition,the light illumination was shielded by the top gate dielectric compared with the bottom gate dielectric FETs.Even if under this condition,the improvement in IDScould be observed.However,the regulatory capacity of VGSto IDSdropped significantly,which means that when MAPbI3single crystal FET was illuminated with weak light,the light stimulated more carriers and the photon-generated carrier exhibited directional movement under the electric field.In this top gate transistor,the photo-generated carrier concentration was too large and the gate-modulated IDSwas only a little part of the photogenerated IDS.This large amount of photo-generated carrier was owe to the photoelectric response of the MAPbI3single crystal.In other words,the carrier concentration and the transport ability of the single crystal could be obviously enhanced without requiring strong illumination.These results further confirmed the MAPbI3single-crystal FET had higher responsivity compared to the FETs based on MAPbI3polycrystalline film.When the power density increased to 5.00 mW·cm-2by a solar simulator,IDSwas further increased.It increased by one order of magnitude than that in the dark(VGS=VDS=20 V)and the photo responsivity reached 2.5A· W-1.The output curves tended to straight lines and almost coincided(Fig.5).

    Fig.5 Output characteristics of the FET under the solar simulator condition

    To further illustrate the importance of the selection of the device structure and the dielectric layer material in the single-crystal FET, a FET device with a bottom-gate/top-contact structure based on single-crystal MAPbI3is shown in Fig.S3(Supporting Information),in which 300 nm thick thermally oxidized SiO2was applied as the dielectric layer.The single crystal with source electrodes and drain electrodes was pressed onto the Si/SiO2substrate gently to form the FET(see Fig.S3).The FET characterization showed that to observe the field effect,a greater VDSand VGSshould be applied and the IDSjitters during the testing(see Fig.S4,Supporting Information).Except for the lower permittivity of SiO2,we owned this result to the super long carrier transport length(1.5 mm,the thickness of the single crystal)from the drain electrode to the channel,then to the source electrode and more importantly the poor interface between the channel and the insulating SiO2.It isworth mentioning that in this FET with SiO2as the insulating layer,electrons showed stronger transport ability than holes.The mobility extracted from transfer characteristics is 0.0024 cm2·V-1· s-1for holes and 0.17 cm2·V-1·s-1for electrons.

    4 Conclusions

    In summary,MAPbI3single crystals were successfully grown by a temperature-lowering solution growth method.A prototype FET device based on the single crystal MAPbI3and the Ta2O5as the top gate dielectric layer was made and its field-effect characteristics were observed in the dark.The ambipolar transport characteristic was found in single-crystal MAPbI3FETs.The hole transport was selectively enhanced because of the large amount of electron trapping sites in Ta2O5.In the top gate transistor,faint light could make the field effect disappear and make the IDSincrease sharply because of the high responsivity of MAPbI3single crystals.The higher FET hole mobility in single-crystal organicinorganic hybrid perovskite may further stimulate the integration and application of these materials in electronic and optoelectronic devices.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Kim,H.S.;Lee,C.R.;Im,J.H.;Lee,K.B.;Moehl,T.; Marchioro,A.;Moon,S.J.;Humphry-Baker,R.;Yum,J.H.; Moser,J.E.Sci.Rep.2012,2,591.doi:10.1038/srep00591

    (2)Etgar,L.;Gao,P.;Xue,Z.;Peng,Q.;Chandiran,A.K.;Liu,B.; Nazeeruddin,M.K.;Gra?tzel,M.J.Am.Chem.Soc.2012,134, 17396.doi:10.1021/ja307789s

    (3)Burschka,J.;Pellet,N.;Moon,S.J.;Humphry-Baker,R.;Gao, P.;Nazeeruddin,M.K.;Gr?tzel,M.Nature 2013,499,316. doi:10.1038/nature12340

    (4)Liu,M.;Johnston,M.B.;Snaith,H.J.Nature 2013,501,395. doi:10.1038/nature12509

    (5)Zhou,H.;Chen,Q.;Li,G.;Luo,S.;Song,T.B.;Duan,H.S.; Hong,Z.;You,J.;Liu,Y.;Yang,Y.Science 2014,345,542. doi:10.1126/science.1254050

    (6)Xiao,J.;Zhang,H.L.Acta Phys.-Chim.Sin.2016,32,1894. [肖 娟,張浩力.物理化學(xué)學(xué)報(bào),2016,32,1894.]doi:10.3866/ PKU.WHXB201605034

    (7)Tan,Z.K.;Moghaddam,R.S.;Lai,M.L.;Docampo,P.;Higler, R.;Deschler,F.;Price,M.;Sadhanala,A.;Pazos,L.M.; Credgington,D.Nat.Nanotech.2014,9,687.doi:10.1038/ nnano.2014.149

    (8)Yan,K.;Peng,M.;Yu,X.;Cai,X.;Chen,S.;Hu,H.;Chen,B.; Gao,X.;Dong,B.;Zou,D.J.Mater.Chem.C 2016,4,1375. doi:10.1039/C6TC00141F

    (9)Fang,H.;Li,Q.;Ding,J.;Li,N.;Tian,H.;Zhang,L.;Ren,T.; Dai,J.;Wang,L.;Yan,Q.J.Mater.Chem.C 2016,4,630. doi:10.1039/C5TC03342J

    (10)Lee,M.M.;Teuscher,J.;Miyasaka,T.;Murakami,T.N.; Snaith,H.J.Science 2012,338,643.doi:10.1126/ science.1228604

    (11)De Wolf,S.;Holovsky,J.;Moon,S.J.;Lo?per,P.;Niesen,B.; Ledinsky,M.;Haug,F.J.;Yum,J.H.;Ballif,C.J.Phys.Chem. Lett.2014,5,1035.doi:10.1021/jz500279b

    (12)Xing,G.;Mathews,N.;Sun,S.;Lim,S.S.;Lam,Y.M.;Gr?tzel, M.;Mhaisalkar,S.;Sum,T.C.Science 2013,342,344. doi:10.1126/science.1243167

    (13)Stoumpos,C.C.;Malliakas,C.D.;Kanatzidis,M.G.Inorg. Chem.2013,52,9019.doi:10.1021/ic401215x

    (14)Giorgi,G.;Fujisawa,J.I.;Segawa,H.;Yamashita,K.J.Phys. Chem.Lett.2013,4,4213.doi:10.1021/jz4023865

    (15)Gr?tzel,M.Nat.Mater.2014,13,838.doi:10.1038/nmat4065

    (16)Sum,T.C.;Mathews,N.Energy Environ.Sci.2014,7,2518. doi:10.1039/c4ee00673a

    (17)Heo,J.H.;Im,S.H.;Noh,J.H.;Mandal,T.N.;Lim,C.S.; Chang,J.A.;Lee,Y.H.;Kim,H.J.;Sarkar,A.;Nazeeruddin, M.K.Nat.Photonics 2013,7,486.doi:10.1038/ nphoton.2013.80

    (18)Chin,X.Y.;Cortecchia,D.;Yin,J.;Bruno,A.;Soci,C.Nat. Commun.2015,6,7383.doi:10.1038/ncomms8383

    (19)Li,F.;Ma,C.;Wang,H.;Hu,W.;Yu,W.;Sheikh,A.D.;Wu,T. Nat.Commun.2015,6,8238.doi:10.1038/ncomms9238

    (20)Shokouh,S.H.H.;Jeon,P.J.;Pezeshki,A.;Choi,K.;Lee,H. S.;Kim,J.S.;Park,E.Y.;Im,S.Adv.Funct.Mater.2015,25, 7208.doi:10.1002/adfm.201502008

    (21)Poglitsch,A.;Weber,D.J.Chem.Phys.1987,87,6373. doi:10.1063/1.453467

    (22)Dang,Y.;Liu,Y.;Sun,Y.;Yuan,D.;Liu,X.;Lu,W.;Liu,G.; Xia,H.;Tao,X.CrystEngComm 2015,17,665.doi:10.1039/ C4CE02106A

    (23)Im,J.H.;Lee,C.R.;Lee,J.W.;Park,S.W.;Park,N.G. Nanoscale 2011,3,4088.doi:10.1039/c1nr10867k

    (24)Lian,Z.;Yan,Q.;Lv,Q.;Wang,Y.;Liu,L.;Zhang,L.;Pan,S.; Li,Q.;Wang,L.;Sun,J.L.Sci.Rep.2015,5,16563. doi:10.1038/srep16563

    (25)Xiao,Z.;Yuan,Y.;Shao,Y.;Wang,Q.;Dong,Q.;Bi,C.; Sharma,P.;Gruverman,A.;Huang,J.Nat.Mater.2015,14,193. doi:10.1038/NMAT4150

    (26)Liu,X.;Zhao,H.;Dong,G.;Duan,L.;Li,D.;Wang,L.;Qiu,Y. ACS Appl.Mater.Interfaces 2014,6,8337.doi:10.1021/ am501197d

    (27)Liang,Y.;Dong,G.;Hu,Y.;Wang,L.;Qiu,Y.Appl.Phys.Lett. 2005,86,132101.doi:10.1063/1.1896099

    CH3NH3PbI3Single Crystal-Based Ambipolar Field-Effect Transistor with Ta2O5as the Top Gate Dielectric

    Lü Qian-Rui LI Jing LIAN Zhi-Peng ZHAO Hao-Yan DONG Gui-Fang*LI Qiang WANG Li-Duo YAN Qing-Feng*
    (Department of Chemistry,Tsinghua University,Beijing 100084,P.R.China)

    Organic-inorganic hybrid perovskite methylammonium lead iodide(CH3NH3PbI3)generally tends to show n-type semiconductor properties.In this work,a field-effect transistor(FET)device based on a CH3NH3PbI3single crystal with tantalum pentoxide(Ta2O5)as the top gate dielectric was fabricated.The p-type field-effect transport properties of the device were observed in the dark.The hole mobility of the device extracted from transfer characteristics in the dark was 8.7×10-5cm2·V-1·s-1,which is one order of magnitude higher than that of polycrystalline FETs with SiO2as the bottom gate dielectric.In addition,the effect of light illumination on the CH3NH3PbI3single-crystal FET was studied.Light illumination strongly influenced the field effect of the device because of the intense photoelectric response of the CH3NH3PbI3single crystal.Different from a CH3NH3PbI3polycrystalline FET with a bottom gate dielectric,even with the top gate dielectric shielding, light illumination of 5.00 mW·cm-2caused the hole current to increase by one order of magnitude compared with that in the dark(VGS(gate-source voltage)=VDS(drain-source voltage)=20 V)and the photoresponsivity reached 2.5 A·W-1.The introduction of Ta2O5as the top gate dielectric selectively enhanced hole transport inthe single-crystal FET,indicating that in the absence of external factors,by appropriate device design, CH3NH3PbI3also has potential for use in ambipolar transistors.

    Perovskite;Tantalum pentoxide;Field-effect;Mobility;Light illumination

    O649

    icle]

    10.3866/PKU.WHXB201610142www.whxb.pku.edu.cn

    Received:August 22,2016;Revised:October 14,2016;Published online:October 14,2016.

    *Corresponding authors.DONG Gui-Fang,Email:donggf@mail.tsinghua.edu.cn;Tel:+86-10-62782287.

    YAN Qing-Feng,Email:yanqf@mail.tsinghua.edu.cn;Tel:+86-10-62792830.

    The project was supported by the National Natural Science Foundation of China(51173097,91333109),National Key Basic Research Program of China(2013CB632900),Tsinghua University Initiative Scientific Research Program,China(20131089202,20161080165),and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,China(KF201516).

    國家自然科學(xué)基金(51173097,91333109),國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(2013CB632900),清華大學(xué)自主科研項(xiàng)目(20131089202,

    20161080165)和低維量子物理國家重點(diǎn)實(shí)驗(yàn)室開放基金(KF201516)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    場效應(yīng)遷移率晶體管
    2.6萬億個晶體管
    大自然探索(2021年7期)2021-09-26 01:28:42
    場效應(yīng)晶體管短路失效的數(shù)值模型
    戲劇特有的場效應(yīng)
    戲劇之家(2017年10期)2017-06-21 10:40:41
    SiC/SiO2界面形貌對SiC MOS器件溝道遷移率的影響
    一種新型的耐高溫碳化硅超結(jié)晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    濾棒吸阻和濾嘴長度對卷煙煙氣中6種元素遷移率的影響
    煙草科技(2015年8期)2015-12-20 08:27:17
    碳納米管晶體管邁出商用關(guān)鍵一步
    建筑學(xué)專業(yè)設(shè)計(jì)系列課程“場效應(yīng)”教學(xué)模式探索與實(shí)踐
    高遷移率族蛋白B1對16HBE細(xì)胞血管內(nèi)皮生長因子表達(dá)和分泌的影響
    基于六普數(shù)據(jù)的年齡—遷移率模型研究
    日日啪夜夜撸| 亚洲欧美日韩另类电影网站 | 婷婷色综合大香蕉| 国产熟女欧美一区二区| 男女下面进入的视频免费午夜| 久久久久久久久大av| 国产一区二区亚洲精品在线观看| 插阴视频在线观看视频| 国产精品蜜桃在线观看| 久久久久国产网址| 久久久午夜欧美精品| 国产精品久久久久久精品电影| 精品一区在线观看国产| 韩国av在线不卡| 久久久久久久国产电影| 久久久久久久久久成人| 麻豆久久精品国产亚洲av| 国产亚洲5aaaaa淫片| 日韩大片免费观看网站| 视频中文字幕在线观看| 99久国产av精品国产电影| 亚洲成人一二三区av| 精品久久久噜噜| 免费av不卡在线播放| 日日啪夜夜撸| 日韩av免费高清视频| 欧美激情在线99| 精品人妻熟女av久视频| 天堂网av新在线| av福利片在线观看| 国产亚洲5aaaaa淫片| 精品午夜福利在线看| 天美传媒精品一区二区| 免费在线观看成人毛片| 国产大屁股一区二区在线视频| 色视频在线一区二区三区| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 日日啪夜夜爽| 岛国毛片在线播放| 亚洲自拍偷在线| 免费av毛片视频| 偷拍熟女少妇极品色| 国产亚洲精品久久久com| 国产精品久久久久久久久免| 黄色欧美视频在线观看| 美女脱内裤让男人舔精品视频| 国产一区二区三区av在线| 亚洲av福利一区| 在线观看免费高清a一片| 男人狂女人下面高潮的视频| 看黄色毛片网站| 肉色欧美久久久久久久蜜桃 | 久久97久久精品| 五月天丁香电影| 日本三级黄在线观看| 国产真实伦视频高清在线观看| 一级片'在线观看视频| 日韩成人av中文字幕在线观看| 男男h啪啪无遮挡| 久久久久久久大尺度免费视频| 久热这里只有精品99| 在线精品无人区一区二区三 | 1000部很黄的大片| 婷婷色综合大香蕉| 激情 狠狠 欧美| 国产中年淑女户外野战色| 亚洲精品一区蜜桃| 亚洲国产精品999| 国产精品一区二区性色av| 亚洲综合色惰| 嫩草影院入口| 欧美一级a爱片免费观看看| 国产精品.久久久| 神马国产精品三级电影在线观看| 久久久国产一区二区| 久久精品久久精品一区二区三区| 亚洲不卡免费看| 欧美老熟妇乱子伦牲交| 国产永久视频网站| 日韩av免费高清视频| 欧美成人一区二区免费高清观看| 国产高清三级在线| 最近中文字幕2019免费版| 亚洲精品日韩av片在线观看| 久久影院123| 99久国产av精品国产电影| 国产免费又黄又爽又色| 寂寞人妻少妇视频99o| 国产精品久久久久久精品电影| 久久99热这里只频精品6学生| 国产片特级美女逼逼视频| 精品久久久噜噜| 最近中文字幕2019免费版| 少妇被粗大猛烈的视频| 亚洲色图综合在线观看| 日日啪夜夜爽| 国产有黄有色有爽视频| 亚洲一级一片aⅴ在线观看| 午夜福利视频精品| 下体分泌物呈黄色| 99久久精品一区二区三区| 在线天堂最新版资源| 日韩精品有码人妻一区| 一个人观看的视频www高清免费观看| 亚洲欧美日韩另类电影网站 | 国产精品麻豆人妻色哟哟久久| 99久久九九国产精品国产免费| 亚洲欧美日韩无卡精品| 超碰av人人做人人爽久久| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 国产永久视频网站| 一级毛片电影观看| 久久精品久久久久久久性| 久久久精品免费免费高清| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 男男h啪啪无遮挡| 国产精品久久久久久精品古装| 亚洲最大成人中文| 欧美亚洲 丝袜 人妻 在线| 综合色丁香网| 欧美高清性xxxxhd video| 高清视频免费观看一区二区| 亚洲欧洲国产日韩| 中文乱码字字幕精品一区二区三区| 国产乱人偷精品视频| 夜夜看夜夜爽夜夜摸| 视频区图区小说| 欧美日韩国产mv在线观看视频 | 成人综合一区亚洲| 亚洲av欧美aⅴ国产| 国产一区亚洲一区在线观看| 亚洲欧美中文字幕日韩二区| 成人美女网站在线观看视频| 交换朋友夫妻互换小说| 国产黄片视频在线免费观看| 精品99又大又爽又粗少妇毛片| 亚洲最大成人中文| 日韩制服骚丝袜av| 久久久色成人| 真实男女啪啪啪动态图| 日韩中字成人| 久久6这里有精品| 国产91av在线免费观看| 国产成人精品福利久久| 看非洲黑人一级黄片| 美女xxoo啪啪120秒动态图| 一级av片app| 国产毛片在线视频| 国产精品福利在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 国产av国产精品国产| 国产69精品久久久久777片| 女的被弄到高潮叫床怎么办| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 日本黄色片子视频| 80岁老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 中国国产av一级| 久久久久国产精品人妻一区二区| kizo精华| 欧美日韩在线观看h| 卡戴珊不雅视频在线播放| 又爽又黄无遮挡网站| 亚洲欧美成人精品一区二区| 国产午夜精品久久久久久一区二区三区| 精品午夜福利在线看| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 只有这里有精品99| 亚洲精品久久午夜乱码| 51国产日韩欧美| 国产伦在线观看视频一区| 欧美亚洲 丝袜 人妻 在线| 青春草亚洲视频在线观看| 简卡轻食公司| 成人综合一区亚洲| 男女国产视频网站| 婷婷色av中文字幕| 精品国产露脸久久av麻豆| 2022亚洲国产成人精品| 亚洲内射少妇av| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 免费观看在线日韩| 一级a做视频免费观看| 最近手机中文字幕大全| 国产色爽女视频免费观看| 99视频精品全部免费 在线| 久久99热这里只有精品18| 王馨瑶露胸无遮挡在线观看| 午夜精品国产一区二区电影 | 久久女婷五月综合色啪小说 | 国产综合精华液| 人妻系列 视频| 欧美高清成人免费视频www| 亚洲精品乱码久久久久久按摩| 久久久国产一区二区| 乱系列少妇在线播放| 国产91av在线免费观看| 夜夜看夜夜爽夜夜摸| 国产成人精品婷婷| 麻豆精品久久久久久蜜桃| av在线亚洲专区| av国产免费在线观看| 国产免费视频播放在线视频| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 综合色丁香网| 亚洲国产精品国产精品| 大话2 男鬼变身卡| 久久久精品94久久精品| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 亚洲精品乱久久久久久| 精品人妻熟女av久视频| 亚洲国产精品999| 久久精品国产自在天天线| 天天躁日日操中文字幕| a级毛色黄片| 国产欧美亚洲国产| av又黄又爽大尺度在线免费看| 日本欧美国产在线视频| 国产欧美日韩精品一区二区| 中文欧美无线码| 最近中文字幕高清免费大全6| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 久久人人爽av亚洲精品天堂 | 精品视频人人做人人爽| 久久99蜜桃精品久久| 69人妻影院| 直男gayav资源| 三级国产精品欧美在线观看| 在线观看美女被高潮喷水网站| 18禁动态无遮挡网站| 免费av不卡在线播放| 国产成人精品婷婷| 国产精品蜜桃在线观看| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区三区| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线 | 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 国内精品宾馆在线| 免费看不卡的av| av国产免费在线观看| 日韩欧美精品免费久久| 欧美高清成人免费视频www| av国产免费在线观看| 美女xxoo啪啪120秒动态图| 内地一区二区视频在线| 午夜福利网站1000一区二区三区| 一级二级三级毛片免费看| 欧美成人午夜免费资源| 精品熟女少妇av免费看| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲网站| 国产午夜精品一二区理论片| 一区二区av电影网| 日韩 亚洲 欧美在线| 日韩国内少妇激情av| 99久久中文字幕三级久久日本| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 国产成人精品婷婷| 91精品国产九色| 最近中文字幕2019免费版| 夫妻午夜视频| 一级毛片我不卡| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品色激情综合| 久久综合国产亚洲精品| 亚洲精品成人av观看孕妇| 中文资源天堂在线| 亚洲精品日韩在线中文字幕| 2018国产大陆天天弄谢| 日韩免费高清中文字幕av| 久久久久久久国产电影| 少妇的逼水好多| 免费观看av网站的网址| 久久99精品国语久久久| 自拍偷自拍亚洲精品老妇| 国产黄片视频在线免费观看| 老女人水多毛片| 亚洲精品自拍成人| 国产在视频线精品| 伊人久久精品亚洲午夜| 日韩av免费高清视频| 一级av片app| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 久久久久网色| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 99热全是精品| 亚洲第一区二区三区不卡| 一本色道久久久久久精品综合| 国产淫片久久久久久久久| 99re6热这里在线精品视频| 草草在线视频免费看| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| 老司机影院成人| 人人妻人人爽人人添夜夜欢视频 | 一本久久精品| 国产午夜精品一二区理论片| 日日撸夜夜添| 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 久久97久久精品| 日韩视频在线欧美| 少妇被粗大猛烈的视频| a级毛色黄片| av天堂中文字幕网| 久久久成人免费电影| 成年人午夜在线观看视频| 熟女av电影| 高清日韩中文字幕在线| 久久久久性生活片| 国产高潮美女av| 少妇猛男粗大的猛烈进出视频 | 国产成人精品婷婷| 美女视频免费永久观看网站| 日韩av在线免费看完整版不卡| 色播亚洲综合网| 秋霞伦理黄片| 国产伦精品一区二区三区视频9| 好男人在线观看高清免费视频| 日韩视频在线欧美| 99热网站在线观看| 国产亚洲一区二区精品| 国产免费一级a男人的天堂| 一二三四中文在线观看免费高清| 免费看不卡的av| 我的女老师完整版在线观看| 免费看日本二区| 国产av码专区亚洲av| 嫩草影院精品99| 国产 一区 欧美 日韩| 国产黄频视频在线观看| 国产亚洲精品久久久com| 亚洲最大成人中文| 日韩强制内射视频| 成人综合一区亚洲| 有码 亚洲区| 国产成人精品一,二区| 国产精品久久久久久精品电影| 九九爱精品视频在线观看| 国产 一区精品| 国产精品国产三级国产专区5o| 亚洲精品视频女| av女优亚洲男人天堂| 免费观看av网站的网址| 亚洲精品日本国产第一区| 欧美三级亚洲精品| 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 能在线免费看毛片的网站| 国产成人freesex在线| 在线观看三级黄色| av线在线观看网站| 日韩欧美精品v在线| 99久久精品国产国产毛片| 岛国毛片在线播放| 中国国产av一级| 久久久a久久爽久久v久久| 日本色播在线视频| 一级黄片播放器| 免费观看av网站的网址| 免费在线观看成人毛片| 国产毛片a区久久久久| 日本午夜av视频| 人妻少妇偷人精品九色| 色网站视频免费| 69人妻影院| 免费av观看视频| 一本色道久久久久久精品综合| 成人二区视频| 国产乱人视频| 丝袜美腿在线中文| 国产成人a区在线观看| 日韩伦理黄色片| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 毛片一级片免费看久久久久| 不卡视频在线观看欧美| 男女国产视频网站| 久久精品国产a三级三级三级| 日韩一本色道免费dvd| 久久综合国产亚洲精品| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 久久久久久久大尺度免费视频| 你懂的网址亚洲精品在线观看| 嫩草影院新地址| 97超碰精品成人国产| 大片电影免费在线观看免费| 尤物成人国产欧美一区二区三区| 美女主播在线视频| 亚洲精品中文字幕在线视频 | 色吧在线观看| 高清毛片免费看| 亚洲自拍偷在线| 最近的中文字幕免费完整| 天堂中文最新版在线下载 | 日韩亚洲欧美综合| 夫妻性生交免费视频一级片| 亚洲国产精品成人综合色| 在线播放无遮挡| 中文精品一卡2卡3卡4更新| 观看免费一级毛片| 一级毛片 在线播放| 在线亚洲精品国产二区图片欧美 | 精品国产露脸久久av麻豆| 色播亚洲综合网| 伊人久久精品亚洲午夜| 男女国产视频网站| 日日啪夜夜爽| 国产精品秋霞免费鲁丝片| 久热久热在线精品观看| 亚洲欧美精品专区久久| 久久精品国产亚洲网站| freevideosex欧美| 亚洲综合精品二区| 国产成人一区二区在线| 久久久久久久久大av| 亚洲不卡免费看| av国产免费在线观看| a级毛色黄片| 亚洲一区二区三区欧美精品 | 99热这里只有是精品50| 少妇人妻久久综合中文| 中文字幕免费在线视频6| 国产黄频视频在线观看| 日韩一区二区三区影片| 男女边摸边吃奶| 国产 精品1| 免费观看av网站的网址| 午夜福利视频1000在线观看| 国产老妇女一区| 91精品伊人久久大香线蕉| 国产探花极品一区二区| 嫩草影院精品99| 丝袜喷水一区| 国产成人免费观看mmmm| 老师上课跳d突然被开到最大视频| 国产精品av视频在线免费观看| 婷婷色av中文字幕| 亚洲自拍偷在线| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 亚洲成人久久爱视频| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 色综合色国产| 欧美成人a在线观看| 看十八女毛片水多多多| 丝袜美腿在线中文| h日本视频在线播放| 精品一区在线观看国产| 成人欧美大片| 久久久精品94久久精品| 在线播放无遮挡| 嫩草影院精品99| 欧美老熟妇乱子伦牲交| 色视频在线一区二区三区| 午夜福利在线在线| 听说在线观看完整版免费高清| 国产高清三级在线| 日韩欧美精品v在线| 国产精品久久久久久精品电影小说 | 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 久久久久精品性色| 国产成人freesex在线| 亚洲天堂av无毛| 国内精品宾馆在线| 久久久a久久爽久久v久久| 2021天堂中文幕一二区在线观| 亚洲国产最新在线播放| 免费av观看视频| 精品久久久久久电影网| 成人鲁丝片一二三区免费| 汤姆久久久久久久影院中文字幕| 一区二区三区免费毛片| 成人午夜精彩视频在线观看| 亚州av有码| 99热这里只有是精品50| 国产精品人妻久久久影院| 国产 一区 欧美 日韩| 最近最新中文字幕免费大全7| 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 美女视频免费永久观看网站| 日韩欧美精品v在线| 小蜜桃在线观看免费完整版高清| av在线app专区| 97人妻精品一区二区三区麻豆| 亚洲国产成人一精品久久久| 视频区图区小说| 国产大屁股一区二区在线视频| 国产男人的电影天堂91| 成人一区二区视频在线观看| 国产精品三级大全| 欧美高清成人免费视频www| 成人特级av手机在线观看| 中文在线观看免费www的网站| 少妇丰满av| 成人亚洲精品av一区二区| 日本午夜av视频| 国产亚洲一区二区精品| 只有这里有精品99| 在线亚洲精品国产二区图片欧美 | 成人国产麻豆网| 中文字幕制服av| 精华霜和精华液先用哪个| 国产一级毛片在线| 哪个播放器可以免费观看大片| 国产精品伦人一区二区| 免费播放大片免费观看视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费在线观看| 久热这里只有精品99| 超碰av人人做人人爽久久| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 免费看光身美女| 色播亚洲综合网| 欧美日韩一区二区视频在线观看视频在线 | 国内精品宾馆在线| 两个人的视频大全免费| 王馨瑶露胸无遮挡在线观看| av在线蜜桃| 久久久久网色| 亚洲av日韩在线播放| 国产美女午夜福利| 亚洲精品亚洲一区二区| 成人二区视频| 免费av毛片视频| 真实男女啪啪啪动态图| 大码成人一级视频| 91精品一卡2卡3卡4卡| 免费大片18禁| 国产白丝娇喘喷水9色精品| 性色avwww在线观看| 国产爱豆传媒在线观看| 久久99热6这里只有精品| 成人黄色视频免费在线看| 国产久久久一区二区三区| 一区二区av电影网| 精品一区二区三卡| 国产精品女同一区二区软件| 少妇高潮的动态图| 嫩草影院入口| 全区人妻精品视频| 亚洲国产色片| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 精品熟女少妇av免费看| 久久精品国产亚洲网站| 国产高潮美女av| 欧美丝袜亚洲另类| 亚洲熟女精品中文字幕| 97在线人人人人妻| 777米奇影视久久| 欧美老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| 国产高清不卡午夜福利| 下体分泌物呈黄色| 国产乱人视频| 秋霞在线观看毛片| 深夜a级毛片| 亚洲天堂国产精品一区在线| 又大又黄又爽视频免费| 亚洲图色成人| 一本色道久久久久久精品综合| 午夜视频国产福利| 91久久精品国产一区二区成人| 午夜福利在线观看免费完整高清在| 男人和女人高潮做爰伦理| 日韩欧美 国产精品| 天堂俺去俺来也www色官网| 亚洲国产av新网站| 亚洲三级黄色毛片| 搡老乐熟女国产| 99久久九九国产精品国产免费| 一本一本综合久久| 街头女战士在线观看网站| 欧美日韩亚洲高清精品| 日韩中字成人| 亚洲美女搞黄在线观看| 色哟哟·www| 插逼视频在线观看| 成人二区视频| 亚洲av免费在线观看| 岛国毛片在线播放| 久久人人爽人人片av| av又黄又爽大尺度在线免费看| 白带黄色成豆腐渣| 国产精品国产三级国产专区5o| 亚洲av.av天堂| 国产午夜精品一二区理论片| 午夜福利视频1000在线观看| 男女下面进入的视频免费午夜| 国产午夜精品一二区理论片| 久久久久九九精品影院|